Notes 17 : UI Martingales

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Wil91, Chapter 13, 14], [Dur10, Section 5.5, 5.6].

1 Uniform Integrability

We give a characterization of £ convergence (which has nothing to do per se with
MGs). First a simple example.

EX 17.1 (£!-boundedness is not sufficient) Let { X,,} be a sequence of indepen-
dent RVs. Let X,, be 0 with probability 1 — p,, and f, > 0 with probability p,
with p, € [0,1]. Assume p, = 1/n?. Then ", P[X, # 0] < +oo and, by BCI,
P[X, # 0io0] = 0and X,, — Xoo = 0 a.s. Assume further that f,, = n’.
Then | X,, — Xx|l1 = E[X,] = 1 forall n > 1, so the sequence {X,,} does
not converge in L. Observe in particular that {X,,} is bounded in L', showing
that the latter condition is not sufficient for L' convergence. On the other hand, if
fn = n, we then have || X, — Xoo|l1 = E[X,] = 1/n — 0 and convergence in L!
holds in that case. In other words, unlike almost sure convergence, convergence in
L is sensitive to the size of rare deviations. (For the record, here is an example
where one has convergence in L' but not a.s. Take f,, = 1 for all n above. Then
a.s. convergence to 0 occurs iff Y, p, < +oo by BCI and BC2. On the other
hand, convergence in L', which is equivalent to convergence in probability in this
case, occurs exactly when p, — 0.)

It turns out that what we need is for the following property of integrable vari-
ables to hold uniformly over a collection of RVs.

LEM 17.2 LetY € L' Ve > 0, 3K > 0 s.t.
E[|lY[;|Y|> K] <e.
Proof: Immediate by (MON) to E[|Y];|Y| < K]. |

DEF 17.3 (Uniform Integrability) A collectionC of RVs on (2, F,P) is uniformly
integrable (Ul) if: Ve > 0, AK > 400 s.1.

E[|X[; | X| > K] < ¢, VX eC.
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THM 17.4 (Necessary and Sufficient Condition for £' Convergence) Let {X,,} €
LY and X € L. Then X,, — X in L if and only if the following two conditions
hold:

o X,, — X in probability
o {X,}isUI
Before giving the proof, we look at a few more examples.
EX 17.5 (UI implies £'-boundedness) Let C be Ul and X € C. Note that
EIX| <E[X[; | X[ > K]+ E[|X]; [ X] < K] < e+ K < +o0,

and this bound is the same for any X € C. So UI implies L'-boundedness. But
the opposite is not true by the construction in EX 17.1 (in that example, when
f(n) = n?, for any K we have E[|X,,|;|X,| > K] = 1 for n large enough).

EX 17.6 (L?-bounded RVSs) But LP-boundedness works—for p > 1. Let C be
LP-bounded and X € C. Then

E[|X|;]X| > K] < E[K~ D x["e-D X | > K| < K'™PA, — 0,
as K — +oo, where Ay, = supycc || X ||b < 400 by assumption.
EX 17.7 (Dominated RVs) Assume 3Y € L' s.t. |X| <Y as., VX € C. Then
E[X|;|X| > K] < E[Y;|X| > K] <E[Y;Y > K],

and apply LEM 17.2 above to establish UL

2 Proof of main theorem

Proof: We start with the if part. By the bounded convergence theorem (conver-
gence in probability version), convergence in probability implies convergence in
L' for uniformly bounded variables.

LEM 17.8 (Bounded convergence theorem (convergence in probability version))
Let X;, < K < 4+ Vnand X,;, —p X. Then

E|X, — X| — 0.
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Proof: By
P[|X| > K +m ! <P[|X, - X|>m™!],

it follows that P[| X| < K] = 1. Fixe > 0
E|Xy — X[ = E[X, — X[ |Xn — X[ > /2] + E[[Xn, — X[; | X5 — X[ < /2]
< 2KP[|X, — X|>¢/2]+¢/2 <,

for n large enough. u
It is natural to truncate at K to apply the UI property and extend the claim above
to unbounded variables. Fix € > 0. We want to show that for n large enough:

E|X, - X| <e.
Let ¢ (z) = sgn(x)[|z| A K]. Then,

E’XN_X‘ < E’d}K(Xn)_¢K(X)‘+E|¢K(Xn)_Xn|+E‘¢K(X)_X’
< El¢r(Xn) — ox(X)| + E[| X[ [Xn| > K] + E[| X]; | X] > K].

