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1 Independence

1.1 Definition of independence

Let (Ω,F ,P) be a probability space.

DEF 2.1 (Independence) Sub-σ-algebras G1,G2, . . . of F are independent for all
Gi ∈ Gi, i ≥ 1, and distinct i1, . . . , in we have

P[Gi1 ∩ · · · ∩Gin ] =

n∏
j=1

P[Gij ].

Specializing to events and random variables:

DEF 2.2 (Independent RVs) RVs X1, X2, . . . are independent if the σ-algebras
σ(X1), σ(X2), . . . are independent.

DEF 2.3 (Independent Events) EventsE1, E2, . . . are independent if the σ-algebras

Ei = {∅, Ei, E
c
i ,Ω}, i ≥ 1,

are independent.

The more familiar definitions are the following:

THM 2.4 (Independent RVs: Familiar definition) RVs X , Y are independent if
and only if for all x, y ∈ R

P[X ≤ x, Y ≤ y] = P[X ≤ x]P[Y ≤ y].

THM 2.5 (Independent events: Familiar definition) EventsE1,E2 are indepen-
dent if and only if

P[E1 ∩ E2] = P[E1]P[E2].
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The proofs of these characterizations follows immediately from the following lemma.

LEM 2.6 (Independence and π-systems) Suppose that G andH are sub-σ-algebras
and that I and J are π-systems such that

σ(I) = G, σ(J ) = H.

Then G andH are independent if and only if I and J are, i.e.,

P[I ∩ J ] = P[I]P[J ], ∀I ∈ I, J ∈ J .

Proof: Suppose I and J are independent. For fixed I ∈ I, the measures P[I ∩H]
and P[I]P[H] are equal for H ∈ J and have total mass P[I] < +∞. By the
Uniqueness lemma the above measures agree on σ(J ) = H.

Repeat the argument. Fix H ∈ H. Then the measures P[G∩H] and P[G]P[H]
agree on I and have total mass P[H] < +∞. Therefore they must agree on σ(I) =
G.

1.2 Construction of independent sequences

We give a standard construction of an infinite sequence of independent RVs with
prescribed distributions.

Let (Ω,F ,P) = ([0, 1],B[0, 1], λ) and for ω ∈ Ω consider the binary expan-
sion

ω = 0.ω1ω2 . . . .

(For dyadic rationals, use the all-1 ending and note that the dyadic rationals have
measure 0 by countability.) This construction produces a sequence of independent
Bernoulli trials. Indeed, under λ, each bit is Bernoulli(1/2) and any finite collec-
tion is independent.

To get two independent uniform RVs, consider the following construction:

U1 = 0.ω1ω3ω5 . . .

U2 = 0.ω2ω4ω6 . . .

Let A1 (resp. A2) be the π-system consisting of all finite intersections of events of
the form {ωi ∈ H} for odd i (resp. even i). By Lemma 2.6, the σ-fields σ(A1)
and σ(A2) are independent.

More generally, let

V1 = 0.ω1ω3ω6 . . .

V2 = 0.ω2ω5ω9 . . .

V3 = 0.ω4ω8ω13 . . .
... =

. . .
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i.e., fill up the array diagonally. By the argument above, the Vi’s are independent
and Bernoulli(1/2).

Finally let µn, n ≥ 1, be a sequence of probability distributions with distribu-
tion functions Fn, n ≥ 1. For each n, define

Xn(ω) = inf{x : Fn(x) ≥ Vn(ω)}

By the Skorokhod Representation result from the previous lecture, Xn has distri-
bution function Fn and:

DEF 2.7 (IID Rvs) A sequence of independent RVs (Xn)n as above is indepen-
dent and identically distributed (IID) if Fn = F for some n.

Alternatively, we have the following more general result.

THM 2.8 (Kolmogorov’s extension theorem) Suppose we are given probability
measures µn on (Rn,B(Rn)) that are consistent, i.e.,

µn+1((a1, b1]× · · · × (an, bn]× R) = µn((a1, b1]× · · · × (an, bn]).

