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Review of classical statistics: point estimation

e small number p of variables (or features, covariates)
e |arge number n of observations
e investigate performance of estimators as n — « (CLT...)
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Today’s slides based on Panaretos

https://search.library.wisc.edu/catalog/9912241369602121
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Exloratory data analysis
[P, Section 1.5]



Histogram

Definition 1.43 (Histogram)
Let x1,...,x, be a collection of n real values and 2 > 0 be a constant. Let
{1} ez be a regular partition of R comprised of intervals of length & > 0,

Ij=[lc—|—(j—1)h,/c—|—jh), jez,

where k € R is some fixed real number. The histogram of xi, ..., x, with bin
width 2 > 0 and origin « is defined to be the graph of the function:
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Mean, variance, etc.

Definition 1.39 (Sample Mean and Median)
Let xy,. .., x, be a collection of real numbers, called a sample. We define:

X1) =X2) = ... = X@u—1) = Xn)-

1. The sample mean as

X = %ZX;’.

i=1

2. The sample median as

x(,,+1) if n 1s odd,

X(n\ tX(n
\ (3) 2(2+1) otherwise.



Mean, variance, etc.

Definition 1.40 (Sample Variance and MAD)
Let x1, ..., x, be a collection of real numbers, called a sample. We define:
1. The sample variance as

1 n
A2 L Y
o —”,-E=1(xl X)

(the sample standard deviation is defined as 6 = +/62).
2. The sample MAD as

MAD=’%Z’1:|X,'—)E .

i=1



Mean, variance, etc.
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Definition 1.41 (Quartiles, IQR and Outliers)
Let x1,..., x, be a sample of n real values, and let

X(l),...,M,...,X(n)

be the ordered sample, where M is the median. We define:

. The first quartile, 1, as the median of the ordered sub-sample x(1, x2), ..., M.
. The second quartile, O, as being the median M, O, = M.
. The third quartile, O3, as the median of the ordered sub-sample M, ..., x@-1),

x(n).

. The inter quartile range (IQR) as IQR = Q03 — Q.
. An outlier as an observation falling outside the interval [Q1 — %IQR, 03 +

2IQR].



Boxplot

Definition 1.46 (Boxplot)

Let x1,..., x, be a collection of n real values. Let:
1. M be the median, Q; be the first quartile, and Q3 be the third quartile of
$R1 5 5005 B s

2. Wi = minlsjsn{xj P Xj = Q1 —15x IQR} & W, = maxlsjsn{xj s Xj =<
03 + 1.5 x IQR}.

3. 0= {i = {1,...,71} - Xi ¢ [W1,W2]}.
The boxplot of x1, ..., x, is an annotation of the values M, Q1, O3, Wi, W,, and
{x; : j € O} on the real line. The following is a standard annotation:

0, M 0,



Parametric models
[P, Section 1.1, 1.2, 1.3]



(Regular) parametric models

Definition 1.1 (Regular Parametric Probability Models)

Let X be a real-valued random variable, and let Fy be its distribution function,
for 6 a parameter with parameter space ® C R”. The probability model {Fy :
0 € ®} will be called regular if one of the two following conditions holds:

1. For all # € O, the distribution Fy is continuous with density f(x; 0).
2. For all 8 € O, the distribution Fy is discrete with probability mass function

f(x;0)suchthat ) ., f(x;0) = 1forall § € B.

Remark 1.2 (Notation Py and E4y) When F depends on a parameter 6, we still
have

F(x;0) =P[X <x].



Example: Bernoulli

Definition 1.3 (Bernoulli Distribution)
A random variable X is said to follow the Bernoulli distribution with parameter
p € (0,1), denoted X ~ Bern(p), if

1. X ={0,1},

2. f(x;p) =pl{x =1} + (1 - p)l{x = 0}.
The mean, variance and moment generating function of X ~ Bern(p) are
given by

E(X]=p, Var[X]=p(l-p), M@ =1-p+ pe.



Example 1.4

Almost any random phenomenon whose outcomes may be classified in one of two categories can
be modelled via the Bernoulli distribution. We simply name one category as success and the other
as failure (success is usually the case we are most interested in).

L.

Sample a voter from some large electorate (so large that we take it to be countably infinite) right
after the ballots have closed, and let X be the vote she cast in the referendum. Then X = 1
(yes) with probability p and X = 0 (no) with probability 1 — p, where p is the proportion of
voters who voted yes.

