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Classical statistics (we’ll review some):

e small number p of parameters
e |arge number n of observations
e investigate performance of estimators as n — « (CLT...)
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Graph of number of eggs vs. dry weight
in the amphipod Platorchestia platensis.
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Today’s slides based on Chap 1 (read it!) of Giraud

Monographs on Statistics and Applied Probability 139

Introduction to
High-Dimensional
Statistics

o
O

Christophe Giraud

CRC Press
Taylor & Francis Group
A CHAPMAN & HALL BOOK

https://www.imo.universite-paris-saclay.fr/~giraud/Orsay/slides/slidesC1.pdf



High-dimensional data
Chapter 1
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High-dimension data

biotech data (sense thousands of features)
images (millions of pixels / voxels)
marketing, business data

crowdsourcing data

etc

C. Giraud (Paris Saclay) R T ST E RS S e LTS M2 Maths Aléa & MathSV 12 / 34



Blessing?

© we can sense thousands of variables on each "individual” : potentially
we will be able to scan every variables that may influence the phenomenon
under study.

® the curse of dimensionality : separating the signal from the noise is in
general almost impossible in high-dimensional data and computations can
rapidly exceed the available resources.
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Curse of dimensionality

Chapter 1
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Curse 1 : fluctuations cumulate

Example : XM ... XN ¢ RP iid. with cov(X) = 02/,. We want to
estimate E [X] with the sample mean

_ 1 <& .
Xn = E ZX(I)
i=1
Then

E[|X: ~EIXI?] = Y_E | (%) - EIX))]

j=1

p
— Zvar ([)_(,,]J) = 502.
j=1

® It can be huge when p > n...
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Curse 2 : locality is lost

Observations (Y;, X(D) € R x [0,1]7 for i =1,...,n.

Model: Y; = f(X()) 4 ¢; with f smooth.
assume that (Y;, X(D),—; _, i.i.d. and that X() ~ ¢/ ([0, 1]P)

Local averaging: f(x) = average of {Y; : X() close to x}
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Curse 2 : locality is lost
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Figure: Histograms of the pairwise-distances between n = 100 points sampled
uniformly in the hypercube [0, 1]?, for p = 2,10, 100 and 1000.

C. Giraud (Paris Saclay) R T ST E RS S e LTS M2 Maths Aléa & MathSV 17 / 34



Why?

Square distances.

EMX”—X“W}=§3EU?P—X£U?:pEKU—Uf}=M@

k=1

with U, U’ two independent random variables with /[0, 1] distribution.

Standard deviation of the square distances

sdev [||X1) — xO|2| J zp:var [(xﬁ") = X,Q))Q]
—\/pvar[ U)?] = 0.2\/p.
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Curse 3 : lost in high-dimensional spaces

High-dimensional balls have a vanishing
volume!

Vp(r) = volume of a ball of radius r ©

in dimension p o N

IS (3]

=rP Vp(l) TE ~

with -

(e’ 27Te P/2 _
V(1) PX (T) (pm)~ /2.
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Curse 3 : lost in high-dimensional space

Which sample size to avoid the lost of locality?

Number n of points xi,. .., x, required for covering [0, 1]° by the balls
B(xj,1):

> 1 p—00 ( P )P/2
n ~ = T
= V,(1) Dre P

p |20 30 50 100 200

larger than the estimated
number of particles
in the observable universe

n | 39 | 45630 | 5.71012 | 4210%°

C. Giraud (Paris Saclay)

High-dimensional statistics & probability

M2 Maths Aléa & MathSV 20 / 34



Curse 4: Thin tails concentrate the mass!

Mass in the bell

1.0

mass in the bell
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Figure: Mass of the standard Gaussian distribution g,(x) dx in the “bell”
Bp.0.001 = {x € RP : gy(x) > 0.001g,(0)} for increasing dimensions p.
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Why?
Volume of a ball: V,(r) = rPV,(1)

The volume of a high-dimensional ball is
concentrated in its crust!

fraction in the crust

Ball: B,(0, ) o
Crust: Cp(r) = Bp(0,r) \ By(0,0.99r) 5 S -
The fraction of the volume in the crust J : |
1 =
volume(Cp(r)) 1099 —
volume(By(0, r)) 0 200 600 1000

p

goes exponentially fast to 1!

