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Tests and error types
[P, Section 4.1]



Hypothesis testing: motivating example

So far, we have considered the problem of point estimation: given a parametric
model {Fy : 6 € O}, and an iid sample Xi,..., X,, issued from some specific
Fy, estimate the value of 6 that generated the sample. There are many contexts,
however, where the precise value of the true parameter is not the primary object of
our interest. Rather, we are more interested in using the sample to ascertain whether
the true value of the parameter belongs to some specific subset of parameter values
or not.

Example 4.1 (Coin Tossing)

For a simple example, consider a situation where we wish to ascertain whether a coin is fair, or
is biased. We may flip the coin »n times and record the outcome of each coin toss. We then wish
to use the outcomes in order to decide whether the probability of heads is equal to 1/2 or whether
it is different from 1/2. We could formalise this problem by saying that we have X,..., X, 65
Bern(p) and wish to decide whether p € {1} or p € (0,1) \ {1}. O



Hypothesis testing: motivating example cont'd

To make things more concrete, suppose that we know that the parameter has to lie
in one of two sets: either in ®; or in ®, where ®¢ N ©®; = @. We wish to employ
the sample X1, .., X,, that we have at our disposal in order to decide which is the
case. This setup arises very often in the sciences, where there are two competing
scientific hypotheses. The null hypothesis Hy, that states that 6 € ©,

H, : 0 € @0
and the competing alternative hypothesis that instead postulates that 6 € ®1,

H1:9€®1.



Test function

Definition 4.3 (Test Function)
A test function § is any function § : X" — {0, 1}.

A test function takes the value ‘0’ when we rule in favour of H, based on the
sample, and it takes the value ‘1’ when we rule in favour of H;. A test function will
typically take the value O or 1 depending on whether or not the sample satisfies a
certain condition. In other words, test functions are usually constructed by

1, ifTX,...,X,) eC,

§(X1,...,X,) =
0, ifT(Xi,...,X,) ¢C.

where T is a statistic called a test statistic and C a set in the range of T called the
critical region. Notice that in compact notation, we may write

§(X1,..., X)) = T(Xy,...,X,) € C).



Error types

In hypothesis testing, there are two possible states of nature, and two possible
decisions that we can make. Therefore, the “error landscape” is described by the

following table:
Decision/Truth H, H;
0 No error Type II error
1 Type I error No error

Definition 4.4 (Error Probabilities)
Let Hy : 8 € ®p and H; : 6 € ©; be two competing hypotheses. The Type I
error Probability is defined to be the mapping 4 : ®y — [0, 1],

h(0) = Py[é = 1], 0 € Q.
The Type II error Probability is defined to be the mapping g : ®; — [0, 1],

g(0) =P[6 =0, 0¢€O,.

Remark 4.6 (Warning on Error Probabilities) Notice that 4(0) # 1 — g(0)
since the two functions are defined over different domains. It is a common mistake
to not realise this.



Type | v. Type |I: example

Remark 4.7 (Type | vs Type Il Error) It is no coincidence that the two types of
error are given two different names, and in fact names that suggest that one kind
of error is of primary importance (type I) and the other is secondary (type II). In
many practical contexts, the two hypotheses are asymmetric: making one kind of
error is far more serious than the other type of error. The more serious type of error
is named the Type I error and the other is the Type II error. Therefore, in all practical
situations, Hj is chosen to be the hypothesis whose false rejection is more harmful.

Example 4.8 (Spam Filter)

Suppose we wish an automatic test function to decide whether a new email is spam or not. The new
message contains n words X1, .., X,, and we need a test function in order to decide between two
competing hypotheses: “spam” versus “not spam”. Notice that marking a message as spam when
it is in fact not can have serious consequences (since we will not see it and it could be important).
Marking a message as “not spam” when in fact it is spam is annoying, but perhaps not as big of a
problem. In this context, it is reasonable to define “H|, : Message is not spam” and “H; : Message
is spam”. If we do so, the type I error will be precisely the probability to mark a message as spam
when it is not. ]



Neyman-Pearson
[P, Section 4.2]



A lower bound [taken from Rigollet’s notes]

Let v be a sigma finite measure satisfying IPy <« v and IP; < v. For example
we can take v = [Py + IP;. It follows from the Radon-Nikodym theorem [Bil95]
that both IPy and IP; admit probability densities with respect to v. We denote
them by py and p; respectively. For any function f, we write for simplicity