Consider a sonogram that is made with the purpose of determining the sex of a foetus. The
outcome X can either be X = 1 (girl) or X = 0 (boy), with some probabilities p and 1 — p,
respectively. The value of p in this case is determined by many and diverse environmental
factors, but in general can be considered to be constant within homogeneous populations.

. Consider a quantum measurement on the spin of an electron in a particle system. The outcome

can either be 1 (spin up) or O (spin down) with probabilities p and 1 — p. The value of the
parameter here depends on the particular physical properties of the system.

Consider the barometric pressure in the lake Geneva region on a typical summer day. This might
be high (if above a certain threshold) or low (otherwise), and these two outcomes may be coded
as 1 and O, respectively. Their corresponding probabilities, p and 1 — p, are determined by
several environmental factors.

. More generally, we may create a Bernoulli random variable Y from any other random variable

X in the following way. Let A € X be some event in the sample space of X, and define
Y = 1{X € A}. Then Y has a Bernoulli distribution with p = P[X € A]. Here, we interpret
success as the realisation of X lying in A.



Example: Normal

Definition 1.17 (Normal Distribution)

A random variable X is said to follow the normal distribution with parameters
u € R and 6% > 0 (the mean and variance parameters, respectively), denoted
X ~ N(u,0?), if

1 I /x—pu\2
: 2y __
fx(x,,u,a)—(7 Tﬂ@(p{ 2( - )} x €R.

The mean, variance and moment generating function of X ~ N(u, 0'?) are given
by

E[X] = pu, Var[X] = o2, M(t) = exp{tp + t*c>/2}.



Example 1.19

The normal distribution can be a very good model for a bewildering variety of phenomena.
Intuitively, almost any phenomenon that can be thought to arise as the result of the addition of
a large number of random variables with finite variances can be modelled via a normal distribution
(see the Central Limit Theorem for a precise statement, Theorem 2.23 (p. 56)). In general,
the normal distribution will be a good model for random variables with finite variance, whose
distribution is symmetric about a certain value ©, and whose probability of being far from u decays
fast.

1.

Measurement error is most typically modelled as a normal random variable. Suppose that we
are trying to measure a quantity u, and our measurement device is imperfect, thus yielding
measurements Y corrupted by error ¢. If the error is additive, then a natural probability model
is to assert that Y = u + ¢, and € ~ N(0, 0%). Consequently, Y ~ N(u, 0?).

It is well established that several random physical phenomena are distributed according to
the normal distribution. For example, the position after time ¢ of a molecule that moves on
a line subject to collisions from other molecules has a normal distribution with a mean at its
starting point and variance equal to ¢. The velocity of any particle in a one-dimensional space
under thermodynamic equilibrium will be normally distributed. The ground state of a quantum
harmonic oscillator will also be normally distributed.

Experience shows that a wide range of phenomena in the biological sciences, when suitably
transformed, are remarkably well approximated by the normal distribution. The same is true of
phenomena in the social sciences, economics and finance. In most of these cases, the underlying
effect is a central limit theorem effect (Figs. 1.7 and 1.8).



Exponential family

Definition 1.20 (The Exponential Family of Distributions)
A regular probability distribution is said to be a member of a k-parameter
exponential family, if its density (or frequency) admits the representation

k
f)=exp ) aTi(x) —y(d1,....¢) +S(x)p ., xeX, (LD
i=l1

where:

1. ¢ = (¢1,...,¢r) is a k-dimensional parameter in R¥;

2.T, : X > Ri=1,....k, S(x) : X - R, and y : R* — R are real-valued
functions;

3. The sample space X does not depend on ¢.



Example 1.24 (Binomial Exponential Family)

Let X ~ Binom(n, p). Recall that this means that X = {0,1,2,...,n} and f(x;p) =

( ) p*(1 — p)"~*. Now, we may take the log and then exponentiate to obtain:

n
X
(n)p"(l —p)" = exp{log( P )x + nlog(l — p) + log (n)} .
X 1—p b

¢=log(ﬁ), T(x)=x, S(x)=Ilog (Z) y(#) = nlog(1+e?) = —nlog(1—p).