For the first term, check by case analysis that

9K () — o (y)| < |z -y,

so that ¢ (X)) —p ¢x(X). For K large enough, the 2nd term above is < /3
by Ul and the 3rd term is < £/3 by LEM 17.2 above.

We move on to the proof of the only if part. Suppose X,, — X in £!. We know
that convergence in £! implies convergence in probability by Markov’s inequality.
So the first claim follows. For the second claim, if n > N large enough,

E|X, — X| <e. (1)
We can choose K large enough so that
E[| Xnl; [Xn| > K] <e,

Vn < N because X,, € £!,V¥n, and N is finite. So we only need to worry about
n > N. To use £! convergence, it is natural to write

E[|Xn|a |Xn| > K] < EHXn - X‘; |Xn| > K] +E[|X|§ |Xn| > K]

The first term is < e by (1). The issue with the second term is that we cannot
apply LEM 17.2 because the restriction event involves X, rather than X. In fact,
a stronger version of the lemma exists:



Lecture 17: UI Martingales 4

LEM 17.9 (Absolute continuity) Let X € L. Ve > 0, 36 > 0, s.t. P[F] < §
implies
E[|X]; F] < e.

Proof: Argue by contradiction. Suppose there is € > 0 and F), s.t. P[F},] < 27"
and

for all n. By BCl1,
P[H]| = P[F,, i.0.] =0,

where H is implicitly defined in the equation. By reverse Fatou (applied to | X |15 =
limsup | X |15, < |X| € L)),

E[|X]; H] > limsup E[|X|; F5,] > ¢,
n

in contradiction to P[H| = 0. ]
To conclude note that

E|X E|X|+E|X, — X
P[|X,| > K] < E| X, | < Supnzx | Xl < Supy,>nN | L{—I— | X, ] <s

uniformly in n for K large enough. We are done.
]
Finally, we note that a uniform version of the condition in LEM 17.9 (together
with £!-boundedness) is equivalent to UL

LEM 17.10 A collection C of RVs on (2, F,P) is Ul if and only if:
1. C is bounded in L}
2. Ve > 0,30 >0, s.t. P[F] < 0 implies
E[|X|; F] < ¢, vX eC
Proof: If C is UL, then it is bounded in £! by EX 17.5. Forany ¢’ > 0, ¢ = €'/2,
and P[F] < ¢,
E[IX]; F] < KP[F] + B[ X]; {|X| > K}] < K& +¢ <<’

by taking K large enough (by UI), and then ¢’ small enough.

On the other hand, if the two conditions above hold, take F' = {|X| > K}
and use Markov’s inequality and boundedness in £ to choose K large enough that
P[F] < ¢ and hence E[| X|; F| < e forall X € C. [
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3 UIMGs
THM 17.11 (Convergence of UI MGs) Let {M,,} be Ul MG. Then
M, = My € Foo = 0 (UnFn),
a.s. and in L. Moreover,
M, = E[M | Ful, Vn.

