Notes 4 : Laws of large numbers

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Fel71, Sections V.5, VII.7], [Durl0, Sections 2.2-2.4].

1 Easy laws

Let X1, X5, ... be a sequence of RVs. Throughout we let S;, = Zkgn Xi.
We begin with a straighforward application of Chebyshev’s inequality.

THM 4.1 (L? weak law of large numbers) Let X1, Xo, ... be uncorrelated RVs,
ie, E[X;X;] = E[X;]E[X;] for i # j, with E[X;] = p < +00 and Var[X;] <
C < +oo. Thenn™'8S, — 2 W and, as a result, n=LS, —=p p.

Proof: Note that

2
Var[Sn] = E[(S, —E[Si))*] =E (Z(Xi - EPQ]))

)

= ZE[(Xi —E[X))(X; - E[X;))] = ) _ Var[X,],

since, for i # j,
E[(X; — E[X;])(X; — E[X,])] = E[X; X;] — E[X;|E[X;] = 0.
Hence
Var[n™15,] <n?(nC) <n'C =0,

thatis, n~1S,, — 2 i, and the convergence in probability follows from Chebysheyv.
|
With a stronger assumption, we get an easy strong law.

THM 4.2 (Strong Law in L) Ifthe X;s are IID with E[X}'] < +oc and E[X;] =
t, thenn™1S,, — 1 a.s.
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Proof: Assume w.l.0.g. that © = 0. (Otherwise translate all X;s by u.) Then

E[S)] = E | XiX;XpX;| =nE[X]] + 3n(n — 1)(E[X{])* = O(n?),
i7j7k7l
where we used that E[X? X ;] = 0 by independence and the fact that ;1 = 0. (Note
that E[X?] < 1 + E[X{].) Markov’s inequality then implies that for all ¢ > 0

E[S4]

n

P[|S,| > ne] < =0(n™?),

nect

which is summable, and (BC1) concludes the proof.

The law of large numbers has interesting implications, for instance:

EX 4.3 (A high-dimensional cube is almost the boundary of a ball) Ler X1, Xo, ...

be IID uniform on (—1,1). Let Y; = X? and note that E[Y;] = 1/3, Var[V;] <
E[Y?] <1, and E[Y!] <1 < +oc0. Then
X+ 4+X2 1
n 3’

both in probability and almost surely. In particular, this implies for € > 0

P {(1 - a)\/z < IX™|, < 1 +a)\/ﬁ — 1,

where X () = (X1,...,Xy). Le., most of the cube is close to the boundary of a

ball of radius \/n/3.

2 Weak laws

In the case of IID sequences we get the following.

THM 4.4 (Weak law of large numbers) Let (X,,),, be IID. A necessary and suf-
ficient condition for the existence of constants (f, ), such that

S,
l_:u’n_>PO7
n

is
nP[|X1] > n] — 0.

In that case, the choice
pn = E[X11x,<n]s

works.



Lecture 4: Laws of large numbers 3

COR 4.5 (L' weak law) If (X,,),, are IID with E|X1| < +o0o0, then

Sn
— —p ]E[X1]
n

Proof: From (DOM)
nP[|X1| > n] <E[[X1]1x,|5n] =0,

and
Un = E[X1H|X1|§n] — E[Xl]

]

Before proving the theorem, we give an example showing that the condition in

Theorem 4.4 does not imply the existence of a first moment. We need the following
important lemma which follows from Fubini’s theorem. (Exercise.)

LEM 4.6 IfY > 0andp > 0, then
o
E[Y?) =/ py? ' PIY > yldy.
0
EX 4.7 Let X > e be such that, for some o > 0,

P[X>x]:#, Vo > e.
z(log )«

(There is a jump at e. The choice of e makes it clear that the tail stays under 1.)
Then

E[X? =% + /

e

+oo 1 +oo 1
20————dx > 2/ ———dz = 400, Va>0.
z(log z)* e (logz)*

(Indeed, it decays slower than 1/x which diverges.) So the L? weak law does not
apply. On the other hand,

+oo 1
E[X]:eJr/ dz:e+/ —du.
e x(logx)™ 1 u”

This is +00 if 0 < o < 1. But for a > 1

“+o00

X :e—i-a_l.

u—a+1

E[X] =
[X]=e+ —a+1

Finally,
nP[X >n] =

0, V 0.
(logn)a%’ o>
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(In particular, the WLLN does not apply for « = 0.) Also, we can compute i, in
Theorem 4.4. For o = 1, note that (by the change of variables above)

1 1
zlogx nlogn

,un:E[XIlXSn]:e—l—/ ( >da:~10glogn.

Note, in particular, that p.,, may not have a limit.

2.1 Truncation

To prove sufficiency, we use truncation. In particular, we give a weak law for
triangular arrays which does not require a second moment—a result of independent
interest.

THM 4.8 (Weak law for triangular arrays) For each n, let (X, )k<p be inde-
pendent. Let by, with b, — +00 and let X;L’k = Xnkl|x, ,|<b, Suppose that

LY Pl Xp k| >by] =0
2. b2 Y5 Var[X], ] = 0.
Ifwelet Sy =371 Xoy and an = Y p_ E[X] ] then

Sp — an

bn

—p 0.

