Notes 25 : Ergodic theory: a brief introduction

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Durl0, Sections 7.1-4].
We give a very brief introduction to the ergodic theorem as well as the subad-
ditive ergodic theorem. For more, see e.g. [Durl0, Chapter 7].

1 Stationary stochastic processes

The context for ergodic theory is stationary sequences, as defined next.

1.1 Definitions and main examples

We use the notation ~ to indicate identity in distribution.

DEF 25.1 (Stationary stochastic process) A real-valued process{ Xy }n>o is sta-
tionary if for every k, m

(X ooy Xongr) ~ (Xoy .o, Xi).
EX 25.2 IID sequences are stationary.

EX 25.3 Let {X,} be a MC on a countable set S with transition probability p and
stationary distribution T > 0. Then { X, } with initial distribution T is a stationary
stochastic process. Indeed, by definition of ™ and induction

XO ~ Xna
for all n > 0. Moreover, for all m, k, by the Markov property

(X07 <o 7Xk) ~ (va <o 7Xm+k)'
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1.2 Abstract setting

Ergodic theory is typically developed in a more abstract setting that encompasses
the above.

EX 25.4 (A canonical example) Ler (2, F,P) be a probability space. Amap T :
Q — Q is said to be measure-preserving (for P) if for all A € F,

Plw : Tw € Al = P[T™A] = P[A].

If X € F then X, (w) = X(T"w), n > 0, defines a stationary sequence. Indeed,
forall B € B(RF+1)

]P)[(XQ, R ,Xk)(w) S B] = P[(Xo, e ,Xk)(me) S B]
= P[(Xpm,- .., Xoar)(w) € B.

Kolmogorov’s extension theorem indicates that all real-valued stationary stochas-
tic processes can be realized in the framework of the previous example. Recall:

THM 25.5 (Kolmogorov Extension Theorem) Suppose we are given probability
measure (i, on (R™, B(R™)) s.1.

N?"H-l((aO’bO] X X (anvbn] X R) = /Ln((ao,bo] X X (a’n’bn])v

for all n and (n+1)-dimensional rectangles. Then there exists a unique probability
measure P on (RZ+, R%+) with marginals ju,.

EX 25.6 (Revisiting stationary processes) Let X be a stationary process on R.
Then by the previous theorem, we can realize X on R%+ as

Xp(w) = wy.
The corresponding measure-preserving transformation is the shift
Tw = (w,...).
In particular, X,,(w) = Xo(T"w).

2 Ergodic theorem

Before stating the ergodic theorem, we need a few more definitions. We are inter-
ested in the convergence of empirical averages:

n—1 n—1
n 1S, (w) =n"t Z Xp(w) =n"" Z f(Tw).
m=0 m=0
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2.1 Invariant sets

To get some intuition in the behavior of n~15,, we look at a trivial example.
EX 25.7 Let Q = {a,b,c,d, e} and F = 2°*. Take f = 1 4 for some set A € F.

1. Suppose T = (a,b,c,d,e) (i.e. the cyclic permutation that sends a to b
etc.). For T to be measure-preserving we require Pla] = P[b] = - - - so that
Pla] = 1/5 is the only possibility. (It is easy to see that T is indeed measure-
preserving because the number of elements of ) is invariant under T.) In
that case, it is immediate that

n~1S, — P[A] = E[f].

2. Suppose T = (a,b,c)(d,e) (i.e. the permutation with the two cycles listed).
Let Oy = {a,b,c}, F1 = o O, = {d,e} and Fo = 2% For T to
be measure-preserving we need Pla] = P[b] = Pl¢] = «/3 and P[d] =
Ple] = B/2. (Any choice of cv, B with o + 3 = 1 works because the number
of elements of Q01 and Qq is invariant under T.) Take A = {a,d}. Then
n~1S,, — 1/3 with probability « (i.e. if w € Q) and n=1S, — 1/2 with
probability 5. Denoting f this limit, we note

but f is not constant if o, B # 0. However, it is completely determined by
whether w € Q1 or w € Q.

DEF 25.8 A set A € F is invariant if
{w: Twe A} =)T'A = A,

up to a null set. It is nontrivial if 0 < P[A] < 1. The set of all invariant sets forms
a o-field T (see Exercise 7.1.1 in [Durl0]). The transformation T' is said ergodic
if T is trivial, that is, all invariant sets A have P[A] € {0,1}.

2.2 Statement of theorem

We finally state a version of the ergodic theorem without proof. (See [Dur10] for a
proof.)

THM 25.9 (Ergodic theorem) Let f € L' and assume that the measure-preserving
map T is ergodic. Then
n~ 'S, — E[f],

a.s and in L.
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EX 25.10 Let X,,(w) = wy, are IID rvs. If A is invariant then {w : w € A} =
{w: Tw e A} € 0(X1,...) and by induction

A (= ﬂnzoo'(Xn, .. ) = T,

where T is the tail o-field. Thus T C T. Since T is trivial by Kolmogorov’s 0-1
law, so is I. Therefore T is ergodic. Applying the ergodic theoremto f = Xo € L'
we get

n—1
nt Y Xon(w) = E[Xo,
m=0
that is, we recover the SLLN.