Proof: Ul implies £-boundedness so we have M,, — M., a.s. By the necessary
and sufficient condition, we also have £! convergence.
Now note that, for all » > n, we know that E[M, | F,,] = M,, or put differently,
for all F' € F,,
E[M;; F] = E[My; F],

by definition of the conditional expectation. We can take a limit by £'-convergence.
More precisely

|E[M,; F] — E[My; F]| < E[|M, — M|; F] <E|M, — M| — 0,
as r — 00. So plugging above
E[Mso; F] = E[M,; F],

and E[M, | Fn] = M. ]

4 Applications I

THM 17.11 says that any UI MG is a Doob’s MG. Conversely:

THM 17.12 (Lévy’s upward theorem) Let Z € L' and define M, = E[Z | F,,).
Then {M,} is a Ul MG and

M, — My, = E[Z | Fl,
a.s. and in L.
Proof: {M,,} is a MG by (TOWER). We first show it is UL
LEM 17.13 Let X € LY(Q, F,P). Then

{E[X |G] : G is a sub-o-field of F},

is UL
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Proof: We use the absolute continuity lemma again. Let Y = E[X | G] € G. Since
{Yl> K} eg,

E[lY[;[Y]> K]

E[[EX [F]]; Y] > K]
E[E[X]G]; Y] > K]
[
[

IA

EE[X];[Y]> K |d]]
= E[IX|;[Y]> K],

where we used Taking Out What is Known (backwards) on the third line and
(TOWER) on the fourth line. By Markov and (JENSEN)

EY] _ EIX]
— < —— <4,
K — K —
for K large enough (uniformly in G). And we are done. |
In particular, we have convergence a.s. and in £! to M, € Fuo.
Let Y = E[Z | Fo] € Foo. By dividing into negative and positive parts, we
assume Z > 0. We want to show, for I' € F,

P[lY| > K] <

E[Z; F] = E[Ma; F).

By the Uniqueness of Extensions lemma, it suffices to prove the equality over all
Fn. If F € F, C Fy, then

E[Z; F) = E[Y; F] = E[Mp; F] = E[Moc; F).

The first equality is by definition of Y'; the second equality comes from the fact that

E[Y | F.] = E[Z| F.] = M,, by (TOWER); the third equality is from our main

theorem. |
A statistical application:

EX 17.14 (Posterior mean consistency) Let © be a RV with a finite mean. As-
sume we observe the sequence {Y,,} with'Y,, = © + Z,,, where {Z,} is iid with
with mean 0. If our goal is to recover © from {Y,,}, a natural strategy is to employ
the Strong Law of Large Numbers, which implies

1 Yi:@—l-l Z; - ©
n n

i<n i<n

almost surely, showing in particular that © € F, if we let F, = o(Y1,...,Yy).
A more “Bayesian” approach to recover © is to consider instead the “posterior
mean”

M, =E[O|F,].
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By Lévy’s upward theorem,
M, — My, = E[O© | Fol,
a.s. and in L'. Because © € Fo,, by Taking Out What is Known we also have
M, — 0O,
a.s. and in L.
We use Lévy’s Downward Theorem to prove Lévy’s 0-1 Law.

THM 17.15 (Lévy’s 0-1 law) Let A € F. Then

P[A|F,] — 14.

Proof: Immediate since E[1 4 | Fo] = 14 by Taking Out What Is Known. |
Recall that the tail o-field of a sequence { X, } is

T = mn% = an(Xn+1, Xn+2, . )

COR 17.16 (Kolmogorov’s 0-1 law) Ler X1, X5,... be iid RVs. If A € T then
P[A] € {0,1}.

Proof: Since A € 7T, is independent of F,,,
PlA| F,] = P[A],
Vn by the Role of Independence. By Lévy’s 0-1 law,
P[A] = 14 € {0,1}.

5 Applications II

Going “backwards in time:”

THM 17.17 (Lévy’s downward theorem) Let Z € L1(Q2, F,P) and {G_, }n>0
a collection of o-fields s.t.

Goo=MG-rC---CG,C---CG 1 CF.

Define
M_, =E[Z|G_,].

Then
M_, - M_ =E[Z|G_)]

a.s. and in L.
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Proof: We apply the same argument as in the Martingale Convergence Theorem.
Leta < 8 € Qand

Apg={w : liminf X_,, <a < B <limsup X_,}.
Note that

A = {w : X, does not converge in [—oo, +00]}
= {w:liminf X_,, < limsup X_,}
= Ua<,3€QAa,,B-

Let Un|cv, 8] be the number of upcrossings of [a, §] between time —N and —1.
Then by the Upcrossing Lemma applied to the MG M_p, ..., M_;

(8 — )EUN|e, B] < o] + E[M 1| < |o| + E[Z].

