Notes 18 : Optional Sampling Theorem

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Wil91, Chapter 14], [Dur10, Section 5.7].
Recall:

DEF 18.1 (Uniform Integrability) A collectionC of RVs on (2, F,P) is uniformly
integrable (Ul) if: Ve > 0, AK > 400 s.t.

E[|X];|X]| > K] <e, VX eC.

THM 18.2 (Necessary and Sufficient Condition for £' Convergence) Let {X,} €
LY and X € L. Then X,, — X in L' if and only if the following two conditions
hold:

o X,, — X in probability
o {X,}isUI
THM 18.3 (Convergence of UL MGs) Let {M,,} be Ul MG. Then
M, = Mo € Foo = 0 (UnFn)
a.s. and in L*. Moreover,
M, = E[My | Fy], Vn.

THM 18.4 (Lévy’s upward theorem) Let Z € L' and define M,, = E[Z | F,,).
Then {M,} is a Ul MG and

M, — My =E[Z | Fx],

a.s. and in L.
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1 Optional Sampling Theorem

1.1 Review: Stopping times
Recall:

DEF 18.5 A random variable T : Q — Z, = {0,1,...,+0c0} is called a stop-
ping time if B

{T'=n}eF,, VnelZ;.
EX 18.6 Let { A, } be an adapted process and B € B. Then

T =inf{n >0 : A, € B},

is a stopping time.

LEM 18.7 (Stopping Time Lemma) Ler {M,,} be a MG and T be a stopping
time. Then the stopped process { Mpa,} is a MG and in particular

E[M7an] = E[My).
THM 18.8 Let { M, } be a MG and T be a stopping time. Then My € L' and
E[Mr] = E[M)].
if any of the following conditions holds:
1. T is bounded
2. {M,} is bounded and T is a.s. finite
3. E[T] < +o0 and {M,,} has bounded increments

4. {M,} is UL (This one is new. The proof follows from the Optional Sampling
Theorem below.)

Proof: From the previous theorem, we have
(*) E[MT/\n — Mo] = O
1. Take n = N in (x) where 7' < N a.s.

2. Take n to +o0 and use (DOM).
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3. Note that

| Mran — Mo| = Z (M; — M;—1)| < KT,

i<TAn
where |M,, — M,,_1| < K a.s. Use (DOM).

DEF 18.9 (F1) Let T be a stopping time. Denote by Fr the set of all events F
such thatVn € Z
FNn{T =n} € F,.

1.2 More on the o-field Fr

The following two lemmas help clarify the definition of F7:
LEM 1810 Fr = F,if T =n, Fr = Fo if T'= 00 and Fr C F forany T.

Proof: In the first case, note F' N {T" = k} is empty if £ # n and is F' if k = n.
Soif Fe Fpthen F = FN{T =n} € F,andif F € F,then F = FN{T =
n} € F,. Moreover () € F,, so we have proved both inclusions. This works also
for n = oo. For the third claim note

F=Ugz F{T =n} € F.
|

LEM 18.11 If {X,,} is adapted and T is a stopping time then X1 € Fr (where
we assume that X o, € Foo, €.8., Xoo = liminf,, X,,).

Proof: For B € BB
{XreBin{T'=n}={X, e B}n{T =n} e F,.
n

LEM 18.12 If S, T are stopping times, then S \'T is a stopping time and Fsnt C
Fr.

Proof: We first show that S A T is a stopping time. Note that
{SAT=k}=[{S=k}nN{T>k}U[{S >k} n{T = k}] € Fy,

since all event above are in Fj, by the fact that S and T are themselves stopping
times.
For the second claim, let F' € Fg,7. Note that

FNA{T =n} = U< (FN{SAT =k})N{T =n}| € F,.
Indeed, the expression in parenthesis is in Fj, C F,, and {T = n} € F,. ]
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1.3 Optional Sampling Theorem (OST)
We show that the MG property extends to stopping times under Ul MGs.

THM 18.13 (Optional Sampling Theorem) If {M,} is a Ul MG and S, T are
stopping times with S < T a.s. then E|Mrp| < +o00 and

E[Mr | Fs] = Ms.

Proof: Since {M,,} is UL, 3M,, € L' s.t. M,, — M, a.s. and in L. We prove a
more general claim:

LEM 18.14
E[Mx | Fr] = My.

Indeed, we then get the theorem by (TOWER) (and (JENSEN) for the integrability
claim).

Proof:(of the lemma) We divide M., = M;g — M = X — Y into positive
and negative parts and write

M, =E[My | Fn] = E[Xo | Fn] — E[Yoo | Fr] = X5, — Yo,

by linearity. We show that E[ X, | Fr| = X7. The same argument holds for {Y}, },
which then implies E[M, | Fr| = X7 — Yp = My, as claimed.

