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Course website

https://people.math.wisc.edu/~roch/hdps/


Classical statistics (we’ll review some):

● small number p of parameters 
● large number n of observations
● investigate performance of estimators as n → ∞ (CLT...)

McDonald (1989)



Today’s slides based on Chap 1 (read it!) of Giraud

https://www.imo.universite-paris-saclay.fr/~giraud/Orsay/slides/slidesC1.pdf



High-dimensional data
Chapter 1
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High-dimension data

biotech data (sense thousands of features)

images (millions of pixels / voxels)

marketing, business data

crowdsourcing data

etc

C. Giraud (Paris Saclay) High-dimensional statistics & probability M2 Maths Aléa & MathSV 12 / 34



Blessing?

, we can sense thousands of variables on each ”individual” : potentially
we will be able to scan every variables that may influence the phenomenon
under study.

/ the curse of dimensionality : separating the signal from the noise is in
general almost impossible in high-dimensional data and computations can
rapidly exceed the available resources.
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Curse of dimensionality

Chapter 1
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Curse 1 : fluctuations cumulate

Example : X (1), . . . ,X (n) ∈ Rp i.i.d. with cov(X ) = σ2Ip. We want to
estimate E [X ] with the sample mean

X̄n =
1

n

n∑
i=1

X (i).

Then

E
[
‖X̄n − E [X ] ‖2

]
=

p∑
j=1

E
[(

[X̄n]j − E [Xj ]
)2
]

=

p∑
j=1

var
(
[X̄n]j

)
=

p

n
σ2.

/ It can be huge when p � n...
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Curse 2 : locality is lost

Observations (Yi ,X
(i)) ∈ R× [0, 1]p for i = 1, . . . , n.

Model: Yi = f (X (i)) + εi with f smooth.

assume that (Yi ,X
(i))i=1,...,n i.i.d. and that X (i) ∼ U ([0, 1]p)

Local averaging: f̂ (x) = average of
{
Yi : X (i) close to x

}
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Curse 2 : locality is lost
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Figure: Histograms of the pairwise-distances between n = 100 points sampled
uniformly in the hypercube [0, 1]p, for p = 2, 10, 100 and 1000.
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Why?

Square distances.

E
[
‖X (i) − X (j)‖2

]
=

p∑
k=1

E
[(

X
(i)
k − X

(j)
k

)2
]

= p E
[
(U − U ′)2

]
= p/6,

with U,U ′ two independent random variables with U [0, 1] distribution.

Standard deviation of the square distances

sdev
[
‖X (i) − X (j)‖2

]
=

√√√√ p∑
k=1

var

[(
X

(i)
k − X

(j)
k

)2
]

=
√

pvar [(U ′ − U)2] ≈ 0.2
√
p .
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Curse 3 : lost in high-dimensional spaces

High-dimensional balls have a vanishing
volume!

Vp(r) = volume of a ball of radius r

in dimension p

= rpVp(1)

with

Vp(1)
p→∞∼

(
2πe

p

)p/2

(pπ)−1/2.
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Curse 3 : lost in high-dimensional space

Which sample size to avoid the lost of locality?

Number n of points x1, . . . , xn required for covering [0, 1]p by the balls
B(xi , 1):

n ≥ 1

Vp(1)

p→∞∼
( p

2πe

)p/2√
pπ

p 20 30 50 100 200

larger than the estimated
n 39 45630 5.7 1012 42 1039 number of particles

in the observable universe
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Curse 4: Thin tails concentrate the mass!
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Figure: Mass of the standard Gaussian distribution gp(x) dx in the “bell”
Bp,0.001 = {x ∈ Rp : gp(x) ≥ 0.001gp(0)} for increasing dimensions p.
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Why?
Volume of a ball: Vp(r) = rpVp(1)

The volume of a high-dimensional ball is
concentrated in its crust!

Ball: Bp(0, r)

Crust: Cp(r) = Bp(0, r) \ Bp(0, 0.99r)

The fraction of the volume in the crust

volume(Cp(r))

volume(Bp(0, r))
= 1− 0.99p

goes exponentially fast to 1!
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Forget your low-dimensional intuitions!
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Curse 4: Thin tails concentrate the mass!

Where is the Gaussian mass located?

