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Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Wil91, Chapters 4-6, 8], [Durl0, Sections 1.4-1.7, 2.1].

1 Independence

1.1 Definition of independence
Let (2, F,P) be a probability space.

DEF 2.1 (Independence) Sub-o-algebras G1,Ga, ... of F are independent for all
G; € G;, 1 > 1, and distinct i1, . . . , i, we have

P[Gil n---N Gzn] = ﬁ P[GZ]]

J=1
Specializing to events and random variables:

DEF 2.2 (Independent RVs) RVs X, X5, ... are independent if the o-algebras
0(X1),0(X2), ... are independent.

DEF 2.3 (Independent Events) Events E1, Es, ... are independent if the o-algebras
EZ:{®7E17E7,07Q}7 12 17
are independent.

The more familiar definitions are the following:

THM 2.4 (Independent RVs: Familiar definition) RVs X, Y are independent if
and only if forall z,y € R

PX <z,Y <y] =PX <z|P[Y <y

THM 2.5 (Independent events: Familiar definition) Events F1, Fo are indepen-
dent if and only if
]P)[El N Eg] = P[El]P[EQ]
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The proofs of these characterizations follows immediately from the following lemma.

LEM 2.6 (Independence and w-systems) Suppose that G and H are sub-o-algebras
and that T and J are m-systems such that

oZ)=6G, o(J)="H.
Then G and ‘H are independent if and only if T and J are, i.e.,
PINJ]=PIPJ], VIe€Z,JeJ.

Proof: Suppose Z and 7 are independent. For fixed I € Z, the measures P[I N H]|
and P[I|P[H]| are equal for H € J and have total mass P[] < +oo. By the
Uniqueness lemma the above measures agree on o(7) = H.

Repeat the argument. Fix H € #. Then the measures P[G N H| and P[G|P[H
agree on Z and have total mass P[H| < +oo. Therefore they must agree on o(Z) =

g.

1.2 Construction of independent sequences

We give a standard construction of an infinite sequence of independent RVs with
prescribed distributions.

Let (2, F,P) = ([0,1],B[0, 1], A) and for w € € consider the binary expan-
sion

w=0wwsy....

(For dyadic rationals, use the all-1 ending and note that the dyadic rationals have
measure 0 by countability.) This construction produces a sequence of independent
Bernoulli trials. Indeed, under A, each bit is Bernoulli(1/2) and any finite collec-
tion is independent.

To get two independent uniform RVs, consider the following construction:

U1 = 0.0)10)3(,05 PN

U2 = O.WQW4(U6 e
Let A; (resp. A3) be the m-system consisting of all finite intersections of events of
the form {w; € H} for odd i (resp. even 7). By Lemma 2.6, the o-fields (A1)
and o(.A3) are independent.

More generally, let
V1 = O.W1W3w6 ce
V2 = 0.(.02(.4.15(,09 PN

Vzg = 0~W4W8W13 NN
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i.e., fill up the array diagonally. By the argument above, the V;’s are independent
and Bernoulli(1/2).

Finally let u1,,, n > 1, be a sequence of probability distributions with distribu-
tion functions F},, n > 1. For each n, define

Xp(w) =inf{z : F(zx) > V,(w)}

By the Skorokhod Representation result from the previous lecture, X, has distri-
bution function F;, and:

DEF 2.7 (IID Rvs) A sequence of independent RVs (X,,)n, as above is indepen-
dent and identically distributed (IID) if F,, = F for some n.

Alternatively, we have the following more general result.

THM 2.8 (Kolmogorov’s extension theorem) Suppose we are given probability
measures iy, on (R, B(R™)) that are consistent, i.e.,

fint1((ar, b1] x -+ x (an, bp] X R) = pp((a1,b1] X - X (an, bn)).
Then there exists a unique probability measure P on (RN, RN) with
Plw : w; € (ai,bi],1 <i<n]=p,((a1,b1] x -+ x (an,by)).
Here RN is the product o-algebra, i.e., the o-algebra generated by finite-dimensional
rectangles.
1.3 Kolmogorov’s 0-1 law
In this section, we discuss a first non-trivial result about independent sequences.

DEF 2.9 (Tail o-algebra) Let X1, Xo, ... be RVs on (Q, F,P). Define

T =0(Xni1, Xnia,..), T=[)Tn

n>1

As an intersection of o-algebras, T is a o-algebra. It is called the tail o-algebra of
the sequence (X,,)n.

