Notes 23 : Markov chains: asymptotic behavior

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Durl0, Sections 6.6] and [Nor98, Sections 1.8].
Recall:

THM 23.1 (Strong Markov property) Let {X,,} be an MC on S with transition
kernel p. Let T’ be a stopping time. For each n > 0, let h,, be a bounded measur-
able function from SZ+ to R. Then, on {T < +o0},

Eulhr (X7, X141, .. ) | Fr] = ¢7(XT),
where ¢ (x) = Egp[hn (X, Xnt1,.-.)].

THM 23.2 (Distribution at time n) Let {X,,} be an MC on a countable set S
with transition probability p. Then for alln > 0 and j € S

Pu[Xn = 4] =Y u()p" (i, ),
€S
where p" is the n-th matrix power of p, i.e.,

P i5) = > pliyky)p(ky, k2) - plkn-1,7).
ki,...,kn—1

Let {X,,} be an MC on a countable set S with transition probability p. For
z,y € S, let T,) = inf{n >0 : X, =z}, pgyy = Po[T,} < +oc], and N(z) =
Yons1 H{X, = z}. Define T, = inf{n > 0 : X,, = 2} = T,/ 1{ Xy = «}. If
P,[T, < +o00] > 0, we write z — y. If z — y and y — =, we write z <> y and
say that x communicates with y.

LEM 23.3 Let { X, } be an MC on a countable set S with transition probability p.
Then, for distinct states x # y € S, the following are equivalent:

(a) pzy >0
(b) p"(z,y) > 0for somen > 1

(c) Jig =x,i1,...,in, =y € S suchthat p(iy_1,i,) >0 forallr =1,...,n
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DEF 23.4 (Recurrence) A state x € S is recurrent if p,, = 1. Otherwise it is
transient.

LEM 23.5 (Recurrence is contagious) If x is recurrent and py, > 0, then y is
recurrent and py; = 1.

DEF 23.6 (Irreducibility) A subset C C S is irreducible if for all x,y € C, we
have x <> y. An MC on S is irreducible if the full space S is irreducible.

DEF 23.7 (Stationary measure) Let {X,,} be an MC on a countable set S with
transition probability p. A measure ;1 on S is stationary if

> (i) pli, §) = p(j)-

€S

If in addition p is a probability measure, then we say that p is a stationary distri-
bution.

For z,y € S, let

TS —1 +00
Yz (y) = Eq Z 1{X, =y} :ZP:E [Xn:?J»nST;_l]' (1
n=0 n=0

THM 23.8 (Existence of stationary measure) Ler {X,,} be an MC on a count-
able set S with transition probability p. Let x be recurrent. Then ~, is a station-
ary measure. In addition: py, = 0 implies v;(y) = 0; while py, > 0 implies
0 < 7z(y) < +o0.

DEF 23.9 (Positive recurrence) A recurrent state x € S is positive recurrent if
E,[T}] < +0o0. Otherwise it is null recurrent.

THM 23.10 Let {X,} be an irreducible MC on a countable set S. Then the fol-
lowing statements are equivalent:

(i) every state is positive recurrent;
(ii) some state is positive recurrent;
(iii) there exists a stationary distribution.

Moreover, when any of the conditions above holds, the unique stationary distribu-
tion is given by w(z) =

1
E. T4 ]
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We will also need:

THM 23.11 (Strong law of large numbers) Ler X1, Xo, ... be IID withE| X, | <
+o00. Let Sy =y, Xy and i = E[X1]. Then

Sn
— = U, as.

n
THM 23.12 (SLLN: Infinite mean case) Let X1, Xo,... be IID with E[X fr | =
+o00 and E[X| ] < +o0. Then

n
— — 400, a.s.
n

1 Convergence to equilibrium

Throughout, we assume that S is countable. We also restrict ourselves to the irre-
ducible, positive recurrent case, where a unique stationary distribution is known to
exist by the theorems above. (Observe that we have already proved that, when y is
transient, then E,[N(y)] = >, P"(x,y) < 400 so that p"(z,y) — 0.)

Even when a stationary distribution 7 exists, there is no guarantee in general
that p™(z,y) — 7(y). For instance:

EX 23.13 (Periodic behavior) Let S = {1,2} and

p(1,1) p(1,2) 0 1
P= = .
p(2,1) p(2,2) 10
Note that P? is the identity I and, as a result, that P™ = P for odd m and P™ = I
for even m. Because, by THM 23.2,

we have established that p™ (1, 1) does not converge as m — +oo. This despite
the fact that a stationary distribution exists, as can be checked from noting that
mP = 7 where m = (1/2,1/2) (as a row vector).