We have of course that X, > 0, and hence X,, = E[X | F,] > 0 Vn. Let
F € Fr. Then

E[Xoo; FN{T = o0}] = E[X7; F N{T = oo}],

since X, = E[X | Fn] & Xoo as. by Lévy’s Upward Theorem. Therefore it
suffices to show

E[Xoo; FN{T < +o0}] = E[X7; FN{T < 4+00}].
In fact, by (MON)), it suffices to show

Y EXoo; FO{T =i} =) E[X7; FN{T =i}].

1>0 i>0
But note that F' N {T" =i} € F; so that
E[Xp; FN{T =i} = E[X;; FN{T = i}] = E[Xo; F N {T = i}],

since X; = E[X | Fi]. That concludes the proof of the stronger claim. ®m =
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2 Wald’s identities

Often additional properties of 7" hold (typically E[T] < 400), which can be taken
advantage of by considering instead the MG { M7, } in the OST above (noticing
of course that Mprg = Mg and My 7 = M7 whenever S < T a.s.). In that
context, the following is useful.

LEM 18.15 Suppose {M,,} is a MG such that E[ | My, 1 — M, || F,] < B a.s. for
all n. Suppose T is a stopping time with E[T| < +4o00. Then the stoppped MG
{Mrpn} is UL

Proof: Assume WLOG that My = 0, to simplify. Observe first that

+oo
\Mrpn| <Y 1M1 — M| Ly, n.

m=0

Taking expectations on the RHS (which does not depend on n), we get

+00 oo
S E(|Mpg1 — Mol Lirspmy] = > E[[Mpng1 — M| Lizsmy]
m=0 m=0

+oo

= ST E[E [|Mus1 — M| Lz | Fin]]
m=0
“+o00

= S E[E[Mui1 — Mu| | Fal Lirsm]
m=0

“+o00
> E[Bliram]

m=0

IN

“+oo
< B P[T >m)
m=0

< BE[T] < 400,

where we used that {T' > m} € F,,.
u

As an application, we recover Wald’s first identity. For X1, Xs,... € R, let
Sp = Z?:l Xi.

THM 18.16 (Wald’s first identity) Let X1, Xo,... € L! bei.i.d. with i = E[X1]
and let T € L' be a stopping time. Then

E[S7] = uE[T).



Lecture 18: Optional Sampling Theorem 6

Proof: Recall that M,, = S,, — nu is a MG. By LEM 18.15 and the assumption
T € L', the MG {Mrp,,} is UL Indeed

EHMnJrl_MnH}—n] = EHXnJrl_Man]
S M+E‘X1‘EB<+007

by the triangle inequality and the Role of independence lemma. Apply THM 18.8
to {MT/\TL}- |

We also recall Wald’s second identity. We give a MG-based proof (but argue
about convergence directly rather than using THM 18.8).

THM 18.17 (Wald’s second identity) Let X1, Xo,... € L2 bei.id withE[X;] =
0 and 0 = Var[X1] and let T € L' be a stopping time. Then

E[S%] = J2E[T].
Proof: Recall that M,, = Sﬁ — no? is a MG. Hence so is My, and
0 = E[Mrpn] = E[S%,, — (T An)o?] = E[S%.,] — °E[T An]. (1)

We have that E[T" A n] 1 E[T] as n — +o00 by (MON).

To argue about the convergence of IE[S% An) We note that, by the assumption
E[X;] = 0, it follows that {S,,} is a MG and hence so is {S7x,}. The latter is
bounded in £? since, by (1), we have

E[S%,,] = ¢*E[T An] < ¢*E[T] < +oo,

for all n. Hence Sta, converges a.s. and in L% to St (since T < +o00 as. by
assumption). Convergence in £2 also implies convergence of the second moment.
Indeed, by the triangle inequality,

[I1STAnll2 = [IST 2| < [1STAR — STll2 = 0.

Hence,
0 =E[S%,,] — o*E[T A n] — E[S%] — o*E[T],

which concludes the proof. |
To establish E[T"] < +o0, the following lemma can be used.