[ £= [ r@wia)

Lemma 4.3 (Neyman-Pearson). Let Py and IP; be two probability measures.
Then for any test v, it holds

Po(p = 1) + P1 (¢ /mln(Po,pl

Moreover, equality holds for the Likelihood Ratio test ¢* = I(p1 > po).


http://www-math.mit.edu/~rigollet/PDFs/RigNotes17.pdf

A lower bound cont’'d [taken from Rigollet’s notes]

Proof. Observe first that

Po(y* =1) +P1(y* =0) /z/: =1 0+/¢ '

[t
P1>Po 1 <po

—/ mln(po,p1)+/ min(po, p1)
P1>Po

Pr1<po
[ i


http://www-math.mit.edu/~rigollet/PDFs/RigNotes17.pdf

A lower bound cont’'d [taken from Rigollet’s notes]

Next for any test 1, define its rejection region R = {1y = 1}. Let R* = {p; >
po} denote the rejection region of the likelihood ratio test 1*. It holds

Po(yp =1) +P1(¢p = 0) = 1 + Po(R) — IP1(R)

=1+/po—p1

R

=1+/ po—p1+/ Do — P1
RNR* RN(R*)e

=1—/ |po—p1|—|—/ [P0 — p1|
RNR* RN(R*)e
—1+4 / po — p|[I(R N (R*)) — I(R N R*)]

The above quantity is clearly minimized for R = R*. 1


http://www-math.mit.edu/~rigollet/PDFs/RigNotes17.pdf

Aside: total variation distance [taken from Rigollet’s notes]

Definition-Proposition 4.4. The total variation distance between two prob-
ability measures Py and IP1 on a measurable space (X, .A) is defined by

TV(Po, Py) = o Po(R) — IP1(R)] (4)
— Zgg)/}%po —pl‘ (47)
—5 [ po-nil (i)
=1 — / min(po, p1) (i)
=1—inf [Po(y = 1) + P1(y = 0)] (v)

where the infimum above is taken over all tests.


http://www-math.mit.edu/~rigollet/PDFs/RigNotes17.pdf

Aside: total variation distance [taken from Rigollet’s notes]

Proof. Clearly (i) = (i) and the Neyman-Pearson Lemma gives (iv) = (v).
Moreover, by identifying a test ¢ to its rejection region, it is not hard to see
that (i) = (v). Therefore it remains only to show that (iii) is equal to any
of the other expressions. Hereafter, we show that (ii¢) = (iv). To that end,
observe that

/|p0—P1|=/ pl—po+/ Po — D1
P12>DPo P1<Po
= / D1 +/ Do — /min(po,pl)
P1>Po p1<Po
=1—/ p1+1—/ Po—/min(po,Pl)
p1<Po P1>Do

=2- 2/min(p0,p1)


http://www-math.mit.edu/~rigollet/PDFs/RigNotes17.pdf

Back to Neyman-Pearson

[E—

Definition 4.9 (Neyman-Pearson Framework)

Let Hy : 8 € ®y and H; : 6 € ®; be two competing hypotheses.
Fix an o € (0, 1) and call it the significance level or just level of the test.

2. Consider only test functions § : X" — {0, 1} that respect the level, i.e. test

functions § such that

sup Py[d = 1] < .
€Oy

For ease of reference, we call this class D (0, «). In other words,
D(Op, ) = 48: X" > {0,1}| sup Py[6§ = 1] <y .
fe®

Within the class of test functions D(®y, o), compare test functions by consider-
ing which has lower type II error probability

g(0) =P[6=0], 0¢e®,.

Equivalently, one can compare test functions by considering which has higher
power

) =1-g(0) =Psl6 =1], 06¢€0.



Optimal tests

Definition 4.10 (Optimal Tests)
A test function § of Hy : 6 € ©y vs H; : 6 € 0O is called optimal at level « (or
uniformly most powerful at level «) if the following two hold.

1. § € D(Og, @).

2. Py, [ =1] <Py, [6§ = 1] forall 6; € ©; and all Yy € D(Oy, ).



Neyman-Pearson lemma

Lemma 4.11 (Neyman—Pearson) Let X = (X1,..., X,) have joint density (or
frequency) function fx(x;0) and suppose we wish to test

H029:90 S H129=91.
at some level o € (0, 1), for 6y # 0. If the random variable

fx(X1,..., X0 601)  L(6)

AX) = X, Xifo) L@

is such that there exists a Q > 0 satisfying

Py [A > Q] =«

then the test whose test function is given by
6(X) = H{AX) > 0},

is an optimal (most powerful) test of Hy versus H at significance level a.



