
Notes 18 : Optional Sampling Theorem

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Wil91, Chapter 14], [Dur10, Section 5.7].
Recall:

DEF 18.1 (Uniform Integrability) A collection C of RVs on (Ω,F ,P) is uniformly
integrable (UI) if: ∀ε > 0, ∃K > +∞ s.t.

E[|X|; |X| > K] < ε, ∀X ∈ C.

THM 18.2 (Necessary and Sufficient Condition for L1 Convergence) Let {Xn} ∈
L1 and X ∈ L1. Then Xn → X in L1 if and only if the following two conditions
hold:

• Xn → X in probability

• {Xn} is UI

THM 18.3 (Convergence of UI MGs) Let {Mn} be UI MG. Then

Mn →M∞ ∈ F∞ = σ (∪nFn) ,

a.s. and in L1. Moreover,

Mn = E[M∞ | Fn], ∀n.

THM 18.4 (Lévy’s upward theorem) Let Z ∈ L1 and define Mn = E[Z | Fn].
Then {Mn} is a UI MG and

Mn →M∞ = E[Z | F∞],

a.s. and in L1.
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1 Optional Sampling Theorem

1.1 Review: Stopping times

Recall:

DEF 18.5 A random variable T : Ω → Z+ ≡ {0, 1, . . . ,+∞} is called a stop-
ping time if

{T = n} ∈ Fn, ∀n ∈ Z+.

EX 18.6 Let {An} be an adapted process and B ∈ B. Then

T = inf{n ≥ 0 : An ∈ B},

is a stopping time.

LEM 18.7 (Stopping Time Lemma) Let {Mn} be a MG and T be a stopping
time. Then the stopped process {MT∧n} is a MG and in particular

E[MT∧n] = E[M0].

THM 18.8 Let {Mn} be a MG and T be a stopping time. Then MT ∈ L1 and

E[MT ] = E[M0].

if any of the following conditions holds:

1. T is bounded

2. {Mn} is bounded and T is a.s. finite

3. E[T ] < +∞ and {Mn} has bounded increments

4. {Mn} is UI. (This one is new. The proof follows from the Optional Sampling
Theorem below.)

Proof: From the previous theorem, we have

(∗) E[MT∧n −M0] = 0.

1. Take n = N in (∗) where T ≤ N a.s.

2. Take n to +∞ and use (DOM).
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3. Note that

|MT∧n −M0| =

∣∣∣∣∣∣
∑
i≤T∧n

(Mi −Mi−1)

∣∣∣∣∣∣ ≤ KT,
where |Mn −Mn−1| ≤ K a.s. Use (DOM).

DEF 18.9 (FT ) Let T be a stopping time. Denote by FT the set of all events F
such that ∀n ∈ Z+

F ∩ {T = n} ∈ Fn.

1.2 More on the σ-field FT
The following two lemmas help clarify the definition of FT :

LEM 18.10 FT = Fn if T ≡ n, FT = F∞ if T ≡ ∞ and FT ⊆ F∞ for any T .

Proof: In the first case, note F ∩ {T = k} is empty if k 6= n and is F if k = n.
So if F ∈ FT then F = F ∩ {T = n} ∈ Fn and if F ∈ Fn then F = F ∩ {T =
n} ∈ Fn. Moreover ∅ ∈ Fn so we have proved both inclusions. This works also
for n =∞. For the third claim note

F = ∪k∈Z+
F ∩ {T = n} ∈ F∞.

LEM 18.11 If {Xn} is adapted and T is a stopping time then XT ∈ FT (where
we assume that X∞ ∈ F∞, e.g., X∞ = lim infnXn).

Proof: For B ∈ B

{XT ∈ B} ∩ {T = n} = {Xn ∈ B} ∩ {T = n} ∈ Fn.

LEM 18.12 If S, T are stopping times, then S ∧T is a stopping time and FS∧T ⊆
FT .