2.3 Back to MCs

Going back to Markov chains, recall:

DEF 25.11 Let
T, =inf{n >1: X, =i},

and
fij = Pi[Tj < +o0].

A chain is irreducible if f;; > 0 for all i,j € A. A state i is recurrent if fi; = 1
and is positive recurrent if E;[T;] < +oc.

THM 25.12 If X is irreducible and finite, then every state is positive recurrent.

THM 25.13 Let X be an irreducible and positive recurrent MC. Then there exists
a unique stationary distribution w. In fact,

EX 25.14 (MCs) Let {X,,} be aMC on S.

e ASRW on [a,b]: Let {Sy}n>0 be an asymmetric simple random walk with
parameter 1/2 < p < 1. Leta < 0 < b, N = T, ATy. Then {X,,}n>0 =
{SNAn}tn>0 is a Markov chain. In the ASRW on [a,b], T = 0, and ™ = &y, as
well as all mixtures are stationary. The invariant sets are {a} and {b} and
therefore 'T' is not ergodic if ™ has positive mass on both of them.
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o On the other hand, assume X is irreducible and positive recurrent with sta-
tionary distribution m > 0. Let A € T and note that 14 o T™ = 1 4. Then
by the Markov property,

E[lg|Fn] =E[1a0T"|F,] = h(Xy),

where h(x) = E;[14]. By Lévy’s 0-1 law the LHS — 1 4. By irreducibility
and recurrence, any y € S is visited i.o. and we must have E,[1 4] = h(x) =
0 or 1. Therefore P[A] € {0,1} and T is trivial. Then applying the Ergodic
Theorem to f(w) = g(Xo(w)) where

> lgW)lrly) < 4o,
Yy

we then have

n—1
Y g(Xm(w) = > T (y)(y)-
m=0

Y

3 Subadditive ergodic theorem

The ergodic theorem can also be extended to certain functionals that are not neces-
sarily additive.

3.1 Subadditivity
Recall:

DEF 25.15 A sequence {7, }n>0 is subadditive if for all m, n:

Ymitn < Yo + Ym-

THM 25.16 If v is subadditive then
LIS Y L

— —in
n m m

Proof: Clearly

lim inf In > inf ln.
n n m m

So STS

lim sup In < inf Jm
n N m m
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Fix m and write n = km + £ with 0 < ¢ < m. Applying the subadditivity
repeatedly, we have

T < kYm + e,
so that
Tn (PN m e
n — \km+£/) m n

and the result follows by taking n — +o0.
|

EX 25.17 (Longest common subsequence) Ler {X,,} and {Y,,} be stationary se-
quences and let L., ,, be the longest common subsequence on indices m < k < n.
Clearly

LO,m + Lm,n < LO,nv

and v, = —E[Lo ] is subadditive.

3.2 Statement of the theorem

The main theorem is the following.
THM 25.18 (Subadditive Ergodic Theorem) Suppose { X, » to<m<n satisfy:
1. Xom + Xmn > Xon.
2. { Xk (n4-1)ks 0 = 1} is a stationary sequence for each k.
3. The distribution of { X, m+k, k > 1} does not depend on m.
4. IEXafl < oo and for each n, EX¢, > ~yon where vy > —o0.
Then
e limEXy,/n = inf,, EXq,,/m = 1.
e X =lim Xy ,,/n exists a.s. and in L'soEX = 7.
o [fall stationary sequences in 2. are ergodic then X = y a.s.

Proof: See [Durl0]. [ |
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3.3 Examples

The subadditive ergodic theorem is surprisingly useful.

EX 25.19 (Age-dependent continuous-time branching process) Start with one
individual. Each individual dies independently after time T' ~ F' and at that point
produces K ~ {pg }i, offsprings (both with finite means). Let X, be the time of
birth of the first individual from generation m and X, ,, the time to the birth of
the first descendant of that individual in generation n. We check the conditions:

1. Clearly

XO,m + Xm,n > XO,n-

2. {Xnk,(n+1)k}n is IID because we are looking at the descendants of a single
individual (the first born) over k generations which are not overlapping.

3. The distribution of { Xy, m+k } i IS independent of m for the same reason.
4. By nonnegativity and the finite mean of F', condition 4. is satisfied.

So we can apply the thm. By the IID remark above in 2. we get that the limit is
trivial. See [Durl0] for a characterization of the limit.

EX 25.20 (First-passage percolation) Consider 7¢ as a graph with edges con-
necting x,y € 72 if |x — y||1 = 1. Assign to each edge a nonnegative random
variable 7(e) corresponding to the time it takes to traverse e (in either direction).
Define t(x,y) (the passage time) as the minimum time to go from x to y. Let
Xmn = t(mu, nu) where u = (1,0, - - ,0). We check the conditions:

1. Clearly
XO,m + Xm,n > XO,n

N

{ Xk, (n+1)k }n is stationary by translational symmetry.

“

The distribution of { X, m-+k }i; is independent of m for the same reason.

N

. By nonnegativity and the finite mean of T, condition 4. is satisfied.

So we can apply the theorem. Enumerating the edges in some order, one can prove
(check!) that the limit is tail-measurable and, by the IID assumption, is trivial.
See [Durl0] for a characterization of the limit.
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