Neyman-Pearson lemma cont'd

Remark 4.12 A sufficient condition for the existence of a suitable Q for any
a € (0,1) is that A be a continuous random variable under the null hypothesis.
If the distribution of A under H, is discrete or has discontinuities, there may exist
o € (0, 1) such that Py, [A > Q] = « cannot be satisfied for any Q > 0.

Notice the intuition behind the test: we know that the method of maximum
likelihood is a very good estimation method. The higher the likelihood of a
parameter, the more plausible this parameter value is as a guess for the true
parameter. So, in order to test Hy : 8 = 6, against H; : 6 = 0, we decide to
compare the value of the likelihood function at the two competing parameter values
By and 6. If the likelihood of 0, is significantly higher than the likelihood of 6, then
we reject Hy in favour of H;. How much higher qualifies as significantly higher?
The theorem tells us that Q-times higher is significantly higher, where Q is a critical
value chosen so that the level o be respected.



Neyman-Pearson proof

Proof of Lemma 4.11 We need to verify properties (1) and (2) in Definition 4.10
(p. 103). Since Q is such that Py [A > Q] = «, then we immediately have that

Pg[6 = 1] =« (since Pg,[§ = 1] = Py [A > QO])). 4.1)
Therefore § € D({06y}, ) (i.e. § indeed respects the level o) which yields (1).
To show (2), let ¥ € D({6y}, «). For notational ease, write (Xi,...,X,)' =X

and (x1,...,%,)" = x. Without loss of generality assume that fx is a density
function (otherwise replace any integrals that follow by sums), and observe that

f(x;01)— Q- f(x;60) >0if8(x) =1 & f(x;601)— Q- f(x;6p) <0ifd(x) =0.
Therefore, since ¥ can only take the values O or 1,
Yx)(f(x;601) — Q- f(x;60) <(x)(f(x;01) — Q- f(x;60))
. Y(x)(f(x;01) — Q- f(x;600)dx < . 6(x)(f(x;01) — Q- f(x;60))dx



Neyman-Pearson proof cont'd

Rearranging the terms yields

[ @ -8 sionax < 0 [ W) -8 fxiodx
—> B [(X)] ~ Eq (0] < © (g [¥(X)] - B4, [5X))
— By [y (X) = 1] - By B(X) = 1] < Q B[y (X) = 1] - By, 5(X) = 1)

Equation (4.1), combined with the fact that Y € D({6p}, ) and Q > 0, implies that
the right-hand side is non-positive. This proves (2) in Definition 4.10 (p. 103), and
thus completes the proof. O



Example 4.14 (Simple vs Simple Test in Exponential
Families)

Let Xq,..., X, s f(x;0), where f(x;0) = exp{n(0)T (x) — d(0) + S(x)} is a one-parameter

exponential family, with 7 being increasing. Suppose we wish to test Hy : 0 = 6, against
H, : 6 = 0,. Without loss of generality, assume that 6, < 6;. The Neyman—Pearson Lemma
(Lemma 4.11, p. 103) dictates that we should look for a test statistic of the form

§ = 1{L(61)/L(6p) > Q} = 1{log L(6,) — log L(6,) > log O}

By the exponential family form of f(x; 6), we obtain that

§=1 { (1(8) —1(60) Y T(X:) — n(d(8:) — d(60)) > log Q}

i=1

i=1

n(61) — n(6)



Example 4.14 cont'd

Notice that n(68;) — n(6y) > 0 since 7 is increasing, and n(d(6;) — d(6,)) is just a constant. So we
can just write

§ =1{r(Xy,..., X,) > q},

If 7 is a continuous random variable, and we want a level « test, then g is going to be the (1 — «)-
quantile of Gy(¢) = Py, [t (X1, ..., X,) <t],i.e. the (1 — «)-quantile of the sampling distribution
of (X1y,..., X,) when the parameter is taken to be 6, (this is called the null distribution of t).