Proof: We first show that S ∧ T is a stopping time. Note that

{S ∧ T = k} = [{S = k} ∩ {T ≥ k}] ∪ [{S ≥ k} ∩ {T = k}] ∈ Fk,

since all event above are in Fk by the fact that S and T are themselves stopping
times.

For the second claim, let F ∈ FS∧T . Note that

F ∩ {T = n} = ∪k≤n[(F ∩ {S ∧ T = k}) ∩ {T = n}] ∈ Fn.

Indeed, the expression in parenthesis is in Fk ⊆ Fn and {T = n} ∈ Fn.
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1.3 Optional Sampling Theorem (OST)

We show that the MG property extends to stopping times under UI MGs.

THM 18.13 (Optional Sampling Theorem) If {Mn} is a UI MG and S, T are
stopping times with S ≤ T a.s. then E|MT | < +∞ and

E[MT | FS ] = MS .

Proof: Since {Mn} is UI, ∃M∞ ∈ L1 s.t. Mn → M∞ a.s. and in L1. We prove a
more general claim:

LEM 18.14
E[M∞ | FT ] = MT .

Indeed, we then get the theorem by (TOWER) (and (JENSEN) for the integrability
claim).
Proof:(of the lemma) We divide M∞ = M+

∞ −M−∞ ≡ X∞ − Y∞ into positive
and negative parts and write

Mn = E[M∞ | Fn] = E[X∞ | Fn]− E[Y∞ | Fn] ≡ Xn − Yn,

by linearity. We show that E[X∞ | FT ] = XT . The same argument holds for {Yn},
which then implies E[M∞ | FT ] = XT − YT = MT , as claimed.

We have of course that X∞ ≥ 0, and hence Xn = E[X∞ | Fn] ≥ 0 ∀n. Let
F ∈ FT . Then

E[X∞;F ∩ {T =∞}] = E[XT ;F ∩ {T =∞}],

since Xn = E[X∞ | Fn] → X∞ a.s. by Lévy’s Upward Theorem. Therefore it
suffices to show

E[X∞;F ∩ {T < +∞}] = E[XT ;F ∩ {T < +∞}].

In fact, by (MON), it suffices to show∑
i≥0

E[X∞;F ∩ {T = i}] =
∑
i≥0

E[XT ;F ∩ {T = i}].

But note that F ∩ {T = i} ∈ Fi so that

E[XT ;F ∩ {T = i}] = E[Xi;F ∩ {T = i}] = E[X∞;F ∩ {T = i}],

since Xi = E[X∞ | Fi]. That concludes the proof of the stronger claim.
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2 Wald’s identities

Often additional properties of T hold (typically E[T ] < +∞), which can be taken
advantage of by considering instead the MG {MT∧n} in the OST above (noticing
of course that MT∧S = MS and MT∧T = MT whenever S ≤ T a.s.). In that
context, the following is useful.

LEM 18.15 Suppose {Mn} is a MG such that E[ |Mn+1−Mn| | Fn] ≤ B a.s. for
all n. Suppose T is a stopping time with E[T ] < +∞. Then the stoppped MG
{MT∧n} is UI.

Proof: Assume WLOG that M0 = 0, to simplify. Observe first that

|MT∧n| ≤
+∞∑
m=0

|Mm+1 −Mm|1{T>m}, ∀n.

Taking expectations on the RHS (which does not depend on n), we get

+∞∑
m=0

E
[
|Mm+1 −Mm|1{T>m}

]
=

+∞∑
m=0

E
[
|Mm+1 −Mm|1{T>m}

]
=

+∞∑
m=0

E
[
E
[
|Mm+1 −Mm|1{T>m} | Fm

]]
=

+∞∑
m=0

E
[
E [|Mm+1 −Mm| | Fm]1{T>m}

]
≤

+∞∑
m=0

E
[
B1{T>m}

]
≤ B

+∞∑
m=0

P [T > m]

≤ B E[T ] < +∞,

where we used that {T > m} ∈ Fm.