Then there exists a unique probability measure P on (RN,RN) with

P[ω : ωi ∈ (ai, bi], 1 ≤ i ≤ n] = µn((a1, b1]× · · · × (an, bn]).

HereRN is the product σ-algebra, i.e., the σ-algebra generated by finite-dimensional
rectangles.

1.3 Kolmogorov’s 0-1 law

In this section, we discuss a first non-trivial result about independent sequences.

DEF 2.9 (Tail σ-algebra) Let X1, X2, . . . be RVs on (Ω,F ,P). Define

Tn = σ(Xn+1, Xn+2, . . .), T =
⋂
n≥1
Tn.

As an intersection of σ-algebras, T is a σ-algebra. It is called the tail σ-algebra of
the sequence (Xn)n.

Intuitively, an event is in the tail if changing a finite number of values does not
affect its occurence.
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EX 2.10 If Sn =
∑

k≤nXk, then

{lim
n
Sn exists} ∈ T ,

{lim sup
n

n−1Sn > 0} ∈ T ,

but
{lim sup

n
Sn > 0} /∈ T .

THM 2.11 (Kolmogorov’s 0-1 law) Let (Xn)n be a sequence of independent RVs
with tail σ-algebra T . Then T is P-trivial, i.e., for all A ∈ T we have P[A] = 0
or 1.

Proof: Let Xn = σ(X1, . . . , Xn). Note that Xn and Tn are independent. More-
over, since T ⊆ Tn we have that Xn is independent of T . Now let

X∞ = σ(Xn, n ≥ 1).

Note that
K∞ =

⋃
n≥1
Xn,

is a π-system generating X∞. Therefore, by Lemma 2.6, X∞ is independent of T .
But T ⊆ X∞ and therefore T is independent of itself! Hence if A ∈ T ,

P[A] = P[A ∩A] = P[A]2,

which can occur only if P[A] ∈ {0, 1}.

2 Integration and Expectation

2.1 Construction of the integral

Let (S,Σ, µ) be a measure space. We denote by 1A the indicator of A, i.e.,

1A(s) =

{
1, if s ∈ A
0, o.w.

DEF 2.12 (Simple functions) A simple function is a function of the form

f =
m∑
k=1

ak1Ak
,
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where ak ∈ [0,+∞] and Ak ∈ Σ for all k. We denote the set of all such functions
by SF+. We define the integral of f by

µ(f) =
m∑
k=1

akµ(Ak) ≤ +∞.

The following is (somewhat tedious but) immediate. (Exercise.)

PROP 2.13 (Properties of simple functions) Let f, g ∈ SF+.

1. If µ(f 6= g) = 0, then µ(f) = µ(g). (Hint: Rewrite f and g over the same
disjoint sets.)

2. For all c ≥ 0, f + g, cf ∈ SF+ and

µ(f + g) = µ(f) + µ(g), µ(cf) = cµ(f).

(Hint: This one is obvious by definition.)

3. If f ≤ g then µ(f) ≤ µ(g). (Hint: Show that g−f ∈ SF+ and use linearity.)

The main definition and theorem of integration theory follows.

DEF 2.14 (Non-negative functions) Let f ∈ (mΣ)+. Then the integral of f is
defined by

µ(f) = sup{µ(h) : h ∈ SF+, h ≤ f}.

THM 2.15 (Monotone convergence theorem) If fn ∈ (mΣ)+, n ≥ 1, with fn ↑
f then

µ(fn) ↑ µ(f).

Many theorems in integration follow from the monotone convergence theorem. In
that context, the following approximation is useful.

DEF 2.16 (Staircase function) For f ∈ (mΣ)+ and r ≥ 1, the r-th staircase
function α(r) is

α(r)(x) =


0, if x = 0,
(i− 1)2−r, if (i− 1)2−r < x ≤ i2−r ≤ r,
r, if x > r,

We let f (r) = α(r)(f). Note that f (r) ∈ SF+ and f (r) ↑ f .
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Using the previous definition, we get for example the following properties. (Exer-
cise.)

PROP 2.17 (Properties of non-negative functions) Let f, g ∈ (mΣ)+.