If, on the other hand, we have that 7 is a decreasing function, then for 6, < 6;, we have
n(61) — n(6y) < 0. In this case, we can see that the optimal test statistic becomes

§ =1{r(X1,...,X,) <q},

This time, if we want a level « test, then g must be the a-quantile of Go(¢) = Py, [t (X1,..., X,) <

t]. B



Example 4.14 cont'd

We observe that the form of the test depends on whether 7 is increasing or decreasing,
and on whether 6, < 6; or 8, > 6,. The following table summarises the form of the test
statistic for the different cases. In each case, g, represents the s-quantile of the distribution

Go(2) = Py, [z (X1, ..., Xy) < 1].

0() < 01 00 > 91
n(-) increasing 1{z(X1,..., X,) > q1—} 1{z(X1,..., X,) <qq}
n(-) decreasing 1{z(X1,..., X,) < q.} 1{t(X1,..., X)) > q1—q}

An interesting observation is that the test function does not depend on the precise value of 6, but
only on whether or not 6; < 6, or 6; > 6,.

O



Likelihood ratio test

Definition 4.19 (Likelihood Ratio Test)
Let X1,..., X, e f(x;0), yielding a likelihood

L®) =[] f(X:;0),
i=1
and let Hy : 0 € ©¢ and H; : 6 € © be two competing hypotheses. Define the

likelihood ratio as

SUPgee, L(9)
SuP@E@() L(O) .

The Likelihood Ratio Test (LRT) at level @ € (0, 1) is defined to be the test with
test function

AX1,.... Xy) =

§(X1,...,Xn) = {A(Xy,...,X,) > 0},

where O > 0 is such that sup,cg, Po[A(X1, ..., Xy) > Q] = «a, provided such
a Q exists.



Likelihood ratio test cont’d

X1,..., X, g f(x;60,§), where 0 € R and £ € R? are two unknown parameters.

We might be interested in testing
H()20=0() VS H1207590
at level @« > 0, for some 6, € R, without making any reference to (and without

caring about) the remaining parameter £ (a parameter such as £ is often referred to
as a nuisance parameter). In this case, the likelihood ratio is formed as

ACX X,) SUPgeRr\{6}.ccrr L(0,§)  supper gerr L(8,§) L@,§)
lqmmss = = = ,
" SUPge{g,},.ccrr L(6,§) supgerr L (60, §) supgerr L (6o, §)

where (é , §) is an MLE of (6, §). The Likelihood Ratio Test at level « € (0, 1) will
be defined again as the test with test function

§(X1,...,X,) = {AXy,..., X,) > O},

where Q > 0 is such that supgcg, Pg, ¢ [A(X1, ..., Xn) > Q] = «, provided such a



Example 4.22 (Bilateral Test for Means of Gaussian
Distributions)

L&t X150 Xy e N(u,0?), where u and o2 are unknown. Suppose we wish to test the hypothesis

pair
Ho:pu=po vs  Hi:p7# o

at level @« > 0, for some fixed o € R. Let us use the Likelihood Ratio method in order to derive
a suitable test. We notice that we have two parameters, but are only interested in one of them.
Following the reasoning presented above, we need to determine

L(j1,6%)
SUP,20 L(,LL(), 62) ’

AXy,...,X,) = (4.2)

where (/1,5?) is the MLE of (i, 02). For the numerator, one may calculate that

d
57t 0 = =55 + Z(X — po)’.

202
i=l1



Example 4.22 (Bilateral Test for Means of Gaussian
Distributions) cont’d

Following the same steps as in Exercise 3.16 (p. 71), we conclude that

1 n
arg sup L(uo,0°) = . Z(Xi — po)’.
i=1

02>0
In other words, the supremum in the numerator in Eq. (4.2) satisfies
1 n
sup L(o,0%) = L (Mo, = (X - Mo)z) :
02>0 n i=1

and so the numerator is equal to

sup L(uo,0?) = | 1 ]n/2 exp {_ > i=1(Xi — po)?
om0 | 27 (1/m) X7 (X — peo)? @/m) 311 (Xi — po)?
[ ne! n/2
2w Y (X - ,uo)z] '




Example 4.22 (Bilateral Test for Means of Gaussian
Distributions) cont’d

Next, we turn to the denominator in Eq. (4.2). Recalling Example 3.16 (p. 71), we have that the
MLE of (i, 6%) is given by the pair:

LIy, _ v U -
“_n;X’_X’ & 02_n;(x, X)2.