To exclude the effect seen in the previous example, we introduce a definition (for a
more through treatment of periodicity, see [Dur10, Chapter 6]).

DEF 23.14 (Aperiodicity) An MC {X,,} on a countable set S with transition
probability p is aperiodic if, for all x € S, we have p"(x,x) > 0 for all n large
enough.
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LEM 23.15 (Criterion for aperiodicity) Foran irreducible chain {X,} to be ape-
riodic, it suffices that there exists a state x € S and an integer K such that
pX(z,2) > 0 and p"*'(x,x) > 0. In particular, this is immediate if p(x,x) > 0
for some x.

Proof: Let x as in the statement. By irreducibility, for any y # x, there are L and
M such that p”(y, z) > 0, pM (x,y) > 0 and hence

pP My y) > Py, 2)p" (z, 2)pM (2, y)

and it suffices to show that p"(x,z) > 0 for n sufficiently large.

We also need the following simple observations: for m, m’ such that p (z, z) >
0and p™ (z,z) > 0, we have also p*™(z, z) > (p™(z,z))* > 0and p™ "™ (z,2) >
P, x)p™ (x,x) > 0.

Now take any n > K2 and write n — K2 = mK +r where 0 < r < K. Then

n=K+mK+r=r(K+1)+(K+m-rkK,

so p™(z,x) > 0 by the observations above.
The second claim also follows from the observations above. |
Our main convergence result is:

THM 23.16 (Convergence to equilibirum) Ler { X,,} be an MC on countable set
S with transition probability p. Assume it is irreducible, aperiodic and has station-
ary distribution w. Then for all x,z € S

Pz, 2) = 7(2),
as n — +oo.
The proof is based on a technique called coupling. Before giving the proof, we
begin with some background.
1.1 Coupling

A formal definition of coupling follows. Recall that for measurable spaces (S, S1)
(S92, S2), we can consider the product space (S7 x S2,S1 X Sy) where

51 X SQ = {(81,82) 181 € 51,82 € 52}

is the Cartesian product of S; and S5, and S; x Ss is the smallest o-field S; x So
containing the rectangles A; x As forall A; € §; and Ay € So.
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DEF 23.17 (Coupling) Let i1 and v be probability measures on the same measur-
able space (S, S). A coupling of i and v is a probability measure ~y on the product
space (S x S, S x §) such that the marginals of y coincide with . and v, i.e.,

YA XxS)=p(A) and ~(S x A)=v(A), VAeS.
Here is an example.
EX 23.18 (Coupling of Bernoulli variables) Ler X and Y be Bernoulli random
variables with parameters 0 < q < r < 1 respectively. That is, P[X = 0] =1 —gq
and P[X = 1] = q, and similarly for Y. Here S = {0,1} and S = 2°.
- (Independent coupling) One coupling of X andY is (X', Y") where X' 4x
andY' LY are independent. Its law is

(Blx",Y) = G.4)]) —<ﬂ—®ﬂ—w u—@v'

ije{o1}y q(1—7) qr

- (Monotone coupling) Another possibility is to pick U uniformly at random
in [0,1], and set X" = liy<gy and Y" = 1yy<,y. The law of coupling
(X", Y") is Then (X",Y") is a coupling of X and 'Y with law

(et =), = (07 oY)

ijefo1}y q

One use of coupling is to quantify the “distance” between two measures. Let
p and v be probability measures on (S, S). The total variation distance between
them is

[ = v|[rv == sup [u(A) — v(A)].
AeS

LEM 23.19 (Coupling inequality) Let ;1 and v be probability measures on (S, S).
For any coupling ~v of 1 and v,
I — vllry < B[X # Y],
where (X,Y) ~ ~.
Proof: For any A € S,
u(A) —v(A) =P[X € A] - P[Y € 4]
=PXeA X=Y]|+PXeA X#Y]
_PYeA X=Y]-PY €A X #Y]

PIX €A X£Y]-PY €A, X #Y]
PX #Y],

IN
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and, similarly, v(A) — p(A) < P[X # Y]. Hence
1(A) — v(4)] < P[X £ Y].

