
Notes 24 : Markov chains: martingale methods

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Nor98, Sections 4.1-2], and [Ebe, Sections 0.3, 1.1-2, 3.1-2], [Bre20,
Sections 7.1-7.3].

1 Martingale problem

Throughout, we assume that S is countable. The following linear operator as-
sociated to transition probability p arises naturally: for any bounded measurable
function f : S → R, define

Lf(x) :=
∑
z∈S

p(x, z)[f(z)− f(x)],

which we refer to as the (discrete-time) generator associated to p. To see where
this is coming from, note that if {Xn} is an MC on S with transition probability p
then

Ex[f(X1)− f(X0)] = Lf(x) (1)

and, by the Markov property, we also have

E[f(Xn+1)− f(Xn) | Fn] = Lf(Xn). (2)

EX 24.1 (Simple random walk on Z) For simple random walk on Z,

Lf(x) =
∑
z∈S

p(x, z)[f(z)− f(x)]

=
1

2
{[f(x+ 1)− f(x)]− [f(x)− f(x− 1)]},

which is a discretized second derivative.

THM 24.2 (Martingale problem) Let S be countable, let {Xn} be a stochastic
process adapted to {Fn} and taking values in S, and let p be a transition proba-
bility on S with associated generator L. Then the following are equivalent:
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(i) The process {Xn} is a Markov chain with transition probability p.

(ii) For any bounded measurable function f : S → R, the process

Mf
n = f(Xn)−

n−1∑
m=0

Lf(Xm),

is a martingale with respect to {Fn}.

In our setting the above theorem is an elementary observation. However, this type
of martingale formulation in fact plays an important role in the modern theory of
general Markov processes. We will not elaborate here. See e.g. [Ebe].
Proof:(of THM 24.2) Assume (i) holds. Because f is bounded and p(x, · ) sums
to 1, Mf

n is integrable for all n. By (2),

E[Mf
n+1 −M

f
n | Fn] = E [f(Xn+1)− f(Xn)− Lf(Xn) | Fn]

= E [f(Xn+1)− f(Xn) | Fn]− Lf(Xn)

= 0. (3)

That shows (i) implies (ii).
Assume instead that (ii) holds. Fix a subset B ⊆ S and let f(x) = 1{x ∈ B}.

Then, rearranging (3) and using the definition L, we get

P[Xn+1 ∈ B | Fn] = E [f(Xn+1) | Fn]
= f(Xn) + Lf(Xn)

= f(Xn) +
∑
z∈S

p(Xn, z)[f(z)− f(Xn)]

=
∑
z∈S

p(Xn, z)f(z)

= p(Xn, B),

as claimed.

2 Potential theory

Many quantities of interest, which we have encountered previously, can be ex-
pressed in the following form. Let D ⊂ S and

TDc = inf{n ≥ 0 : Xn ∈ Dc}.
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Let also f : Dc → R+ and c : D → R+. Define the quantity

u(x) := Ex

f(XTDc )1{TDc < +∞}+
∑

m<TDc

c(Xm)

 . (4)

The first term on the RHS is a cost incurred when we exitD, while the second term
is a cost incurred along the path. Observe that the function u(x) may take the value
+∞; the expectation is well-defined by the nonnegativity of the terms.

EX 24.3 (Some special cases) Here are some important special cases:

• For two disjoint subsets A,Z of S the probability

u(x) := Px[TA < TZ ],

of hitting A before Z as a function of the starting point x ∈ S is obtained
by taking D := (A ∪ Z)c, f ≡ 1 (respectively ≡ 0) on A (respectively Z),
and c ≡ 0 on V . The further special case Z = ∅ leads to the exit probability
from A

u(x) := Px[TA < +∞].

On the other hand, ifA and Z form a disjoint partition ofDc, we get the exit
law from D

u(x) := Px[XTDc ∈ A;TDc < +∞].

• The average occupation time of A ⊆ D before exiting D

u(x) := Ex

 ∑
0≤t<TDc

1{Xt∈A}

 ,
is obtained by taking f ≡ 0 and c ≡ 1 (respectively ≡ 0) on A (respectively
on Ac). The Green function of the chain stopped at TDc

u(x) := Ex

 ∑
0≤t<TDc

1{Xt=y}

 ,
is obtained by taking f ≡ 0 and c ≡ 1. Another special case is A = D
where we get the mean exit time from A

u(x) := Ex [TAc ] .
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The function u turns out to satisfy a certain discrete version of a Dirichlet
problem. In undergraduate courses, this is usually called “first-step analysis.” A
more general statement can be found, e.g., in [Ebe, Theorem 1.3].