Intuitively, an event is in the tail if changing a finite number of values does not
affect its occurence.
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EX2.10 If S, = Zkgn Xy, then

{lim S,, exists} € T,

{limsupn~18, >0} € T,
but
{limsup S, >0} ¢ T.

THM 2.11 (Kolmogorov’s 0-1 law) Let (X,,),, be a sequence of independent RVs
with tail o-algebra T. Then T is P-trivial, i.e., for all A € T we have P[A] = 0
or 1.

Proof: Let X, = o(X1,...,X,). Note that X, and 7,, are independent. More-
over, since 7 C 7T, we have that &, is independent of 7. Now let

Xoo = 0(Xp,n > 1).
Note that
}Coo = U Xn)

n>1

is a m-system generating X. Therefore, by Lemma 2.6, X, is independent of 7.
But 7 C X and therefore T is independent of itself! Hence if A € T,

P[A] = P[AN A] = P[A]?,

which can occur only if P[A] € {0, 1}. ]

2 Integration and Expectation

2.1 Construction of the integral

Let (S, X, 1) be a measure space. We denote by 1 4 the indicator of A, i.e.,

1, ifse A
ILA(S)Z{

0, o.w.

DEF 2.12 (Simple functions) A simple function is a function of the form

m
F=) akla,
k=1
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where ay, € [0, 400] and Ay, € X for all k. We denote the set of all such functions
by SF. We define the integral of f by

p(f) = arp(Ar) < +oo.
k=1

The following is (somewhat tedious but) immediate. (Exercise.)
PROP 2.13 (Properties of simple functions) Let f,g € SF™.

1. If u(f # g) = 0, then u(f) = pu(g). (Hint: Rewrite f and g over the same
disjoint sets.)

2. Forallc >0, f +g,cf € SF' and

p(f +9) =p(f) +ulg), wlef)=cul(f).

(Hint: This one is obvious by definition.)
3. Iff < gthenu(f) < u(g). (Hint: Show that g— f € SFT and use linearity.)
The main definition and theorem of integration theory follows.

DEF 2.14 (Non-negative functions) Let f € (mX)". Then the integral of f is
defined by

p(f) = sup{u(h) : h € SF*, h < f}.

THM 2.15 (Monotone convergence theorem) If f,, € (mX)*, n > 1, with f, 1
f then

p(fn) T u(f)-

Many theorems in integration follow from the monotone convergence theorem. In
that context, the following approximation is useful.

DEF 2.16 (Staircase function) For f € (mX)" and r > 1, the r-th staircase
function o) is

07 l:f£ - 0)
a(z) =3 (i—1)27", if(i—-1)27 <z <i2T <
r? l.fx > ’r)

We let f() = o")(f). Note that f") € SF* and () 1 f.
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Using the previous definition, we get for example the following properties. (Exer-
cise.)

PROP 2.17 (Properties of non-negative functions) Let f,g € (mX)™.

L Ifp(f # g) =0, then p(f) = p(g).
2. Foralle >0, f +g,cf € (mX)t and

p(f +9) = p(f) +ulg), wulef)=cu(f).

3. If f < g then pu(f) < pu(g).

2.2 Definition and properties of expectations

We can now define expectations. Let (2, F,P) be a probability space. For a func-
tion f, let T and f~ be the positive and negative parts of f, i.e.,

fT(s) = max{f(s),0}, f~(s) =max{—[(s),0}.

DEF 2.18 (Expectation) If X > 0 is a RV then we define the expectation of X,
E[X], as the integral of X over P. In general, if

E|X|=E[X"]+E[X "] < 4o,

we let
E[X]=E[XT] - E[X].

We denote the set of all such RVs by L1 (Q, F,P).

The monotone-convergence theorem implies the following results. (Exercise.) We
first need a definition.

DEF 2.19 (Convergence almost sure) We say that X,, — X almost surely (a.s.)

if
P[X, — X] = 1.

PROP 2.20 Let X,Y, X,,, n > 1, be RVs on (2, F,P).
1. (MON)If0 < X, 1 X, then E[X,,] T E[X] < 4oc.