It follows that

L(a,6%) = _ L "/Zex _ > i1 (X; — X)?
8 2(U/m L G =D T @/m i, (X = X7

B 1 n/2
_ ne
_277.' Z?=1(Xi —Y)Z:| .

Consequently, the likelihood ratio is

- n n/2
— L(l"'a O”2) — Zi:l(Xi - I‘LO)Z
sup,250 L (o, 0?) dim (X — X)?



Example 4.22 (Bilateral Test for Means of Gaussian
Distributions) cont’d

This can be further simplified by recalling that
n
Z(X —~ Ho)® = Z(X X+ X —po)* =) (X =X +n(X — po)’,
i=1 i=l1
since the cross-terms vanish. Using this fact, we may write

n/2

(X =X+ n(X — Mo)z]n/z — {1 + n(X — po)’

X
A(Xl ..... Xn) _ |: Z?:l(Xl _Y)Z Z?=1(Xl _Y)2



Example 4.22 (Bilateral Test for Means of Gaussian
Distributions) cont’d

Observe now that

n(X —_,U«o)2 — o
Y1 (Xi —X)2/(n—1)

s/l
—_— :=C

T2 ITI

> +/C,

A>Q < > (n 1)(Q2/" 1)<=>’

so the likelihood ratio test is

Y—Mo

S//n

and JE needs to be selected so that Py, [ > «/6 ] = «. But, when H) is true, we have

that T ~ t,—;, the latter denoting Student’s dlstribution with n — 1 degrees of freedom (see

Theorem 2.9, p. 48). It follows that «/E = tn—1,1—a/2, Where the latter is the (1 — o/2)-quantile
of the t,,— distribution. In conclusion, the LRT is

8§ = 1{|X — pol > ta—1,1—a/25/+/n} .

8(X1,...,X,,)=1{A>Q}=1H >JE},




he p-value
[P, Section 4.4]



p-value

1. Itis not always clear a priori what the “right” significance level is. Should we take
a = 0.05, or should we take @« = 0.04? It is the scientist who should suggest
what the “right” significance level is, and then the mathematician gives the test
function. But what if the scientist does not really know what the precise level
should be, or if two different scientists suggest two different levels? This can be
an issue because it might be that, for the same data, picking « = 0.05 could
result in Hj being rejected, while picking @« = 0.04 could result in Hj not being
rejected.

2. Suppose we are somehow able to pick a precise level «, so that we have bypassed
the problem stated above. Once the level is set, we use the optimal test (if
available), and then for our given data set we make a decision. Suppose we reject
H)j at the level «. The problem now is that we have no clear indication of how
comfortable or how marginal our decision was. For instance, would our decision
have been different, had we selected a slightly smaller «?



p-value cont'd

Definition 4.28 (p-Value)

Let Xq,..., X, ‘i f(-;0) and Hy : 6 € ©g be a null hypothesis that is of one of

the three following forms:
{Ho 10 = 00} or {Ho 10 < 00} or {H() 10 > 9()}

Let §, be a test function for Hy, of one of the two following forms:

Oq (X155 455 X,) = 1{T(X,,..., X,) > q1—o} or 8,(Xy,..., X,) =1 {T(Xy,..., X,) < 4qa},

where T is some test statistic, and g, is the z-quantile of the distribution G(¢) =
Pg, [T (X1, ..., X,) < t]. Then, we define

p(X1,...,X,) = inf{a € (0,1) : 8(X1,..., X,) = 1}.

to be the p-value.



p-value cont'd

In other words, the p-value is a random variable that tells us which is the
smallest significance level o for which our testing method would reject the null
hypothesis Hj on the basis of the sample X1, ..., X;,. Why does this quantity have
any relevance? Because it gives us a measure of how stable our decision is under
perturbations of a given level «: if the p-value is very small, then this means that
we reject Hy even if we are very strict and impose a rather small « (i.e. very small
probability of type I error). If the p-value is relatively large, this means that we
would only have rejected Hj if we were willing to tolerate a high probability of type
I error. How small should the p-value be in order to decide that we have rejected ?
The answer is left up to the scientist, who can decide depending on his/her deeper
knowledge of the experiment at hand. Notice that this approach gives a solution to
the problems (1) and (2) outlined above.



p-value cont'd

Lemma 4.30 (Calculation of p-Values) In the setup given in Definition 4.28,
we have:

1. If 8, is of the form 6, (X1, ..., Xy) := YT (X4,...,Xn) > q1—q}, then
p(Xl, e ,Xn) =1- Go(T(Xl, o ,Xn))
2. If 8, is of the form 64 (X1, ..., Xy) .= YT (X1,...,X,) < qq}, then

p(Xl, e . ,Xn) = G()(T(Xl, . ,Xn))

Proof of Lemma 4.30 1t suffices to prove (1), as (2) is proven directly analogously.
In the setting (1), we can use the fact that G( is non-decreasing to write:

8a(X1,...,Xn)=1 = . T(Xl,---,Xn)>q1—a > G()(T(Xl,...,Xn))ZGQ(ql_a)
— Go(T(Xl,,Xn))Z l—a — o> I—G()(T(Xl,,Xn))

It follows that inf{ex € (0,1) : 6o(X1,..., X)) = 1} = 1 - Go(T(Xy,...,X»)),
and the proof is complete. O



p-value cont'd

Remark 4.31 (Interpreting p-Values) The Lemma gives us a further way
of understanding p-values. Let’s concentrate on case (1), where we reject for
large values of 7. Notice that 1 — Go(T(X1,..., X)) equals the probability of
observing something as large, or even larger than what we observed, when Hj is
true. Therefore, when the p-value is small, we have in fact observed something that
would be very improbable/unusual if Hy were indeed true. So we expect that H
is false. A common mistake is to interpret the p-value as the probability that Hy is
true. This is wrong, and in fact does not even make sense, because the parameter 6
is not a random variable.



Distribution of p-values

Exercise 57 Let Xq,...,X, g f(x;0). Suppose we wish to test Hy : 6 = 6y vs
H, : 6 # 0, using the test function §, of the form

8u (T (X1,..., X)) = {T'(Xy,..., Xn) > qi—o} or 8,(T (X1, ..., X») = HT(Xy,..., Xn) < qa},

where g, is the a-quantile of Gy, the CDF of T'(Xi,...,X,) when 6 = 6.
Assuming that Gq is continuous, show that, under Hj, the p-value is uniformly
distributed on [0, 1].



Example 4.32

Let Xi;ees 5%y N (u, 1) and consider the hypothesis pair:

Hy:u=0 Vs H :n#0

We recall (see Example 4.21, p. 115) that the likelihood ratio test for this pair is given by:

(%)2 > xil—a} :

where X%,l—a is the 1 —  quantile of the y? distribution. Notice, therefore, that this test statistic
conforms to the setup given in Definition 4.28. We may thus define the corresponding p-value as

S(Xl,...,Xn)=1

p(Xy,...., X)) =1—Gp (nX?),

where G »> denotes the CDF of the x3 distribution. Observe that when X is at a large distance from

0, then the p-value will be small. In fact, the p-value is monotonically decreasing in X (note that

Gx% is a monotonically increasing function from (0, 00) to (0, 1) because the density of a y? is

strictly positive over the entire interval (0, 00)—see Definition 1.16, p. 13). O



p-value v. Neyman-Pearson

One might finally ask: is there any link between Fisher’s and Neyman &
Pearson’s approach to hypothesis tests? In the case where Gy(¢) is strictly mono-
tonic,” there is a particularly simple and elegant connection:

Corollary 4.33 In the setup given in Definition 4.28, let oy € (0, 1) and assume
that Gy is continuous and strictly increasing. If we define a test function

W(Xl,.. . ,Xn) = l{p(Xl,. .. ,Xn) < Ol()},

then ¥(X1,...,Xn) = 60y(X1,...,Xy). In other words, if we reject the null
whenever the p-value is smaller than o, then our test reduces to 8.



p-value v. Neyman-Pearson cont'd

Proof Without loss of generality, we assume that we are in the setup
where the p-value corresponds to a statistic of the form 6, (Xq,...,X,) =
1{T(X1,...,X,) > qi1—«}- Now, observe that, using Lemma 4.30, and we have:

p(Xl,...,Xn)<Ol() <~ 1—GO(T(X1,...,Xn))<a0 — Go(T(Xl,...,Xn))> 1—ap.

Under our assumptions, G ' exists and is strictly increasing. Applying it to both
sides of the last inequality yields:

p(Xl,...,Xn)<a0 — T(Xl,...,Xn)>G0_1(1—Ol()) — 8(X1,...,Xn)=1.

—

=q1—oa