Define:

Thus, if n is held fixed and only p is allowed to vary, the support of f does not depend on ¢
and so we see that the Binomial with fixed »n is a 1-parameter exponential family. Here the usual
parameter p is a twice differentiable bijection of the natural parameter ¢:

¢
p= ° & ¢=n(p)=10g(L)-

1+ e 1—p
Here p € (0,1) but ¢ € R. ]



Point estimation
[P, Section 2.1, 2.2, 3.1, 3.3]



Statistic

Definition 2.1 (Statistic)
Let X be a sample space. Given n > 1, a statistic is a function 7" : X" — R.

Definition 3.1 (Point Estimator)
A statistic whose range is contained in © is called a point estimator. Equivalently,
a point estimator is a statistic 7 : X" — ©.

Definition 2.5 (Sampling Distribution)

Let X1,..., X, e Fand T : X" — R be a statistic. The sampling distribution

of T under the distribution F is the probability distribution

Fr(t) = P[T(Xy,...,X,) <t], t € R.



Example: Gaussian case

-1 1 < _
X = ;; & 52=n_1;(x,-—)()2

Proposition 2.7 (Gaussian Sampling) Let X4,...,X, YN (u,0?). Then,

1. The joint distribution of X1, ..., X, has probabllzty density function,

1 n/2 1 n ,
St X (1, Xn) = (mz) exp{—;ﬂ;(xi - W } :

2. The sample mean satisfies X ~ N(u,0?/n).
3. The random variables X and S? are independent.

1
S? ~ X;%—l-

4. The random variable S? satisfies 5
o



Example: Gaussian case cont'd

iid

Corollary 2.8 (Moments for Normal Sampling) Let X;,..., X, ~ N(u,c?).
Then,
= _ 2 2 4
E[X]=pu, Var(X)="—, E[S?]=0? Var($?})=— -
n n—

Theorem 2.9 (Student’s Statistic and Its Sampling Distribution) Let
X1,..., X, % N(u,0?). Then,

X-p
S/n "

Here 1,1 denotes Student’s distribution with n — 1 degrees of freedom.



Example 5.3 (Confidence Interval for the Mean of a
Normal Distribution)

Let Xq,..., X, N (1, 0?), where u is unknown and o2 is known. We wish to construct a two-
sided interval for . We begin by observing that by Lemma (1.32, p. 22) we have:

X—p
a//n

Therefore, if z¢ and z;—g¢ are the a/2 and 1 — «/2 quantiles (respectively) of the N(0,1)
distribution, we must have:

~ N(O, 1).

X —
P[Z%‘S MSZI—%]=1_O¢-

o//n

Now, let us manipulate the expression inside the probability:

X —
P[Z%S MSZI—% =1—-«




Example 5.3 cont'd

- - _ 5 1
< P|X —z« >M>X—zl_g =1—«
i 2ﬁ— — zﬁ_

- - ) o
(E)PX—zl_%ﬁs/LsX—z%ﬁ =1—aqa.

The above equality is true whatever the true value of u € R may be. It follows that if we set

o o (o}
L(Xla---,Xn)=X_Zl—%ﬁ —Z%ﬁ

then the interval [L, U] is a confidence interval with confidence level 1 — «. Because the density
of an N(0, 1) distribution is symmetric, we have that e = —Z1-¢&. So our (1 — @)-confidence
interval may be written as

& UXy,....X)=X

(5.1)




The Method of Maximum Likelihood

Definition 3.12 (Likelihood for iid Collections)
Let X1, ..., X, be a collection of independent and identically distributed random
variables with density (or mass function) f(x;6), where 8 € R”. The likelihood
of 6 on the basis of X1, ..., X, is defined as

L®) =]]f(x:6).
i=1

Definition 3.13 (Maximum Likelihood Estimator)
Let X1,..., X, be an iid random sample from a distribution Fy with density (or

mass function) f(x; ). Let 0 be such that
L) <L®), V0eo.

Then 8 is called a maximum likelihood estimator (MLE) of 6.



The Method of Maximum Likelihood cont'd

£(6) = log (1‘[ £ 0)) =Y log f(X:36).
F=i i=1

Again, if the loglikelihood function is twice differentiable, an MLE 0 of 0 will
satisfy

V9£(0)|9=é =0 & - V§5(9)|9=@ > 0.