4

A Forget your low-dimensional intuitions!
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Curse 4: Thin tails concentrate the mass!

Where is the Gaussian mass located?
For X ~ N(0,1,) and € > 0 small

1 1
“PIR<|IX|| < R +é] _/ o—lixlz/2 X
€ R<||xl|<R-+e (

€ 27)P/2
_ 1/R+€ efr2/2 Pl pr(].) dr
g JR (271-)P/2
= & RPL x e=R/2,

2P/2T(1+ p/2)

This mass is concentrated around R = +/p—1!

Gaussian = uniform ?

The Gaussian N(0, /,) distribution looks like a uniform distribution on the
sphere of radius /p— 1!

v
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Curse 5: weak signals are lost

Finding active genes: we observe n repetitions for p genes
ZD =g+ j=1,...p i=1...n,

with the 51(-i) i.i.d. with A'(0,02) Gaussian distribution.

Our goal: find which genes have ¢; # 0

For a single gene

Set
X; = n—l/2(zj(1) +Z ”)) (\/_GJ,O' )

Since P [|NV(0,02)| > 20] < 0.05, we can detect the active gene with X;

when
20

6. > =
01 = 7%
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Curse 5: weak signals are lost

Maximum of Gaussian
For Wi, ..., W, i.i.d. with N(0,02) distribution, we have (see later)

max W; ~ o+/2log(p).

j:]-a'“ap

Consequence: When we consider the p genes together, we need a signal
of order
2lo
0/ > o 2log(p)
n

in order to dominate the noise ®
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Some other curses

e Curse 6 : an accumulation of rare events may not be rare (false
discoveries, etc)

@ Curse 7 : algorithmic complexity must remain low

@ etc
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Low-dimensional structures in high-dimensional data
Hopeless?

Low dimensional structures : high-dimensional data are usually
concentrated around low-dimensional structures reflecting the (relatively)
small complexity of the systems producing the data

@ geometrical structures in an image,

@ regulation network of a "biological system”,

@ social structures in marketing data,

@ human technologies have limited complexity, etc.

Dimension reduction :
@ "unsupervised” (PCA)

e "supervised” : z "

X1
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Principal Component Analysis

For any data points X1, ... X("M ¢ RP and
any dimension d < p, the PCA computes the
linear span in RP

n
Vg € argmin ZHX(O — Projy, X2,
dim(V)<d 45

where Projy, is the orthogonal projection ma-
trix onto V.

Recap on PCA
Exercise 1.6.4

X3

X1

X2)

V5 in dimension p = 3.
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PCA in action

original image original image original image original image

o N K

projected image projected image projected image projected image

MNIST : 1100 scans of each digit. Each scan is a 16 x 16
image which is encoded by a vector in R?®. The original
images are displayed in the first row, their projection onto 10
first principal axes in the second row.
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"Supervised” dimension reduction

PCA LDA
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Figure: 55 chemical measurements of 162 strains of E. coli.
Left : the data is projected on the plane given by a PCA.

Right : the data is projected on the plane given by a LDA.
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Summary

Statistical difficulty

@ high-dimensional data

@ small sample size

Good feature
Data generated by a large stochastic system
@ existence of low dimensional structures

The way to success
Finding, from the data, the hidden structure in order to exploit them.
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Mathematics of high-dimensional statistics

Chapter 1
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Paradigm shift

Classical statistics:
@ small number p of parameters
@ large number n of observations

@ we investigate the performances of the estimators when n — oo
(central limit theorem...)

Actual data:
@ inflation of the number p of parameters

@ small sample size: n=poun<p

= Change our point of view on statistics!
(the n — oo asymptotic does not fit anymore)
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Statistical settings
@ double asymptotic: both n,p — oo with p ~ g(n)

@ non asymptotic: treat n and p as they are

Double asymptotic
@ more easy to analyse, sharp results ©

@ but sensitive to the choice of g @

ex: if n =33 and p = 1000, do we have g(n) = n? or g(n) = e"/>?

Non-asymptotic
@ no ambiguity ©
@ but the analysis is more involved @
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