Proof: Let S, = > ), X, . Clearly

Sy, — ap
P
&

S/

5] <P[S, #S’]Jr]P’[

5.

bn

For the first term, by a union bound

n

P(S), # Su] <D P Xpk| > ba] — 0.
k=1

For the second term, we use Chebyshev’s inequality:

S/

P["_“"

n

Var[S;] 1
] < 2252 222 ZVar Xnkl = 0.
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Proof: (of sufficiency in Theorem 4.4) We apply Theorem 4.4 with b,, = n. Note
that a,, = nu,. Moreover,

n_IVar[X;Ll] <n 'E[(X} )%

n,l

o0
e /0 2P X!, 1| > yldy

= n_l/ 2y[P[| Xna| > y] — P[| Xn1| > n]ldy
0

<2 (:L /On yPl X1 > y]dy>

0,

d

since we are “averaging” a function going to 0. Details in [D]. |
The other direction is proved in the appendix.

3 Strong laws

Recall:

DEF 4.9 (Tail o-algebra) Let X1, Xo, ... be RVs on (Q, F,P). Define

To = 0(Xni1, Xnia,..), T=[)Tn

n>1

By a previous lemma, T is a o-algebra. It is called the tail o-algebra of the se-
quence (X )n.

THM 4.10 (Kolmogorov’s 0-1 law) Let (X,,),, be a sequence of independent RVs
with tail o-algebra T. Then T is P-trivial, i.e., for all A € T we have P[A] = 0
or 1. In particular, if Z € mT then there is z € [—00, +00| such that

PZ =z]=1.
EX 4.11 Let X1, Xo, ... be independent. Then

limsupn~='S, and liminfn~'S,
n n

are almost surely a constant.
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3.1 Strong law of large numbers

THM 4.12 (Strong law of large numbers) Let X1, Xo, ... be pairwise indepen-
dent IID with E[X1| < +oc. Let Sy, = ) o, Xy and pp = E[X1]. Then

Sn
— = U, a.s.
n

If instead E| X1| = 400 then
. Sn .
P |lim — exists € (—o0,4+00)| = 0.
non

Proof: For the converse, assume E|X| = +00. From Lemma 4.6

+o00
+oo =E|X1| < ) P Xy] > n.

n=0
By (BC2)
P[| X, > nio]=1.
Because
& . Sn+1 _ (7’L + I)Sn — nSn+1 _ Sn — an+1 _ Sn _ Xn+1
n n+l1 n(n+1) n(n+1) nn+1) n+1’
we get that

{limn~1S, exists € (—o0, +00)} N {|Xy,| > nio.} =0

because, on that event, S, /n(n + 1) — 0 so that

Sn Sn+1

1.0.
n n—+1

2
3

a contradiction. The result follows because P[| X,,| > ni.o.] = 1.
There are several steps in the proof of the = direction:

1. Truncation. Let Yy = X1y x, <k} and T}, = Zkgn Y}.. (Note that the Y;’s
are not identically distributed.) Since (by integrating and using Lemma 4.6)

+oo
> P[IXk| > k] <E|X:| < 400,
k=1

(BC1) implies that it suffices to prove n= 7T}, — L.
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2. Subsequence. For o > 1, let k(n) = [a@"]. By Chebyshev’s inequality, for
e >0,

+o00 0o
>~ PlTiim — ElTy]l > ek(m)] < 5 > — 400
n=1 _

< 5 Y Varlvi(ci?)

< +00,

where the next to last line follows from the sum of a geometric series and the
last line follows from the next lemma—proved later:

LEM 4.13 We have

“+oo

Y;
3y VarlVi] i) < oo,

i2

<.
—_

By (DOM) and (BC1), since ¢ is arbitrary, we have E[Y}] — p and

O

a.s.

3. Sandwiching. To use a sandwiching argument, we need a monotone se-
quence. Note that the assumption of the theorem applies to both X f and
X and the result is linear so that we can assume w.l.0.g. that X1 > 0. Then
fork(n) <m < k(n+1)

and using k(n + 1)/k(n) — a we get

1 T, T,
~E[X1] < liminf —™ < limsup — < aE[X}].
(0% m m m m
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Since o > 1 is arbitrary, we are done. But it remains to prove the lemma:
Proof: By Fubini’s theorem

(]

; i2 :
=1 =

+oo +oo
VarD/;] Z E[Y2]
=1
+o00 1 00
=3 [ 2R sy
i=1

—+o00
1 o
= Zg/o 1g,<iy2yP[|Y;| > y]dy
=1

“+00
> 1
=/0 (23/ ) Z.g]l{yq}) PlYi| > y]dy
=1

< / C'P[IYi| > yldy
0
< C'E| X4,

where the second to last inequality follows by integrating. [ | |
In the infinite case:

THM 4.14 (SLLN: Infinite mean case) Let X, Xo,... be IID with E[X 1+ | =
+o00 and E[X|] < +o0. Then

n
— — 400, a.s.
n

Proof: Let M > 0 and X = X; A M. Since E|X| < +o0 the SLLN applies
to SM = > i<n XM Then

liminf — > liminf — = E[X;"'] 1 400,
n n n n
as M — +oo by (MON) applied to the positive part. |

3.2 Applications
An important application of the SLLN:
THM 4.15 (Glivenko-Cantelli) Let (X,,),, be IID and, for z € R,
1
Fo(w) =~ > (X < a},

k<n
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be the empirical distribution function. Then

sup | (x) — F(x)| =0,
z€R

where F is the distribution function of X.