1. If µ(f 6= g) = 0, then µ(f) = µ(g).

2. For all c ≥ 0, f + g, cf ∈ (mΣ)+ and

µ(f + g) = µ(f) + µ(g), µ(cf) = cµ(f).

3. If f ≤ g then µ(f) ≤ µ(g).

2.2 Definition and properties of expectations

We can now define expectations. Let (Ω,F ,P) be a probability space. For a func-
tion f , let f+ and f− be the positive and negative parts of f , i.e.,

f+(s) = max{f(s), 0}, f−(s) = max{−f(s), 0}.

DEF 2.18 (Expectation) If X ≥ 0 is a RV then we define the expectation of X ,
E[X], as the integral of X over P. In general, if

E|X| = E[X+] + E[X−] < +∞,

we let
E[X] = E[X+]− E[X−].

We denote the set of all such RVs by L1(Ω,F ,P).

The monotone-convergence theorem implies the following results. (Exercise.) We
first need a definition.

DEF 2.19 (Convergence almost sure) We say that Xn → X almost surely (a.s.)
if

P[Xn → X] = 1.

PROP 2.20 Let X,Y,Xn, n ≥ 1, be RVs on (Ω,F ,P).

1. (MON) If 0 ≤ Xn ↑ X , then E[Xn] ↑ E[X] ≤ +∞.

2. (FATOU) If Xn ≥ 0, then E[lim infnXn] ≤ lim infn E[Xn].
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3. (DOM) If |Xn| ≤ Y , n ≥ 1, with E[Y ] < +∞ and Xn → X a.s., then

E|Xn −X| → 0,

and, hence,
E[Xn]→ E[X].

(Indeed,

|E[Xn]− E[X]| = |E[Xn −X]|
= |E[(Xn −X)+]− E[(Xn −X)−]|
≤ E[(Xn −X)+] + E[(Xn −X)−]

= E|Xn −X|.)

4. (SCHEFFE) If Xn → X a.s. and E|Xn| → E|X| then

E|Xn −X| → 0.

5. (BDD) If Xn → X a.s. and |Xn| ≤ K < +∞ for all n then

E|Xn −X| → 0.

Proof: We only prove (FATOU). To use (MON) we write the lim inf as an increas-
ing limit. Letting Zk = infn≥kXn, we have

lim inf
n
Xn =↑ lim

k
Zk,

so that by (MON)
E[lim inf

n
Xn] =↑ lim

k
E[Zk].

For n ≥ k we have Xn ≥ Zk so that E[Xn] ≥ E[Zk] hence

E[Zk] ≤ inf
n≥k

E[Xn].

Hence
E[lim inf

n
Xn] ≤↑ lim

k
inf
n≥k

E[Xn].

The following results are well-known.

DEF 2.21 (Space L2) We denote the set of all RVs X with E[X2] < +∞ by
L2(Ω,F ,P).
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THM 2.22 (Cauchy-Schwarz inequality) If X,Y ∈ L2 and XY ∈ L1 then

E|XY | ≤
√
E[X2]E[Y 2].

THM 2.23 (Jensen’s inequality) Let h : G → R be a convex function on an
open interval G such that P[X ∈ G] = 1 and X,h(X) ∈ L1(Ω,F ,P) then

E[h(X)] ≥ h(E[X]).

2.3 Computing expected values

The following result is useful for computing expectations.

THM 2.24 (Change-of-variables formula) Let X be a RV with law L. If f :
R→ R is such that f ≥ 0 or E|f(X)| < +∞ then

E[f(X)] =

∫
R
f(y)L(dy).

Proof: We use the standard machinery.

1. For f = 1B with B ∈ B,

E[1B(X)] = L(B) =

∫
R
1B(y)L(dy).

2. If f =
∑m

k=1 ak1Ak
is a simple function, then by (LIN)

E[f(X)] =

m∑
k=1

akE[1Ak
(X)] =

m∑
k=1

ak

∫
R
1Ak

(y)L(dy) =

∫
R
f(y)L(dy).