As an application, we recover Wald’s first identity. For X1, X2, . . . ∈ R, let
Sn =

∑n
i=1Xi.

THM 18.16 (Wald’s first identity) LetX1, X2, . . . ∈ L1 be i.i.d. with µ = E[X1]
and let T ∈ L1 be a stopping time. Then

E[ST ] = µE[T ].
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Proof: Recall that Mn = Sn − nµ is a MG. By LEM 18.15 and the assumption
T ∈ L1, the MG {MT∧n} is UI. Indeed

E [|Mn+1 −Mn| | Fn] = E [|Xn+1 − µ| | Fn]

≤ µ+ E|X1| ≡ B < +∞,

by the triangle inequality and the Role of independence lemma. Apply THM 18.8
to {MT∧n}.

We also recall Wald’s second identity. We give a MG-based proof (but argue
about convergence directly rather than using THM 18.8).

THM 18.17 (Wald’s second identity) LetX1, X2, . . . ∈ L2 be i.i.d. with E[X1] =
0 and σ2 = Var[X1] and let T ∈ L1 be a stopping time. Then

E[S2
T ] = σ2E[T ].

Proof: Recall that Mn = S2
n − nσ2 is a MG. Hence so is MT∧n and

0 = E[MT∧n] = E[S2
T∧n − (T ∧ n)σ2] = E[S2

T∧n]− σ2E[T ∧ n]. (1)

We have that E[T ∧ n] ↑ E[T ] as n→ +∞ by (MON).
To argue about the convergence of E[S2

T∧n] we note that, by the assumption
E[X1] = 0, it follows that {Sn} is a MG and hence so is {ST∧n}. The latter is
bounded in L2 since, by (1), we have

E[S2
T∧n] = σ2E[T ∧ n] ≤ σ2E[T ] < +∞,

for all n. Hence ST∧n converges a.s. and in L2 to ST (since T < +∞ a.s. by
assumption). Convergence in L2 also implies convergence of the second moment.
Indeed, by the triangle inequality,

|‖ST∧n‖2 − ‖ST ‖2| ≤ ‖ST∧n − ST ‖2 → 0.

Hence,
0 = E[S2

T∧n]− σ2E[T ∧ n]→ E[S2
T ]− σ2E[T ],

which concludes the proof.
To establish E[T ] < +∞, the following lemma can be used.

LEM 18.18 (Waiting for the inevitable) Let T be a stopping time. Assume there
is N ∈ Z+ and ε > 0 such that for every n

P[T ≤ n+N | Fn] > ε a.s.

then E[T ] < +∞.
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Proof: For any integer m ≥ 1,

P[T > mN |T > (m− 1)N ] ≤ 1− ε,

by assumption. (Indeed, by definition of Z = P[T > n + N | Fn] ≤ 1 − ε with
n = (m− 1)N , we have for F = {T > (m− 1)N} ∈ Fn

P[T > mN ] = E[1{T > n+N};F ] = E[Z;F ] ≤ (1− ε)P[F ],

and apply the definition of the conditional probability.) By the multiplication rule
(i.e., the undergraduate rule P[A1∩ · · · ∩An] =

∏n
i=1 P[Ai |A1∩ · · · ∩Ai−1]) and

the monotonicity of the events {T > mN}, we have P[T > mN ] ≤ (1− ε)m.
We conclude using E[T ] =

∑
k≥1 P[T ≥ k].

3 Application I: Simple RW

DEF 18.19 Simple RW on Z is the process {Sn}n≥0 with S0 = 0 and Sn =∑
k≤nXk where the Xks are iid in {−1,+1} s.t. P[X1 = 1] = 1/2.