]

A coupling of Markov chains with transition probability p is a Markov chain

{(Xn,Yn)} on S x S such that both {X,,} and {Y},} are Markov chains with

transition probability p. For our purposes, the following special type of coupling
will suffice.

DEF 23.20 (Markovian coupling) A Markovian coupling of a transition proba-
bility p is a Markov chain {(X,,,Yy)} on S x S with transition probability q satis-

fying:
- (Markovian coupling) For all x,y,z',y € S,

Z q((xv y): (:L'/, Z/)) = p(l’, 1'/),

Zl

> al(@,y), (Z,9) = p(y,y)-

Z,

We say that a Markovian coupling is coalescing if further:

- (Coalescing) For all z € S,
' 7é y/ = Q((Z7 Z)? (xlvy/)) =0.

Note that not every coupling of Markov chains is itself Markovian.

Let {(X,,Y,)} be a coalescing Markovian coupling of p. By the coalescing
condition, if X, = Y,,, then X,, =Y, forall n > m. Thatis, once { X, } and {Y},}
meet, they remain equal. Let Teet be the coalescence time (also called coupling
time), i.e.,

Tmeet = inf{n >0 : X,, =Y, }.

By the coupling inequality, for any distributions y,, and 1,

D Ha(2p"(2) = D iy (2)p" (2, )

z€S z€S

TV
= Puzxuy [Tmeet > TL], (2)

where X indicates the product measure.
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1.2 Proof of convergence theorem

We are now ready to go back to THM 23.16.
Proof:(of THM 23.16) By definition of the total variation distance, it suffices to
prove that

lp" (,-) = 7 (-)llrv = 0.
By the definition of stationarity, this is equivalent to

— 0. 3)
TV

P, ) =Y 7w (2)p"(z,)

z€eS

We use the coupling inequality. Let {(X,,Y,)} be a coalescing Markovian cou-
pling of p with transition probability ¢ defined as:

p(z,2")ply,y) ifx#y,
a((z,y), (2',y") = { pla, ) ifr=yand2’ =y,
0 0.W.

In words, {X,,} and {Y,,} are independent with transition probability p until they
meet, at which point they remain equal from then on. Assume that Xy = = and
that Yy ~ r, that is, the initial distribution of {(X,,, Y},)} is d, x m (where J,, is the
unit mass at z). By (2), to show (3), it then suffices to show

Ps, xr[Tmeet > 1] — 0. ()]
This is implied by Ps_ w1 [Tmeet < +00] = 1, for which it suffices in turn to prove
Pizy) [Tmeet < +00] =1, Yy, (5)

since

PJIXﬂ'[Tmeet < +OO] = Zﬂ'(y) P(az,y) [Tmeet < +OO]-
yeSs

It remains to prove the claim:
CLAIM 23.21 (Coupling in finite time) For any x,y, P, ) [Tmeet < +00] = L.

Proof: We consider a second Markovian coupling (this time not coalescing). Let

{Y’} be an independent copy of {Y,,} started at y and let
inf{n>0: X, =Y.}

/ _
Tmeet =
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By construction Typeet and 7., are identically distributed, hence IP’(x,y) [Tmeet <
+00] = P4 [Thneet < +00]. Fix a state a € S and let
7, =inf{n >0 : X, =Y, = a}.

Observe that 7y,eey < 7, hence Py ) [Theet < +00] > Py [7, < +00]. Asa

meet m
result of the previous two observations, it suffices to show

]P)(x,y) [T(; < +OO] = 1. (6)
This follows immediately from LEM 23.5 and the next lemma (where we really
only need irreducibility and recurrence in the conclusion).

LEM 23.22 Let {(X,,Y,)} be a Markovian coupling of p where { X, } and {Y,'}
are independent. Assume p is irreducible, aperiodic and positive recurrent. Then
{(Xn,Y,))} is irreducible, aperiodic and positive recurrent.

Proof: Let r be the transition probability of {(X,,Y,)}.

1. {(Xy,Y,))}isirreducible and aperiodic. By irreducibility, for all x1, x2, y1, y2,

there is K and L such that p’ (21, 25) > 0 and p*(y1,y2) > 0. By aperi-
odicity, we also have p"(x2,x2) > 0 and p"(y2,y2) > 0 for all n > ng for
some ng. Hence, for all n > ng, by Chapman-Kolmogorov

TK+L+"(($1, Y1), (r2,92))

K+L+n(x1’ I'Q)pKJrLJrn(yl, y2)

EHn (g, x9) 2 (11, y2) K (42, 92)

=p
> pK (21, 22) p
> 0.