THM 24.4 (First-step analysis) Let p be a transition matrix on a finite or count-
able spate space S. Let D be a proper subset of S. Let f : Dc → R+ and
k : D → R+ be bounded functions. Then the function u ≥ 0, as defined in (4),
satisfies the system of equations{

u(x) =
∑

y p(x, y)u(y) + c(x) for x ∈ D,
u(x) = f(x) for x ∈ Dc.

(5)

Proof: For x ∈ Dc, by definition u(x) = f(x) since TDc = 0. Fix x ∈ D. By
TOWER and the Markov property,

u(x) = Ex

f(XTDc )1{TDc < +∞}+
∑

m<TDc

c(Xm)


= Ex

E
f(XTDc )1{TDc < +∞}+

∑
m<TDc

c(Xm)

∣∣∣∣∣∣F1


= Ex

c(x) + E

f(XTDc )1{TDc < +∞}+
∑

1≤m<TDc

c(Xm)

∣∣∣∣∣∣F1


= Ex [c(x) + u(X1)] ,

which gives the claim.
If further u is finite, then the system of equations (5) can be re-written as{

Lu = −c on D,
u = f on Dc.

(6)

This is the case for instance if D is a finite subset and p is irreducible. Indeed, as
the next lemma (of independent interest) shows, the stopping time TDc then has a
finite expectation. Because h is bounded, it follows that

u(x) := Ex

f(XTDc )1{TDc < +∞}+
∑

m<TDc

c(Xm)


≤ sup

x∈Dc
f(x) + sup

x∈D
c(x) sup

x∈D
Ex [TDc ]

< +∞,
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uniformly in x. So the system (6) is well defined. Using (1) and rearranging (5)
gives the claim. It remains to prove that TDc has a finite expectation

LEM 24.5 Let (Xt) be a finite, irreducible Markov chain with state space V and
initial distribution µ. For A ⊆ V , there is β1 > 0 and 0 < β2 < 1 depending on
A such that

Pµ[TA > t] ≤ β1βt2.

In particular, Eµ[TA] < +∞ for any µ, A.

Proof: For any integer m, for some distribution θ,

Pµ[TA > ms |TA > (m− 1)s] = Pθ[TA > s] ≤ max
x

Px[TA > s] =: 1− αs.

Choose s large enough that, from any x, there is a path to A of length at most s of
positive probability. Such an s exists by irreducibility. In particular αs > 0. By
induction, Pµ[TA > ms] ≤ (1− αs)m or Pµ[TA > t] ≤ (1− αs)b

t
s
c ≤ β1β

t
2 for

β1 > 0 and 0 < β2 < 1 depending on αs.
The result for the expectation follows from

Eµ[TA] =
∑
k≥0

Pµ[TA > k] ≤
∑
t

β1β
t
2 < +∞.

That concludes the proof.

3 Lyapounov functions

A maximum principle allows to establish uniqueness of the solution of (5). Perhaps
even more useful, it also gives an effective approach to bound the function u from
above. This is based on a supermartingale related to THM 24.2.

LEM 24.6 (Locally superharmonic functions) Let ψ : S → R+ satisfy

Lψ ≤ −c on D.

Then the process

Mψ,c,D
n := ψ(Xn∧TDc ) +

∑
m<n∧TDc

c(Xm),

is a non-negative superMG.
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Proof: Indeed,

E[Mψ,c,D
n+1 −M

ψ,c,D
n | Fn] = E[1{TDc > n}(ψ(Xn+1)− ψ(Xn) + c(Xn)) | Fn]

= 1{TDc > n}(E[ψ(Xn+1)− ψ(Xn) | Fn] + c(Xn))

= 1{TDc > n}(Lψ(Xn) + c(Xn))

≤ 0,

since Xn ∈ D on {TDc > n}.
We come to the maximum principle.