By (MON)
UN[O{, B] T UOO[O[, /B]’
and
(B — )EUx|a, ] < |a| + E|Z] < +o0,
so that
PUw v, B] = o0] = 0.
Since

Aa,,B - {Uoo[aaﬁ] = 00}7

we have P[A, g] = 0. By countability, P[A] = 0. Therefore we have convergence
a.s.
By LEM 17.13, {M_,,} is UI and hence we have £! convergence as well.
Finally, forall G € G_ C G_,,

E[Z;G] = E[M_,: G].

Take the limit n — 400 and use £' convergence. |

5.1 Law of large numbers

An application:

THM 17.18 (Strong Law; Martingale Proof) Ler X, X»,...beiid RVswithE|X;| <
+o00. Let Sy =3 <, Xn. Then

n~tS, — E[X1],

a.s. and in L1.
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Proof: Let
G_n=0(Sn, Snt1,Sn+2,---) = 0(Sn, Xn+1, Xnt2,--.).
The key observation is that E[ X7 | G_,] = n~1S,,. Indeed note that, for 1 < i < n,
E[X1|G_ ] =E[X1|S,] = E[X;|S,] =E[n'S,]| S, =n"'S,,
by symmetry and linearity of expectation. By Lévy’s Downward Theorem
n~1S, = E[X1 |G o),
a.s. and in £'. But the limit must be trivial by Kolmogorov’s 0-1 law and we must

have E[Xl | g,oo] = E[Xﬂ |

5.2 Hewitt-Savage*

DEF 17.19 Let X1, Xo, ... be iid RVs. Let &, be the o-field generated by events
invariant under permutations of the X;s that leave X, 1, Xn+2, ... unchanged.
The exchangeable o-field is £ = Ny Em.

THM 17.20 (Hewitt-Savage 0-1 law) Let X1, Xo,... be iid RVs. If A € & then
P[A] € {0,1}.

Proof: The idea of the proof is to show that A is independent of itself. Indeed, we
then have

0 = P[4] — P[A N A] = P[A] — P[A]P[A] = P[A](1 — P|A)).

Since A € £ and A € F, it suffices to show that £ is independent of F,, for every
n (by an application of the -\ theorem).
WTS: for every bounded ¢, B € €&,

E[p(X1,..., X); Bl = E[¢(X1, ..., Xi)|E[B] = E[E[¢(X1, ..., Xk)]; B,
or equivalently
V =E[p(X1,...,Xy) [ €] = E[p(X1,..., Xi)].

It suffices to show that Y is independent of Fj. Indeed, by the £? characterization
of conditional expectation and independence,

0=E[(¢(X1,..., Xx) = Y)Y] =E[p(X1, ..., Xp)[E[Y] = E[Y?] = —Var[Y],

and Y is constant.
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1. Since ¢ is bounded, it is integrable and Lévy’s Downward Theorem implies

Elp(X1,.... Xi) [ En] = E[p(X1, ..., Xp) [€].

2. We make ¢ “exchangeable” by averaging over all configurations and taking
a limit as n — +o00. Define

@) = —— 36X, Xa),

Wk iy frbinn
where (n)g =n(n —1)---(n — k + 1). Note by symmetry

An(¢) = E[An(8) | En] = E[p(X1, ..., Xp) | €] = Elp(X1, ..., Xi) [ €]
3. The reason we did this is that now the first £ X's have little influence on this
quantity and therefore the limit is independent of them. However, note that
(nl)klzegqb(Xil,...,Xik) < Wsnpqﬁ = %supgb — 0,
so that the limit of A,,(¢) is independent of X and
Elop(X1,...,Xk) | €] € 0(Xa,...),

and by induction

Y = E[(b(Xl, R ,Xk) ‘ g] S O'(Xk+1, .. )
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