3. Let f ≥ 0 and approximate f by a sequence {fn} of increasing simple
functions. By (MON)

E[f(X)] = lim
n

E[fn(X)] = lim
n

∫
R
fn(y)L(dy) =

∫
R
f(y)L(dy).

4. Finally, assume that f is such that E|f(X)| < +∞. Then by (LIN)

E[f(X)] = E[f+(X)]− E[f−(X)]

=

∫
R
f+(y)L(dy)−

∫
R
f−(y)L(dy)

=

∫
R
f(y)L(dy).
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2.4 Fubini’s theorem

DEF 2.25 (Product measure) Let (S1,Σ1) and (S2,Σ2) be measure spaces. Let
S = S1×S2 be the Cartesian product of S1 and S2. For i = 1, 2, let πi : S → Si
be the projection on the i-th coordinate, i.e.,

πi(s1, s2) = si.

The product σ-algebra Σ = Σ1 × Σ2 is defined as

Σ = σ(π1, π2),

i.e., it is the smallest σ-algebra that makes coordinate maps measurable. It is
generated by sets of the form

π−11 (B1) = B1 × S2, π−12 (B2) = S1 ×B2, B1 ∈ Σ1, B2 ∈ Σ2.

We now define the product measure and state the celebrated Fubini’s theorem. (A
proof is sketched in the appendix below.)

THM 2.26 (Fubini’s theorem) For F ∈ Σ, let f = 1F and define

µ(F ) ≡
∫
S1

If1 (s1)µ1(ds1) =

∫
S2

If2 (s2)µ2(ds2),

where

If1 (s1) ≡
∫
S2

f(s1, s2)µ2(ds2) ∈ bΣ1, If2 (s2) ≡
∫
S1

f(s1, s2)µ1(ds1) ∈ bΣ2.

(The equality and inclusions above are part of the statement.) The set function
µ is a measure on (S,Σ) called the product measure of µ1 and µ2 and we write
µ = µ1 × µ2 and

(S,Σ, µ) = (S1,Σ1, µ1)× (S2,Σ2, µ2).

Moreover µ is the unique measure on (S,Σ) for which

µ(A1 ×A2) = µ(A1)µ(A2), Ai ∈ Σi.

If f ∈ (mΣ)+ then

µ(f) =

∫
S1

If1 (s1)µ1(ds1) =

∫
S2

If2 (s2)µ2(ds2),

where If1 , If2 are defined as before (i.e., as the sup over bounded functions below).
The same is valid if f ∈ mΣ and µ(|f |) < +∞.
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Some applications of Fubini’s theorem follow.

THM 2.27 Let X and Y be independent RVs with respective laws µ and ν. Let
f and g be measurable functions such that f, g ≥ 0 or E|f(X)|,E|g(Y )| < +∞.
Then

E[f(X)g(Y )] = E[f(X)]E[g(Y )].

Proof: From Fubini’s theorem and the change-of-variables formula,

E[f(X)g(Y )] =

∫
R2

f(x)g(y)(µ× ν)(dx× dy)

=

∫
R

(∫
R
f(x)g(y)µ(dx)

)
ν(dy)

=

∫
R

(g(y)E[f(X)]) ν(dy)

= E[f(X)]E[g(Y )].

DEF 2.28 (Density) Let X be a RV with law µ. We say that X has density fX if
for all B ∈ B(R)

µ(B) = P[X ∈ B] =

∫
B
fX(x)λ(dx).

THM 2.29 (Convolution) LetX and Y be independent RVs with distribution func-
tions F and G. Then the distribution function H of X + Y is

H(z) =

∫
F (z − y)dG(y).

This is called the convolution of F and G. Moreover, if X and Y have densities f
and g, then X + Y has density

h(z) =

∫
f(z − y)g(y)dy.
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Proof: From Fubini’s theorem, denoting the laws of X and Y by µ and ν,

P[X + Y ≤ z] =

∫ ∫
1{x+y≤z}µ(dx)ν(dy)

=

∫
F (z − y)ν(dy)

=

∫
F (z − y)dG(y)

=

∫ (∫ z

−∞
f(x− y)dx

)
dG(y)

=

∫ z

−∞

(∫
f(x− y)dG(y)

)
dx

=

∫ z

−∞

(∫
f(x− y)g(y)dy

)
dx.