2. (FATOU) If X,, > 0, then E[lim inf,, X,,] < liminf, E[X,,].
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3. (DOM) If | X,| <Y, n > 1, withE[Y] < +o0 and X,, — X a.s., then

E| X, — X| — 0,
and, hence,
E[X,] — E[X].
(Indeed,
|E[X,] —E[X]] = [E[X, - X]|

= [E[(Xs — X)¥] - E[(X, — X)7]
< E[(Xn — X)T]+E[(Xn — X)7]
= E|X, - X|)

A

4. (SCHEFFE) If X,, — X a.s. and E|X,,| — E|X| then

E|X, — X| — 0.

5. (BDD) If X, — X a.s. and | X,| < K < +o0 for all n then

E|X, — X| = 0.

Proof: We only prove (FATOU). To use (MON) we write the lim inf as an increas-
ing limit. Letting Z;, = inf, > X,,, we have

liminf X,, =1 lim Z;,
n k

so that by (MON)
E[liminf X,,] =1 li}lgrlE[Zk].

For n > k we have X,, > Zj, so that E[X,,] > E[Z] hence

<i .
E[Zy] < Inf B[X,]

Hence

E[liminf X,,] <1 lim inf E[X,,].
n k n>k

The following results are well-known.

DEF 2.21 (Space £?) We denote the set of all RVs X with E[X?] < +oo by
L£2(Q, F,P).
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THM 2.22 (Cauchy-Schwarz inequality) If X,Y € £2 and XY € L' then

E/XY| < EXZE[Y2.

THM 2.23 (Jensen’s inequality) Let b : G — R be a convex function on an
open interval G such that P[X € G] = 1 and X, h(X) € LY(Q, F,P) then

E[r(X)] = h(E[X]).

2.3 Computing expected values

The following result is useful for computing expectations.

THM 2.24 (Change-of-variables formula) Let X be a RV with law L. If f :
R — Ris such that f > 0 or E|f(X)| < +o0 then

E[f(X)] = /R F(y)L(dy).

Proof: We use the standard machinery.

1. For f = 15 with B € B,
BlLo(X)] = £(8) = [ 1a()£().
2. If f =3, arly, is a simple function, then by (LIN)

E[f(X)] = ;akE[ﬂAk(X)] = ;ak/RﬂAk(y)E(dy) = /Rf(y)ﬁ(dy)‘

3. Let f > 0 and approximate f by a sequence {f,} of increasing simple
functions. By (MON)

BL(X)] = B (0] = lim [ ) = [ F@)e)

4. Finally, assume that f is such that E| f(X)| < 4o00. Then by (LIN)
E[f(X)]

E[fT(X)] - E[f~(X)]
- / ()L (dy) — / f(y)L(dy)
R R

— / F(w)L(dy).
R
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2.4 Fubini’s theorem

DEF 2.25 (Product measure) Let (S1,31) and (S2, X2) be measure spaces. Let
S = 51 X Sy be the Cartesian product of S1 and Ss. Fori = 1,2, letm; : S — S;
be the projection on the i-th coordinate, i.e.,

Ti(s1,52) = ;.
The product o-algebra > = 331 X Y is defined as
Y =o(m,m),

i.e., it is the smallest o-algebra that makes coordinate maps measurable. It is
generated by sets of the form

71 (B1) = By x Sa, m, (B2) =51 x By, By €X1,By€ Y.
We now define the product measure and state the celebrated Fubini’s theorem. (A
proof is sketched in the appendix below.)
THM 2.26 (Fubini’s theorem) For F' € ¥, let f = 1 and define
u(B) = [ Hsm(as) = [ Hlsua(ds),
S1 52

where

I{(sl) = g f(s1,82)u2(dsa) € b3y, 15(32) = i f(s1,82)u1(ds1) € bXo.
2 1

(The equality and inclusions above are part of the statement.) The set function
 is a measure on (S,%) called the product measure of p1 and pe and we write

p=pa X po and

(8,3, 1) = (S1, 21, 1) x (S2, X2, p2).-
Moreover L is the unique measure on (S, X) for which

p(Ar x Az) = p(Ar)pu(Az),  Ai € 3.

If f € (mX)" then
u(f) = /S I (1) (dsy) = /S 1 (s2)ua(dsa),

where I { , L { are defined as before (i.e., as the sup over bounded functions below ).
The same is valid if f € m¥. and u(|f|) < +oc.
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Some applications of Fubini’s theorem follow.

THM 2.27 Let X and Y be independent RVs with respective laws p and v. Let
f and g be measurable functions such that f,g > 0 or E|f(X)|,E|g(Y)| < 4o0.
Then

E[f(X)g(Y)] = E[f(X)]E[g(Y)].

