Notes 16 : Martingales in £”

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Wil91, Section 12], [Durl0, Section 5.4].

1 Martingales in £

1.1 Preliminaries

DEF 16.1 For1 < p < 400, we say that X € LP if
I1X1l, = E[X7]'/? < +oc.
By Jensen'’s inequality, for 1 < p < r < +oo we have || X ||, < || X|, if X € L.

Proof: For n > 0, let
X, = (| X]| An)P.

Take () = 2"/? on (0, +00) which is convex. Then
(E[Xa)"7 < E[(Xa)"7] = E[(IX] An)"] < E[|X['].
Take n — oo and use (MON). [ |

DEF 16.2 We say that X,, converges to Xoo in LP if | X, — Xl||p — 0. By the
previous result, convergence on L" implies convergence in LP forr > p > 1.
(Moreover, by Chebyshev’s inequality, convergence in LP implies convergence in
probability.)

LEM 16.3 Assume X,,, Xoo € L'. Then
X, — Xooll1 — 0,

implies
E[X,] = E[X].
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Proof: Note that

|E[X,] — E[Xx]| < E|X,, — Xoo| — 0.

DEF 16.4 We say that { Xy, },, is bounded in L? if

sup || Xp||p < 4o0.
n

1.2 L2 convergence

THM 16.5 Let {M,} be a MG with M, € L2 Then {M,} is bounded in L?* if
and only if

> E[(Mg — Mi_1)?] < +o0.
E>1

When this is the case, M,, converges a.s. and in L?. (In particular, it converges in
ch)
Proof:
LEM 16.6 (Orthogonality of increments) Let s < t < u < v. Then,
(My — Mg, M,, — M,,) = 0.

Proof: Use M, = E[M, | F.], My — M € F, and apply the L? characterization
of conditional expectations. |
That implies

E[M;] = E[M§]+ > E[(M; — M;-1)?),
1<i<n
proving the first claim.

By monotonicity of norms, M is bounded in L? implies M bounded in L'
which, in turn, implies M converges a.s. Then using (FATOU) in

E[(Mppx — M)’ = > E[(M; — M;_1)?,
n+1<i<ntk
gives
E[(Mao - Mp)Y < S EI(M; — Mi_1)?).
n+1<3

The RHS goes to 0 which proves the second claim.
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2 [P convergence theorem

Recall:

LEM 16.7 (Markov’s inequality) Let Z > 0 be a RV. Then for ¢ > 0
P[Z > ] <E[Z; Z > ] < E[Z].

MGs provide a useful generalization.

LEM 16.8 (Doob’s submartingale inequality) Let {Z,,} be a nonnegative subMG.
Then for c > 0

cP[ sup Zy > ] <E[Z,; sup Zp > | < E[Z,].
1<k<n 1<k<n

Proof: Divide F' = {sup; <j<,, Z > c} according to the first time Z crosses c:
F=FuU---UF,

where
Fk:{Z()<C}ﬂ‘-'m{Zk_1 <c}ﬁ{Zk2(:}.

Since Fy, € Fi, and E[Z,, | Fi] > Zk,
cP[Fy] < E[Zy; Fy] < E[Z,; Fy.
Sum over k. ]

EX 16.9 (Kolmogorov’s inequality) Ler X, ... be independent RVs with E[X}]| =
0 and Var[Xy| < +o0. Define Sy, = ., Xi. Then for ¢ >0

IP’[II??X 1Sk > ] < ¢ 2Var[S,,].

THM 16.10 (Doob’s L7 inequality) Letp > 1and p~' + ¢~ = 1. Let {Z,} be
a nonnegative subMG bounded in LP. Define

Z* = sup Zg.
k>0

Then
1Z%]lp < gsup 1Zxllp = g 1 lim || Zi |-

and Z* € LP.
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Proof: The last equality follows from (JENSEN). Let Z; = supy<, Zx. By
(MON) it suffices to prove:

LEM 16.11
E[(Z,)"] < ¢"E[Z].

Proof: Recall the formula: for Y > 0Oandp > 0
o0
E[Y?] = / pyP'PIY > yldy.
0

Then for K > 0 (note that { Z A K > c} is either {Z > ¢} or empty (depending
on whether K is smaller or bigger than c) so Doob’s inequality still applies)

o
E[(Z:ANK)P] = / pcPIP[ZE A K > c|de
0

oo
< / pcP B[ Z,: ZF AN K > d]de
0

E [Zn (pl> /Ooo(p D 2[ZEAK > dde

b
= ElgZn(Z; NE)
< GB[ZJ)'PE((Z; A KPS,

where we used that (p — 1)g = p. Rearranging and using (MON) gives the result.
| |

THM 16.12 (L? convergence) Let {M,,} be a MG bounded in LP forp > 1. Then
M, — My, a.s. and in LP.

Proof: Note that | M, is a subMG bounded in £P. In particular, it is bounded in £*
and M, — M, a.s. by the martingale convergence theorem. From the previous
theorem,
’Mn - Moo|p < (QSup |Mk‘)p € Ela
k

and by (DOM)
E|M,, — M |P — 0.
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