Further reading

More background on measure theory [Dur10, Appendix A].
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A Proof of Fubini’s Theorem

We need a more powerful variant of the standard machinery used in Theorem 2.24.

THM 2.30 (Monotone-class theorem) LetH be a class of bounded functions from
a set S to R satisfying:

1. H is a vector space over R.

2. The constant 1 is an element ofH.
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3. If (fn)n is a sequence of non-negative functions inH such that fn ↑ f where
f is a bounded function on S, then f ∈ H.

Then if H contains the indicator function of every set in some π-system I, then H
contains every bounded σ(I)-measurable function on S.

The proof is omitted.
We begin with two lemmas (which are proved below).

LEM 2.31 Let H denote the class of functions f : S → R which are in bΣ and
are such that

1. for each s1 ∈ S1, the map s2 7→ f(s1, s2) is Σ2-measurable on S2,

2. for each s2 ∈ S2, the map s1 7→ f(s1, s2) is Σ1-measurable on S1.

ThenH = bΣ.

Then define, for f ∈ bΣ,

If1 (s1) =

∫
S2

f(s1, s2)µ2(ds2), If2 (s2) =

∫
S1

f(s1, s2)µ1(ds1).

LEM 2.32 Let H′ be the class of elements in bΣ such that the following property
holds:

1. If1 ∈ bΣ1 and If2 ∈ bΣ2,

2. we have ∫
S1

If1 (s1)µ1(ds1) =

∫
S2

If2 (s2)µ2(ds2).

ThenH′ = bΣ.

We are now ready to prove the two lemmas above.
Proof: We begin with the first lemma. Let

I = {B1 ×B2 : Bi ∈ Σi}

be a π-system generating Σ. Note that ifA ∈ I then 1A ∈ H since, for fixed s1, 1A
reduces to an indicator on S2. The assumptions of the Monotone-class theorem are
satisfied by the standard properties of measurable functions. (Note that, for fixed
s1, a sum of measurable functions is measurable, and so is the limit.) Therefore,
H = bΣ.
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The second lemma follows in the same way. Note that for A = A1 × A2 ∈ I
and f = 1A

If1 (s1) = µ2(A2)1A1(s1),

∫
S1

If1 (s1)µ1(ds1) = µ2(A2)µ1(A1),

and similarly interchanging 1 and 2. The assumptions of the Monotone-class theo-
rem are satisfied by (LIN) and (MON). That concludes the proof.

Finally, we obtain Fubini’s theorem.

THM 2.33 (Fubini’s theorem) For F ∈ Σ, let f = 1F and define

µ(F ) ≡
∫
S1

If1 (s1)µ1(ds1) =

∫
S2

If2 (s2)µ2(ds2),

where

If1 (s1) ≡
∫
S2

f(s1, s2)µ2(ds2) ∈ bΣ1, If2 (s2) ≡
∫
S1

f(s1, s2)µ1(ds1) ∈ bΣ2.

(The equality and inclusions above are part of the statement.) The set function
µ is a measure on (S,Σ) called the product measure of µ1 and µ2 and we write
µ = µ1 × µ2 and

(S,Σ, µ) = (S1,Σ1, µ1)× (S2,Σ2, µ2).

Moreover µ is the unique measure on (S,Σ) for which

µ(A1 ×A2) = µ(A1)µ(A2), Ai ∈ Σi.

If f ∈ (mΣ)+ then

µ(f) =

∫
S1

If1 (s1)µ1(ds1) =

∫
S2

If2 (s2)µ2(ds2),

where If1 , If2 are defined as before (i.e., as the sup over bounded functions below).
The same is valid if f ∈ mΣ and µ(|f |) < +∞.

Proof: The fact that µ is a measure follows from (LIN) and (MON). The unique-
ness follows from the Uniqueness lemma. The second follows from the previous
lemma, the staircase approximation and (MON).