Example 3.14 (Bernoulli MLE)

Let Xi,...,X, s Bern(p) and suppose we wish to use the maximum likelihood method to
construct an estimator for p € (0, 1). The likelihood is

L(p) = H f(Xi; p) = H pYi( — p)TH = pXiziXi(1 — pyrmLizi X,
i=1 i=1
Taking logarithms on both sides, we obtain the log likelihood function
£(p) =logp Xn:Xi + log(1 — p) <n — Xn:Xi) :
i=1 =
We notice that this function is indeed twice differentiable with respect to p, and calculate

d n n
5 tP) = Py Xi—1-p)! (n — ZX,-) -

i=1 i=1



Example 3.14 cont'd

d n n
Ef(p) =p'> Xi—(1-p! (n - ZXi) :

i=1 i=1
Solving for £/(p) = 0 with respect to p is equivalent to solving
n n
P Y Xi—(1—p)" (n —ZX,-) =0
i=1 i=1

which can be seen to have the unique root % ZLI X; = X. Call this p. It is our candidate for an
MLE, provided that it yields a maximum. Notice that

d2 n n
3t =—p° Y X, —(1—p)? (n = ZX,-)
P i=1 i=1

hic

which is always non-positive because 0 < Y ' X; < n almost surely and p € (0, 1). Hence
p=X= 1), X, isthe unique MLE of p. O



Large Sample Properties of ML

Theorem 3.23 Let X,..., X, be an iid sample from a distribution with density
(or mass function) f(x;¢o) which belongs to a non-degenerate one-parameter
exponential family,

f(x:¢) =exp{¢T(x) —y(¢) + S(x)}, xeX, e,

such that T is not a constant function. Assume that the parameter space ® C R
is an open set (recall that, among others, this implies that the function y(-) is
twice differentiable). Let qﬁn be the maximum likelihood estimator of ¢y, assumed
to exist. Then,

0<

<0

1
y" (¢o)

and

i = o) = N (0’ y"(lqbo)) |



Large Sample Properties of ML cont'd

Remark 3.25 (Asymptotic Variance and the Cramér-Rao Bound) The the-
orem can be interpreted as saying that, for large n, the MLE gl; 1s approximately
N (¢, [ny"(¢0)]~!). We notice that the asymptotic mean of the MLE is equal to the
true parameter, so that the asymptotic bias is zero. Furthermore, we note that

9 2
E[(£(¢))’] = E { [ﬁ @r(X1,..., Xn) —ny(¢))] }

=K [(T(Xl, ceey Xn) - ny'(¢))2]
= Var[t(Xy,..., X,)]
= ny"(¢).

Now recall the Cramér—Rao lower bound (Theorem 3.9, p. 65) on the variance of
an estimator. It stated that no unbiased estimator can have variance lower than the
inverse of the left-hand side of the equation above. But we have just proved that the
inverse of the right-hand side is the asymptotic variance of the MLE. It follows that,
at least for large sample size n, the maximum likelihood estimator of ¢ attains a
performance which is close to optimal. This explains why the method of maximum
likelihood is so central to point estimation.



Large Sample Properties of ML cont’'d
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Large Sample Properties of ML cont'd

Fig. 3.1 Illustration of the random fluctuations of the loglikelihood function and its maximum
(the MLE). We consider the estimation of the mean u of a normal distribution with a known
variance equal to 1. We generate 25 iid samples of size n, say {X; 1, ..., Xi, },~25=1, from an N(u, 1)
where © = 0, and each time plot the loglikelihood function ¢; (1) = £(u; X; 1, ..., Xin), where
i =1,2,...,25, and the corresponding MLE. We do this for four sample sizes: n = 1, n = 20,
n = 100, n = 400. We observe how the likelihood functions become gradually more curved as
n increases, and so their maximum fluctuates less and less from replication to replication. We also
notice that the maxima tend to concentrate around the true value of u as n increases. The y-axis
values have been removed since they are unimportant in an absolute sense in the determination of
the MLE. (a) Loglikelihood functions for the mean parameter corresponding to 25 replications of
an iid N (0, 1) sample of size 1. (b) Loglikelihood functions for the mean parameter corresponding
to 25 replications of an iid N (0, 1) sample of size 20. (¢) Loglikelihood functions for the mean
parameter corresponding to 25 replications of an iid N(0, 1) sample of size 100. (d) Loglikelihood
functions for the mean parameter corresponding to 25 replications of an iid N (0, 1) sample of size
450