Proof: Pointwise convergence follows immediately from the SLLN. Uniform con-
vergence then follows from the boundedness and monotonicity of F' and F;,. See
[D] for details. u
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A Symmetrization

To prove the other direction of the weak law, we use symmetrization.

DEF 4.16 Let X ~ F. We say that X is symmetric if X and —X have the same
distribution function, that is, if at points of continuity we have F(x) = 1 — F(—x)
for all x.

EX 4.17 (Symmetrization) Let X be a ~RV (not necessarily symmetric) and X L
an independent copy. Then X7 = X1 — X is symmetric.

LEM 4.18 Forallt > 0,
P[IX7] > 1] < 2P[|X4| > ¢/2). M)

If m is a median for X1, i.e.,

1 1
P[X; <m] > 3 P[X; > m] > 5
and assume w.l.o.g. m > 0 then
1
PlXT[ >t > §PHX1\ >t + m]. 2)
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Proof: For the first one, at least one of | X | > /2 or | X| > t/2 must be satisfied.
For the second one, the following are enough

{X;>t4+mX; <m}U{X; < —t—m,X; > —m},

and note that

LEM 4.19 Let {Y}; } <y be independent and symmetric with S,, = Y ;_, Yy, and
M, equal to the first term among {Y}; } <y, with greatest absolute value. Then

PlISa| > 1] > P (IMa] > 1]. 3)
Moreover, if the Y),’s have a common distribution F' then
PlISa] > 1] > 5 (1 — exp(—n[1 — F(1) + F(~1)]). @
Proof: We start with the second one. Note that
P[[My| <] < (F(t) = F(=t))" < exp (—n[l = F(t) + F(=1)]).

Plug the latter into the the first statement.
For the first one, note that by symmetry we can drop the absolute values. Then

B[S, > 1] = P[M, + (Su — My) = t] > P[M,, > £, (S, — M,) <0 (5)

By symmetry, the four combinations (+M,,, +(.S,, — M,,)) have the same distribu-
tion. Indeed M,, and S,, — M, are not independent but their sign is because M,, is
defined by its absolute value and S;, — M,, is the sum of the other variables. Hence,

and the two terms on the RHS are equal. Plugging this back into (5), we are done.
[

Going back to the proof of necessity:
Proof:(of necessity in Theorem 4.4) Assume that there is p,, such that for all e > 0

P[|Sy, — npn| > en] — 0.
Note that
Sp = (S —npp)® = ZXI?

k<n
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Therefore, by (1), assuming w.l.o.g. m > 0,
Pl|Sn — npn| = en] = SP[|S] = 2en]

> 2(1 - exp (—nP[|X7| > 2ne]))

<1 — exp <—;n]P’HX1] > 2ne + m]))

(1 — exp <—;nIP’HX1] > n])) ;

for € small enough and n large enough. Since the LHS goes to 0, we are done. H

IV
N N L N N A

A\

B St-Petersburg paradox
EX 4.20 (St-Petersburg paradox) Consider an IID sequence with
P[X;=2]=277, Vj>1

Clearly E[X1] = +o0. Note that

1

P> nl =0 ().

n
(indeed it is a geometric series and the sum is dominated by the first term) and
therefore we cannot apply the WLLN. Instead we apply the WLLN for triangular

arrays to a properly normalized sum. We take X, j, = X}, and b, = nlogyn. We
check the two conditions. First

S BlIXok| > ba] = © ( o ) 0.
P nlogsn

To check the second one, let X ;L = Xn,k]l| X 1| b and note

log, n+log, logo n

E[( ;,k)Q] = Z 2%971 < 2. glegantlogalogan — op Jog, .
j=1
So .
1 2n2logy n
S NCE[(X )Y = 082y,
b% [( n,k) ] n2 (10g2 Tl)2
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Finally,
n log, n+log, logy 1
an =Y B[X), ] =nE[X,]=n Y 2277 = n(log, ntlogy logy n),
k=1 j=1
so that
Sn — —p 07
bn,
and g
- —p 1.
nlogyn

THM 4.21 Let (Xy,)y, be IID with E|X1| = 400 and S, = 3 ;. ,, Xy Let ap be
a sequence with a, /n increasing. Then limsup,, |S,,|/a, = 0 or + 0o according
as Yy, P[|X1] > ap] < 400 0or = +o0.

The proof uses random series and is presented in [D].

EX 4.22 (Continued) Note that

1
Pl|X1| > nl =Q
15 2 gy ] = 2 (o).

which is not summable. Therefore, by the previous theorem

lim sup " =400, as.
n nlogon