Proof: From Fubini’s theorem and the change-of-variables formula,

B0 = [ o) xv)ida x )

= [ ([ s@stntan) ) viay

_ AgmmMﬂxmvmw
— E[f(OE()].
||

DEF 2.28 (Density) Let X be a RV with law u. We say that X has density fx if
forall B € B(R)

1(B) = P[X ¢ B] /B Fx()A(d).

THM 2.29 (Convolution) Let X andY be independent RVs with distribution func-
tions I and G. Then the distribution function H of X + Y is

H@w:/Fu—ymcw»

This is called the convolution of F' and G. Moreover, if X and Y have densities f
and g, then X +'Y has density

h@%:/f&—ymwﬂy
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Proof: From Fubini’s theorem, denoting the laws of X and Y by u and v,

Px+y <o) = [ [1peutovay
— [Pl gy
~ [ FG-pacw

= ([ tte-vr) dew
- /. ( JECE y)dG@)) a
B /—oo </ fle = @/)g(y)dy) da.

Further reading

More background on measure theory [Durl0, Appendix A].
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A Proof of Fubini’s Theorem

We need a more powerful variant of the standard machinery used in Theorem 2.24.

THM 2.30 (Monotone-class theorem) Let H be a class of bounded functions from
a set S to R satisfying:

1. H is a vector space over R.

2. The constant 1 is an element of H.
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3. If (fu)n is a sequence of non-negative functions in H such that f,, T f where
f is a bounded function on S, then f € H.

Then if H contains the indicator function of every set in some m-system 1L, then H
contains every bounded o (I)-measurable function on S.

The proof is omitted.
We begin with two lemmas (which are proved below).

LEM 2.31 Let H denote the class of functions f : S — R which are in bX and
are such that

1. foreach sy € Sy, the map so — f(s1,82) is Xo-measurable on Ss,
2. for each sy € S, the map s1 — f(s1, s2) is ¥1-measurable on S.
Then H = b3..

Then define, for f € b,
H(s1)= [ f(s1,82)pa(ds2), I3 (s2) = / f(s1,s2)p1(dsy).
SQ Sl

LEM 2.32 Let H' be the class of elements in b such that the following property
holds:

1. If €ebxy and I € bx,,

2. we have

[ Hsnmias) = [ Hisusas).
St

Sa
Then H' = bX.

We are now ready to prove the two lemmas above.
Proof: We begin with the first lemma. Let

I:{Bl><BQZBiEEi}

be a m-system generating Y. Note thatif A € Z then 14 € H since, for fixed s1, 1 4
reduces to an indicator on Sy. The assumptions of the Monotone-class theorem are
satisfied by the standard properties of measurable functions. (Note that, for fixed
s1, a sum of measurable functions is measurable, and so is the limit.) Therefore,
H = DbX.
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The second lemma follows in the same way. Note that for A = A} x Ay € T
and f =14

H (s1) = p2(A2)1a, (1), /S H (s1)pa(ds1) = po(Az)pa (Ar),

and similarly interchanging 1 and 2. The assumptions of the Monotone-class theo-
rem are satisfied by (LIN) and (MON). That concludes the proof. [ |
Finally, we obtain Fubini’s theorem.

THM 2.33 (Fubini’s theorem) For F' € ¥, let f = 1 and define

W(F) = /S I (s1) s (dsy) = / 14 (s2)ua(dsa),

Sa

where

I{(sl) = g f(s1,82)p2(dss) € b¥y, I2f(82) = g f(s1,82)u1(dsy) € b3s.
2 1

(The equality and inclusions above are part of the statement.) The set function
p is a measure on (S, X)) called the product measure of p1 and po and we write

p= p1 X pg and

(S, 1) = (S1, 21, 1) x (S2, B, p2).
Moreover (i is the unique measure on (S, X)) for which

p(Ar x Ag) = p(A1)pu(Az),  A; € %

If f € (mX)" then

u(f)—/s I{(Sl)ul(dsl)—/ I (s2) pa(dso),

Sa

where I { i g are defined as before (i.e., as the sup over bounded functions below).
The same is valid if f € m¥ and p(|f|) < +oo.

Proof: The fact that u is a measure follows from (LIN) and (MON). The unique-
ness follows from the Uniqueness lemma. The second follows from the previous
lemma, the staircase approximation and (MON). |