THM 24.7 (Maximum principle) Let p be a transition matrix on a finite or count-
able spate space S. Let D be a proper subset of S, and let f : Dc → R+

and c : D → R+ be bounded functions. Suppose the nonnegative function
ψ : S → R+ satisfies the system of inequalities{

Lψ ≤ −c on D,
ψ ≥ f on Dc.

(7)

Then
ψ ≥ u, on S, (8)

where u is defined in (4).

Proof: The claim, i.e., (8), holds on Dc by THM 24.4 and (7).
Let x ∈ D. Consider the nonnegative supermartingale Nn := Mψ,c,D

n in
LEM 24.6. By the convergence of nonnegative supermartingales, (Nn) converges
a.s. to a finite limit with expectation ≤ Ex[N0]. In particular, the limit NTDc is
well-defined, nonnegative and finite, including on the event that {TDc = +∞}. As
a result,

NTDc = ψ(XTDc )1{TDc < +∞}+
∑

0≤m<TDc

c(Xm)

≥ f(XTDc )1{TDc < +∞}+
∑

0≤m<TDc

c(Xm),

where we used (7).
Hence, by definition of u,

u(x) = Ex

f(XTDc )1{TDc < +∞}+
∑

0≤n<TDc

c(Xn)


≤ Ex [NTDc ]

≤ Ex[N0]

= ψ(x),
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where, on the last line, we used that the initial state is x ∈ D. That proves the
claim.

Here is an important application, bounding from above the hitting time TA to a
set A in expectation.

THM 24.8 (Bounding hitting times via Lyapounov functions) Let p be a tran-
sition matrix on a finite or countable spate space S. Let A be a proper subset of S.
Suppose the nonnegative function ψ : S → R+ satisfies the system of inequalities

Lψ ≤ −1, on Ac. (9)

Then

Ex [TA] ≤ ψ(x),

for all x ∈ S.

Proof: Indeed, by (9) and nonnegativity (in particular on A), the function ψ sat-
isfies the assumptions of THM 24.7 with W = Ac, f ≡ 0 and c ≡ 1. Hence, by
definition of u and the claim in THM 24.7,

Ex [TA] = Ex

f(XTA)1{TA < +∞}+
∑

0≤n<TA

c(Xn)


= u(x)

≤ ψ(x).

That establishes the claim.
Recalling (2), condition (9) is equivalent to the following conditional expected

decrease in ψ outside A:

E[ψ(Xn+1)− ψ(Xn) | Fn] ≤ −1, on {Xn ∈ Ac}. (10)

A function satisfying an inequality of this type (and its many variants; see, e.g., [Ebe,
Section 1.2]) is known as a Lyapounov function. We consider a simple example
next.

EX 24.9 (A Markov chain on the nonnegative integers) Let (Zn)n≥1 be i.i.d. in-
tegrable random variables taking values in Z such that E[Z1] < 0. Let (Xn)n≥0
be the chain defined by X0 = x for some x ∈ Z+ and

Xn+1 = (Xn + Zt+1)
+,
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where recall that z+ = max{0, z}. Observe that, for any y ∈ Z+, we have

Ex[Xn+1 − y |Xn = y] = E[(y + Zn+1)
+ − y]

= E[−y1{Zn+1 ≤ −y}+ Zn+11{Zn+1 > −y}]
≤ E[Zn+11{Zn+1 > −y}]
= E[Z11{Z1 > −y}]. (11)

For all y, the random variable |Z11{Z1 > −y}| is bounded by |Z1|, itself an
integrable random variable. Moreover, Z11{Z1 > −y} → Z1 as y → +∞
almost surely. Hence, the dominated convergence theorem implies that

lim
y→+∞

E[Z11{Z1 > −y}] = E[Z1] < 0.

So for any 0 < ε < −E[Z1], there is yε ∈ Z+ large enough that E[Z11{Z1 >
−y}] < −ε for all y > yε. Fix ε as above and define

A := {0, 1, . . . , yε}.

We use THM 24.8 to bound TA in expectation. Define

ψ(x) =
x

ε
, ∀x ∈ Z+.

On the event {Xn = y}, we re-write (11) as

E[ψ(Xn+1)− ψ(Xn) | Fn] ≤
E[Z11{Z1 > −y}]

ε
≤ −1,

for y ∈ Ac. This is the same as (10). Hence, we can apply THM 24.8 to get

Ex [TA] ≤ ψ(x) =
x

ε
,

for all x ≥ yε.
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