One such n suffices to establish irreducibility. Moreover, since we can take
x1 = xg and y; = y9 (and K = L = 0), we also have aperiodicity.

2. {(Xn,Y,)} is positive recurrent. The probability measure 7 X 7 is station-
ary for r. Indeed, note

> w(@n) () r((z1, 1), (22, 92))

Z1,Y1

= Z m(x1) m(y1) p(x1, 22) p(Y1, Y2)

z1,Y1

= Z m(x1) p(z1, 22) Z m(y1) p(y1, y2)

Y1
= 7(z2) 7(y2).
By THM 23.10, {(X,,,Y,!)} is therefore positive recurrent.

That concludes the proof of the lemma. [ | [ | |
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2 Law of large numbers for MCs

Our second asymptotic result is a law of large numbers for countable MCs. This
time, we do not need aperiodicity.

THM 23.23 (Law of large numbers for MCs) Let {X,,} be an MC on a count-
able set S with transition probability p. Assume it is irreducible and has stationary

distribution 7. Let f : S — R be a function such that ), g |f(2)|7(2) < +oc.
Then for any initial distribution p, we have

S FX) = 3 f)m(z),

m=1 z€S

SN

almost surely as n — +oo.

We first prove the result in the special case where f(z) = 1{z = y}, in which
case the sum on the LHS above counts the frequency of visits to y and the limit
on the RHS is simply m(y). The proof relies on the strong Markov property to
break up the sample path into i.i.d. excursions from y back to it. That reduces the
problem to an application of the standard Strong Law of Large Numbers.

2.1 Excursions

Recall that, for y € S, we let T,) = 0 and, for k > 1, we let

Tyk = mf{n > T;_l : Xn = y}a

be the time of the k-th return to y. For £ > 1, we also let A’; = Tsz — T;_l be the

k-th inter-visit time.

LEM 23.24 Assume that y is recurrent. Under the initial distribution 0, the vec-
tors (of random length)

vk .= (A;XT;“*I’“"XTJ“*) k2
are i.i.d.

Proof: By recurrence of y, we have T; < 400 almost surely for all £ > 0.
Hence the vectors V¥ have finite length a.s. Because each component of V¥ is in
a countable set, the set of all possible values V* can take is then itself countable.
Let us denote this set by V. Fix v € V. We use the strong Markov property with
hn(Xo, X1,...) = h(Xg, X1,...) := 1{V! = v} for all n. Then

¢n(y) = ¢(y) = Ey[h(X07X17 .- )] = Py[vl = ’U].
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And THM 23.1 implies that, for all & > 1, on {T;7 ! < +o0},

k
}P’y[V =V ‘ .FT;—I] = Ey[h(XT;_l’Xﬂf_l—l—l’ o ) ‘ ‘FTf_l]
= Py[vl = U]7
almost surely, where we used that X, x—1 = y by definition. Since this is true
Y

for every v € V, that implies that V* is independent of Fpr—1 and therefore of
Yy

V..., V1 Ttalso implies that the laws of the V*’s are identical. [ |
Using the strong Markov property again, we get the following generalization:

THM 23.25 (Excursions) Assume that y is recurrent. Under any initial distribu-
tion  such that P, [T, < +oo] > 0, conditioned on the event {T,; < +00}, the
vectors

Vk = (AS’XT5717...’X2§_1>’ ]{7227

are i.i.d.

2.2 Asymptotic frequencies

We are now ready to prove the law of large numbers in the special case where
f(z) = 1{z = y}. Let

n

Nay) = 31X =y},

m=1

be the number of visits to y by time n (not counting time 0). Again, we first
consider the case where ;1 = d,.

LEM 23.26 Assume that vy is recurrent. Under the initial distribution 6,

N,
n(y) _ 1 ,
n Ey [Ty ]

almost surely as n — +oc.

