
Notes 16 : Martingales in Lp

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Wil91, Section 12], [Dur10, Section 5.4].

1 Martingales in L2

1.1 Preliminaries

DEF 16.1 For 1 ≤ p < +∞, we say that X ∈ Lp if

‖X‖p = E[|Xp|]1/p < +∞.

By Jensen’s inequality, for 1 ≤ p ≤ r < +∞ we have ‖X‖p ≤ ‖X‖r if X ∈ Lr.

Proof: For n ≥ 0, let
Xn = (|X| ∧ n)p.

Take c(x) = xr/p on (0,+∞) which is convex. Then

(E[Xn])
r/p ≤ E[(Xn)

r/p] = E[(|X| ∧ n)r] ≤ E[|X|r].

Take n→∞ and use (MON).

DEF 16.2 We say that Xn converges to X∞ in Lp if ‖Xn − X∞‖p → 0. By the
previous result, convergence on Lr implies convergence in Lp for r ≥ p ≥ 1.
(Moreover, by Chebyshev’s inequality, convergence in Lp implies convergence in
probability.)

LEM 16.3 Assume Xn, X∞ ∈ L1. Then

‖Xn −X∞‖1 → 0,

implies
E[Xn]→ E[X∞].
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Proof: Note that

|E[Xn]− E[X∞]| ≤ E|Xn −X∞| → 0.

DEF 16.4 We say that {Xn}n is bounded in Lp if

sup
n
‖Xn‖p < +∞.

1.2 L2 convergence

THM 16.5 Let {Mn} be a MG with Mn ∈ L2. Then {Mn} is bounded in L2 if
and only if ∑

k≥1
E[(Mk −Mk−1)

2] < +∞.

When this is the case, Mn converges a.s. and in L2. (In particular, it converges in
L1.)

Proof:

LEM 16.6 (Orthogonality of increments) Let s ≤ t ≤ u ≤ v. Then,

〈Mt −Ms,Mv −Mu〉 = 0.

Proof: Use Mu = E[Mv | Fu], Mt −Ms ∈ Fu and apply the L2 characterization
of conditional expectations.

That implies

E[M2
n] = E[M2

0 ] +
∑

1≤i≤n
E[(Mi −Mi−1)

2],

proving the first claim.
By monotonicity of norms, M is bounded in L2 implies M bounded in L1

which, in turn, implies M converges a.s. Then using (FATOU) in

E[(Mn+k −Mn)
2] =

∑
n+1≤i≤n+k

E[(Mi −Mi−1)
2],

gives
E[(M∞ −Mn)

2] ≤
∑

n+1≤i
E[(Mi −Mi−1)

2].

The RHS goes to 0 which proves the second claim.
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2 Lp convergence theorem

Recall:

LEM 16.7 (Markov’s inequality) Let Z ≥ 0 be a RV. Then for c > 0

cP[Z ≥ c] ≤ E[Z;Z ≥ c] ≤ E[Z].

MGs provide a useful generalization.

LEM 16.8 (Doob’s submartingale inequality) Let {Zn} be a nonnegative subMG.
Then for c > 0

cP[ sup
1≤k≤n

Zk ≥ c] ≤ E[Zn; sup
1≤k≤n

Zk ≥ c] ≤ E[Zn].

Proof: Divide F = {sup1≤k≤n Zk ≥ c} according to the first time Z crosses c:

F = F0 ∪ · · · ∪ Fn,

where
Fk = {Z0 < c} ∩ · · · ∩ {Zk−1 < c} ∩ {Zk ≥ c}.

Since Fk ∈ Fk and E[Zn | Fk] ≥ Zk,

cP[Fk] ≤ E[Zk;Fk] ≤ E[Zn;Fk].

Sum over k.

EX 16.9 (Kolmogorov’s inequality) Let X1, . . . be independent RVs with E[Xk] =
0 and Var[Xk] < +∞. Define Sn =

∑
k≤nXk. Then for c > 0

P[max
k≤n
|Sk| ≥ c] ≤ c−2Var[Sn].

THM 16.10 (Doob’s Lp inequality) Let p > 1 and p−1 + q−1 = 1. Let {Zn} be
a nonnegative subMG bounded in Lp. Define

Z∗ = sup
k≥0

Zk.

Then
‖Z∗‖p ≤ q sup

k
‖Zk‖p = q ↑ lim

k
‖Zk‖p.

and Z∗ ∈ Lp.
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Proof: The last equality follows from (JENSEN). Let Z∗n = supk≤n Zk. By
(MON) it suffices to prove:

LEM 16.11
E[(Z∗n)p] ≤ qpE[Zp

n].

Proof: Recall the formula: for Y ≥ 0 and p > 0

E[Y p] =

∫ ∞
0

pyp−1P[Y ≥ y]dy.

Then for K > 0 (note that {Z∗n ∧K ≥ c} is either {Z∗n ≥ c} or empty (depending
on whether K is smaller or bigger than c) so Doob’s inequality still applies)

E[(Z∗n ∧K)p] =

∫ ∞
0

pcp−1P[Z∗n ∧K ≥ c]dc

≤
∫ ∞
0

pcp−2E[Zn;Z
∗
n ∧K ≥ c]dc

= E
[
Zn

(
p

p− 1

)∫ ∞
0

(p− 1)cp−21[Z∗n ∧K ≥ c]dc

]
= E[qZn(Z

∗
n ∧K)p−1]

≤ qE[Zp
n]

1/pE[(Z∗n ∧K)p]1/q,

where we used that (p− 1)q = p. Rearranging and using (MON) gives the result.

THM 16.12 (Lp convergence) Let {Mn} be a MG bounded inLp for p > 1. Then
Mn →M∞ a.s. and in Lp.

Proof: Note that |Mn| is a subMG bounded in Lp. In particular, it is bounded in L1
and Mn → M∞ a.s. by the martingale convergence theorem. From the previous
theorem,

|Mn −M∞|p ≤ (2 sup
k
|Mk|)p ∈ L1,

and by (DOM)
E|Mn −M∞|p → 0.
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