For X ∼ N (0, Ip) and ε > 0 small

1

ε
P [R ≤ ‖X‖ ≤ R + ε] =

1

ε

∫
R≤‖x‖≤R+ε

e−‖x‖
2/2 dx

(2π)p/2

=
1

ε

∫ R+ε

R
e−r

2/2 rp−1 pVp(1) dr

(2π)p/2

≈ p

2p/2Γ(1 + p/2)
Rp−1 × e−R

2/2.

This mass is concentrated around R =
√
p − 1 !

Gaussian = uniform ?

The Gaussian N (0, Ip) distribution looks like a uniform distribution on the
sphere of radius

√
p − 1 !
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Curse 5: weak signals are lost

Finding active genes: we observe n repetitions for p genes

Z
(i)
j = θj + ε

(i)
j , j = 1, . . . , p, i = 1, . . . , n,

with the ε
(i)
j i.i.d. with N (0, σ2) Gaussian distribution.

Our goal: find which genes have θj 6= 0

For a single gene

Set
Xj = n−1/2(Z

(1)
j + . . .+ Z

(n)
j ) ∼ N (

√
nθj , σ

2)

Since P
[
|N (0, σ2)| ≥ 2σ

]
≤ 0.05, we can detect the active gene with Xj

when

|θj | ≥
2σ√
n

C. Giraud (Paris Saclay) High-dimensional statistics & probability M2 Maths Aléa & MathSV 24 / 34



Curse 5: weak signals are lost

Maximum of Gaussian

For W1, . . . ,Wp i.i.d. with N (0, σ2) distribution, we have (see later)

max
j=1,...,p

Wj ≈ σ
√

2 log(p).

Consequence: When we consider the p genes together, we need a signal
of order

|θj | ≥ σ
√

2 log(p)

n

in order to dominate the noise /
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Some other curses

Curse 6 : an accumulation of rare events may not be rare (false
discoveries, etc)

Curse 7 : algorithmic complexity must remain low

etc
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Low-dimensional structures in high-dimensional data
Hopeless?

Low dimensional structures : high-dimensional data are usually
concentrated around low-dimensional structures reflecting the (relatively)
small complexity of the systems producing the data

geometrical structures in an image,

regulation network of a ”biological system”,

social structures in marketing data,

human technologies have limited complexity, etc.

Dimension reduction :

”unsupervised” (PCA)

”supervised”

-1.0 -0.5  0.0  0.5  1.0

-1
.0

-0
.5

 0
.0

 0
.5

 1
.0

-1.0

-0.5

 0.0

 0.5

 1.0

X[,1]

X
[,
2
]

X
[,
3
]

C. Giraud (Paris Saclay) High-dimensional statistics & probability M2 Maths Aléa & MathSV 27 / 34



Principal Component Analysis

For any data points X (1), . . . ,X (n) ∈ Rp and
any dimension d ≤ p, the PCA computes the
linear span in Rp

Vd ∈ argmin
dim(V )≤d

n∑
i=1

‖X (i) − ProjV X (i)‖2,

where ProjV is the orthogonal projection ma-
trix onto V .
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V2 in dimension p = 3.

Recap on PCA

Exercise 1.6.4
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PCA in action

original image original image original image original image

projected image projected image projected image projected image

MNIST : 1100 scans of each digit. Each scan is a 16 × 16
image which is encoded by a vector in R256. The original
images are displayed in the first row, their projection onto 10
first principal axes in the second row.
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”Supervised” dimension reduction
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Figure: 55 chemical measurements of 162 strains of E. coli.
Left : the data is projected on the plane given by a PCA.
Right : the data is projected on the plane given by a LDA.
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Summary

Statistical difficulty

high-dimensional data

small sample size

Good feature
Data generated by a large stochastic system

existence of low dimensional structures

(sometimes: expert models)

The way to success
Finding, from the data, the hidden structure in order to exploit them.
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Mathematics of high-dimensional statistics

Chapter 1
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Paradigm shift

Classical statistics:

small number p of parameters

large number n of observations

we investigate the performances of the estimators when n→∞
(central limit theorem...)

Actual data:

inflation of the number p of parameters

small sample size: n ≈ p ou n� p

=⇒ Change our point of view on statistics!
(the n→∞ asymptotic does not fit anymore)
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Statistical settings

double asymptotic: both n, p →∞ with p ∼ g(n)

non asymptotic: treat n and p as they are

Double asymptotic

more easy to analyse, sharp results ,
but sensitive to the choice of g /

ex: if n = 33 and p = 1000, do we have g(n) = n2 or g(n) = en/5?

Non-asymptotic

no ambiguity ,
but the analysis is more involved /
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