Recall that when a stationary distribution 7 exists and is unique, then 7(y) =
1
Ey [T, ]

Proof:(of LEM 23.26) Writing, for k > 1,

k
k __ J4
Ty - ZAy’
(=1
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as a sum of i.i.d. RVs by LEM 23.24, the strong law of large numbers (THM 23.11

and 23.12) then implies that
T’n
- o Ey[T], (7

almost surely as n — 4-o0o. This is not quite what we want. To relate T; and
N, (y) we note that by definition

T;Vn(y) <n< ngVn(y)H’
and we use the sandwiching inequalities

szvn(y) < n - TyNn(y)'f‘l Nn(y)+1
Nu(y) = Nu(y) ~ Nu(y)+1 Ny(y)

By the recurrence of y, we have N, (y) — oo through the non-negative integers
as n — 400, almost surely. By (7), we get

n
—— = E, [T},
Nn (y) y[ y]
almost surely as n — +o0. Taking inverses concludes the proof. |
Using THM 23.25 (and noting that on {7, < +oo} we have T, /n. — 0 a.s.), we
get the following generalization:

THM 23.27 (Asymptotic frequencies) Assume that y is recurrent. Under any
initial distribution p,

Nn(y) .

n Ey[T; ]

T, < +oo},
almost surely as n — +o0.

2.3 Proof of law of large numbers for MCs
Proof:(of THM 23.23) Fix y € S. Recall the definition of 7, from (1). Let

k
Tk-1

Wii= > f(Xm).

_ k-1
m=1Ty

Because W]’f is a function of V*, THM 23.25 along with irreducibility and recur-
rence implies:
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LEM 23.28 Under any initial distribution p, the RVs {Wf,k: > 2} are iid.
Moreover EH]W]’?] < +o0.

Proof: To prove the second claim, we note that
k k
E,[WH| < E, W,

For v = (0, xg,...,x5_1) € V, define

5—1
IFlw) = ) |f(@m
m=0
THM 23.25 also implies that
EfWh= 3 BV =d|F|().

v=(8,20,...,25—1)EV

Using vy, THM 23.8 and 23.10, we can re-write this as

> Py[V! =] |F|(v)

’U:(67$07---7I5—1)6V

6—1
= Yoo BWVI=9 Y If) Y Ham =z}
m=0

v=(8,x0,...,L5—1)EV z€S
5—1
=Y 1f(2)l > Py V' =] > L{am =z}
z€S v=(8,20,...,x5_1)EV m=0
= Z | f(2)[ vy (2)
z€S
=E,[T;] Z |f(2)|m(2) < +o0,
z€S
by assumption. [ |

Hence, by the strong law of large numbers (and repeating the calculation in the
proof of the lemma above with f rather | f|), we have almost surely (once n is large
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enough that N,,(y) > 2)

. T;V”(y)—l
AR mZ:l f(Xm)
1 Ty—1 . TN _q
—Nn(y)_lglﬂxmwwy)_l > f(Xm)

= m=T}
= By[T,7] Y f(2)m(2),
z€S
as n — —+o00, where we used that the first term on the second line converges to 0.
By THM 23.27, we then get:

LEM 23.29 We have
TNTL (y) —1

1 Y
SO ) Y fE) (),
m=1 zZ€S
almost surely, as n — +o0.
This is still not what we want because the sum above stops at m = TyN "W _q,
To argue that we can go all the way to n without affecting the limit, we appeal to
the following technical observation.

LEM 23.30 LetY1,Ys, ... be iid. RVs such that E[Y;"] < 4-occ. Then

1
— max Y; — 0,
n 1<i<n

almost surely.

Proof: For any € > 0, by the integrability assumption
ZP[YJ > en| < +o0,
n>1

so by BCI there is N (random) large enough so that Y, < em for all m > N.
Hence forn > N

1 1 em
—max V; <[ — max Y, |V max —
n 1<i<n n 1<m<N N+1<m<n n

1
< ( max Yl> Ve
n 1<i<KN

— &,
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as n — 400, almost surely. Since € > 0 is arbitrary, we have shown that

_ 1
limsup — max Y; <0,
n N 1<i<n

almost surely. On the other hand,

1 1
liminf — max Y; > liminf —Y; = 0,
n  ni1<i<n noon

with probability one. ]
We then note that, since Ny, (y) < n,

TNn(y)—l

m=1

(]
=
£

< — max VV(}‘,
n 2<k<n+1

which tends to 0 almost surely by LEM 23.30. (Note that we use a maximum over
the first n excursion sums because the behavior of the “completed last excursion”
before time n is in itself not straightforward to characterize.)

The proof is then concluded by LEM 23.29. ]
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