LEM 18.18 (Waiting for the inevitable) Let T' be a stopping time. Assume there
is N € Zy and € > 0 such that for every n

PT <n+ N|F,| >¢ as.

then E[T] < +oo.
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Proof: For any integer m > 1,
P[T>mN|T>(m—-1)N]<1-—e¢,

by assumption. (Indeed, by definition of Z = P[T" > n+ N | F,,] < 1 — ¢ with
n = (m —1)N, we have for F = {T > (m —1)N} € F,

P[T > mN]|=E[I{T >n+ N}; F|=E[Z;F] < (1 —¢)P[F],
and apply the definition of the conditional probability.) By the multiplication rule
(i.e., the undergraduate rule P[A; N ---NA,] = [\ P[A; | A1 N---NA;—1]) and
the monotonicity of the events {7" > mN}, we have P[T" > mN] < (1 —¢)™.
We conclude using E[T] = >, -, P[T" > k]. ]
3 Application I: Simple RW

DEF 18.19 Simple RW on Z is the process {Sy}n>0 with So = 0 and S,, =
> k<n Xk where the Xys are iid in {—1,+1} s.t. P[X, = 1] = 1/2.

THM 18.20 Let {S,} as above. Let a < 0 < b. Define T, = inf{n >0 : S, =
x} and T = T, N Ty. Then we have

1.

T < 400 a.s.
2.

PIT, < Ty = b

a bl — b—a
3.

E[T] = —ab
4.

To < +00 a.s. but E[T,] = +o0
Proof:

1) Apply the Waiting for the inevitable lemma with N = b — aq and ¢ =
(1/2)b=¢ (corresponding to moving right b — a times in a row which takes
you to b, no matter where you are within the {a, ..., b} interval). That shows
E[T] < 400, from which the claim holds.
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2) By Wald’s first identity, E[S7] = 0 or
aP[St = a] + bP[ST =b] =0,

that is (taking b — oo in the second expression)

b
P[Ta < Tb} = bi and ]P’[Ta < +OO] > P[Ta < Tb] — 1.

3) Wald’s second identity says that E[SZ] = E[T] (by 0% = 1). Also

E[S7] =

so that E[T] = —ab.

4) Taking b — 400 above shows that E[T},] = +oo by monotone convergence.
(Note that this case shows that the £' condition on the stopping time is nec-
essary in Wald’s second identity.)

4 Application II: Biased RW

DEF 18.21 Biased simple RW on Z with parameter 1/2 < p < 1 is the process
{Sn}n>o with So = 0and S,, = ;. -, Xi, where the Xys are iid in {—1,+1} s.t.

PX1 =1] =p. Letq=1—p. Let $(z) = (¢/p)* and n(x) = x — (p — q)n.

THM 18.22 Let {S,} as above. Let a < 0 < b. Define T, = inf{n >0 : S, =
x} and T = Ty N\ Ty. Then we have

1.
T < 400 a.s.
> 6(0) — 4(b)
e <=5 o)
3.
P|T, < +o0] =1/¢(a) < 1and P[Ty, = +00] =0
4,

b

ElT,| =
[T5] 51
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Proof: There are two MGs here:
E[¢(Sn) | Fa-1] = p(a/p)" " + q(a/p)* 7" = 6(Sn-1),
(noting that |¢(S,)| < (p/q)™ a.s.) and
E[n(Sn) | Fu-i] = plSn-14+1=(p—q) ()] +4[Sn-1—1=(p—q) ()] = ¢n-1(Sn-1),
(noting that |4, (Sy)| < (1 + p)n a.s.)

1) Follows by the same argument as in the unbiased case.

2) Now note that {¢(STan)} is a bounded MG and, therefore, by THM 18.8,
we get

¢(0) = E[¢(ST)] = P[Ta < Ti]¢(a) + P[Tu > Tp]¢(b),

or P[T, < Ty = iégiiggg (where we used 1)).

3) By 2), taking b — +oo, by monotonicity P[T, < 4o0] = ¢(1a) < 1so

T, = 400 with positive probability. Similarly take a — —oo.

4) By LEM 18.7 applied to {¥,,(S,)},
0 =E[Stan — (P — @)(Tp An)].

(We cannot use Wald’s first identity directly because it is not immediately
clear whether T} is integrable.) By (MON) and the fact that 7, < +o0
a.s. from 3), E[T, A n] 1 E[T}]. Finally, — inf,, S,, > 0 a.s. and for x > 0,

P[—inf S, > 2] = P[T_, < +o0] = <z) ,

so that E[—inf,, Sp] = >~ P[—inf; S; > x] < +o00. Hence, we can use
(DOM) with |S7, rn| < max{b, —inf,, S, } to deduce that

E[Sp] _ b
p—q 2p—1

E[T,] =



Lecture 18: Optional Sampling Theorem 10

References

[Durl0] Rick Durrett. Probability: theory and examples. Cambridge Series in
Statistical and Probabilistic Mathematics. Cambridge University Press,
Cambridge, 2010.

[Wil91] David Williams. Probability with martingales. Cambridge Mathematical
Textbooks. Cambridge University Press, Cambridge, 1991.