THM 18.20 Let {Sn} as above. Let a < 0 < b. Define Tx = inf{n ≥ 0 : Sn =
x} and T = Ta ∧ Tb. Then we have

1.
T < +∞ a.s.

2.
P[Ta < Tb] =

b

b− a

3.
E[T ] = −ab

4.
Ta < +∞ a.s. but E[Ta] = +∞

Proof:

1) Apply the Waiting for the inevitable lemma with N = b − a and ε =
(1/2)b−a (corresponding to moving right b − a times in a row which takes
you to b, no matter where you are within the {a, . . . , b} interval). That shows
E[T ] < +∞, from which the claim holds.



Lecture 18: Optional Sampling Theorem 8

2) By Wald’s first identity, E[ST ] = 0 or

aP[ST = a] + bP[ST = b] = 0,

that is (taking b→∞ in the second expression)

P[Ta < Tb] =
b

b− a
and P[Ta < +∞] ≥ P[Ta < Tb]→ 1.

3) Wald’s second identity says that E[S2
T ] = E[T ] (by σ2 = 1). Also

E[S2
T ] =

b

b− a
a2 +

−a
b− a

b2 = −ab,

so that E[T ] = −ab.

4) Taking b→ +∞ above shows that E[Ta] = +∞ by monotone convergence.
(Note that this case shows that the L1 condition on the stopping time is nec-
essary in Wald’s second identity.)

4 Application II: Biased RW

DEF 18.21 Biased simple RW on Z with parameter 1/2 < p < 1 is the process
{Sn}n≥0 with S0 = 0 and Sn =

∑
k≤nXk where the Xks are iid in {−1,+1} s.t.

P[X1 = 1] = p. Let q = 1− p. Let φ(x) = (q/p)x and ψn(x) = x− (p− q)n.

THM 18.22 Let {Sn} as above. Let a < 0 < b. Define Tx = inf{n ≥ 0 : Sn =
x} and T = Ta ∧ Tb. Then we have

1.
T < +∞ a.s.

2.

P[Ta < Tb] =
φ(0)− φ(b)

φ(a)− φ(b)

3.
P[Ta < +∞] = 1/φ(a) < 1 and P[Tb = +∞] = 0

4.
E[Tb] =

b

2p− 1
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Proof: There are two MGs here:

E[φ(Sn) | Fn−1] = p(q/p)Sn−1+1 + q(q/p)Sn−1−1 = φ(Sn−1),

(noting that |φ(Sn)| ≤ (p/q)n a.s.) and

E[ψn(Sn) | Fn−1] = p[Sn−1+1−(p−q)(n)]+q[Sn−1−1−(p−q)(n)] = ψn−1(Sn−1),

(noting that |ψn(Sn)| ≤ (1 + p)n a.s.)

1) Follows by the same argument as in the unbiased case.

2) Now note that {φ(ST∧n)} is a bounded MG and, therefore, by THM 18.8,
we get

φ(0) = E[φ(ST )] = P[Ta < Tb]φ(a) + P[Ta > Tb]φ(b),

or P[Ta < Tb] = φ(b)−φ(0)
φ(b)−φ(a) (where we used 1)).

3) By 2), taking b → +∞, by monotonicity P[Ta < +∞] = 1
φ(a) < 1 so

Ta = +∞ with positive probability. Similarly take a→ −∞.

4) By LEM 18.7 applied to {Ψn(Sn)},

0 = E[STb∧n − (p− q)(Tb ∧ n)].

(We cannot use Wald’s first identity directly because it is not immediately
clear whether Tb is integrable.) By (MON) and the fact that Tb < +∞
a.s. from 3), E[Tb ∧ n] ↑ E[Tb]. Finally, − infn Sn ≥ 0 a.s. and for x ≥ 0,

P[− inf
n
Sn ≥ x] = P[T−x < +∞] =

(
q

p

)x
,

so that E[− infn Sn] =
∑

x≥1 P[− inft St ≥ x] < +∞. Hence, we can use
(DOM) with |STb∧n| ≤ max{b,− infn Sn} to deduce that

E[Tb] =
E[STb ]

p− q
=

b

2p− 1
.
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