Notes 13 : Conditioning

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Wil91, Sections 0, 4.8, 9, 10], [Durl0O, Section 5.1, 5.2], [KT75,
Section 6.1].
1 Conditioning

1.1 Review of undergraduate conditional probability
1.1.1 Conditional probability

For two events A, B, the conditional probability of A given B is defined as

P[AN B]
PA|B] = ———.
A1B] = =55
We assume P[B] > 0.
1.1.2 Conditional expectation
Let X and Z be RVs taking values 1, ...,2y, and 21, . . . , 2, resp. The conditional

expectation of X given Z = z; is given as
Yy =EBX[Z=2]=) aP[X =z|Z =z
i
We assume P[Z = z;] > 0.

As motivation for the general definition, we make the following observations:

e We can think of the conditional expectation as a RV Y = E[X | Z] defined
as follows:
Y(w) =y, onG; ={w : Z(w) = z;}.

e Then Y is G-measurable where G = o(Z).
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e On sets in G, the expectation of Y agrees with the expectation of X, that is,
ElY;G;] = y,PlG)]
= > mPX = ;| Z = 2|P[Z = 2]
i
= sz]P’[X = T, 7 = Zj]
= EZ[X; G]]

This is also true for all G € G by summation.

1.2 Conditional expectation: definition, existence, uniqueness
1.2.1 Definition

DEF&THM 13.1 Let X € LY(Q,F,P) and G C F a sub o-field. Then there
exists a (a.s.) unique Y € LY(Q, G, P) (note the G-measurability) s.t.

E]Y;G] = E[X;G], VG € G.

Such'Y is called a version of E[ X | G]. (E.g., see example above.)

1.2.2 Proof of uniqueness

Let Y, Y’ be two versions of E[X |G] such that w.l.o.g. P[Y > Y'] > 0. By
monotonicity, there isn > 1 with G = {Y > Y’ +n~!} € G such that P[G] > 0.
Then, by definition,

0=E[Y —-Y';G] > n"'P[G] > 0,

which gives a contradiction.

1.2.3 Proof of existence
There are two main approaches:
1. First approach: Radon-Nikodym theorem. Read [Dur10, Section A.4].

2. Second approach: Hilbert space method. (Gives a more geometric perspec-
tive.)

We begin with a definition. Let (U, V) = E[UV].
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DEF&THM 13.2 Let X € L%(Q, F,P) and G C F a sub o-field. Then there
exists a (a.s.) unique Y € L2(Q,G,P) s.t.

A=[X —Yls=inf{|X - W|2 : W e £*Q,G,P)},
and, moreover,
(Z,X -Y)=0,VZ e L*Q,G,P).
Such'Y is called an orthogonal projection of X on L*(Q2,G, P).
We give a proof for completeness.
Proof: Take (Y;,) s.t. || X — Yy|l2 — A. Recalling that L?(2, G, P) as a Hilbert
space is complete, we seek to prove that (Y;,) is Cauchy. Using the parallelogram

law
20U+ 2IVIE= 11U = VI3 + U+ VI3,

note that
1 1
IX = Yol3 + X = Yill3 = 21X — S (Vs + Ya)lI3 + 2015 (Y = Y313

The first term on the RHS is at least 2A? by definition of A, so taking limits

r,s — +00 we have what we need.
Let Y be the limit of (Y},) in L?(£2, G, P). Note that

A<[X =Y2 < [IX = Yalla + [[Yn = Y2 = A.
Note that, as a result, for any Z € L*(Q,G,P) and t € R
IX —Y —tZ|]3 > A* = | X ~ Y3,
so that, expanding and rearranging, we have
—26(Z, X = Y) + | Z|5 > 0,

which is only possible for every t € R if the first term is 0.
Uniqueness follows from the parallelogram law and the definition of A. |
We return to the proof of existence of the conditional expectation. We use the
standard machinery. The previous theorem implies that conditional expectations
exist for indicators and simple functions. Now take X € £!(£, F,P) and write
X = X+t — X, s0wecanassume X € L}(Q, F,P)" w.lo.g. Using the staircase
function

0, if X =0
XM= (i-1)27, if(i-1)27" <X <27 <7
r, if X >r,
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we have 0 < X 1 X. Let Y(") = E[X()|G]. Using an argument similar
to the proof of uniqueness (see LEM 13.8 below), it follows that U > 0 implies
E[U |G] > 0 for a simple function U. Using linearity (which is immediate from
the definition), we then have Y(") 1+ Y = lim sup Y ") which is measurable in G.
By (MON)

ElY;G) =E[X;G]|, VG € G.

1.2.4 Examples
EX 133 If X € £Y(G) then E[X | G] = X a.s. trivially.
EX 134 IfG = {0,Q}, then E[X | G] = E[X].

EX13.5 Let A,B € F with0 < P[B] < 1. If G = {0, B, B¢, Q} and X = 1y,

then PLANE]
P[A|G] = T’IZ[B}B; onw€ B
%, onw € B¢

Intuition about conditional expectation sometimes breaks down:

EX 13.6 On (22, F,P) = ((0,1], B(0, 1], Leb), let G be the o-field of all countable
and co-countable subsets of (0,1). Then P[G] € {0, 1} for all G € G and

E[X; G| = E[E[X]; G] = E[X]P[G],
sothat B[ X | G| = E[X]. Yet, G contains all singletons and we seemingly have full
information, which would lead to the wrong guess E[X | G] = X.
1.3 Conditional expectation: properties
We first show that conditional expectations behave similarly to ordinary expecta-
tions. Below all Xs are in £!(Q, F,P) and G is a sub o-field of F.
1.3.1 Extending properties of ordinary expectations

LEM 13.7 (cLIN) E[a1 X1 + a2X> |G] = a1E[X1 | G] + a2E[X3 | G] a.s.

Proof: Use linearity of expectation and the fact that a linear combination of RVs
in G is also in G. ]

LEM 13.8 (cPOS) If X > 0then E[X |G] > 0 a.s.
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Proof: Let Y = E[X | G] and assume P[Y < 0] > 0. Thereis n > 1s.t. P[Y <
—n~1 > 0. But that implies, for G = {Y < —n~!},

E[X;G] =E[Y;G] < —n'P[G] < 0,
a contradiction. ]
LEM 13.9 (¢MON) If0 < X,, T X then E[X,, | G] T E[X | G] a.s.

Proof: Let Y,, = E[X,,|G]. By (cLIN) and (cPOS), 0 < Y,, 1. Then letting
Y =limsupY,, by (MON),

E[X; G| =E[Y; G,
forall G € G. |
LEM 13.10 (cFATOU) If X,, > 0 then Elliminf X,, | G] < liminf E[X,, | G] a.s.
Proof: Note that, for n > m,

so that inf,, >, E[X,, | G] > E[Z,,, | G]. Applying (cMON)

E[lim Z,, |G] = imE[Z,, |G] < lim igf E[X,|G].

LEM 13.11 (¢DOM) If X, <V € L}(Q, F,P) and X,, — X a.s., then
E[X,|6] - E[X|g]
Proof: Apply (cFATOU)to W,, =2V —|X,, — X| >0
E[2V | G] = Elliminf W,,] < liminf E[W,, | G] = E[2V | G]-liminf E[|X,,— X | G].
Use that, by definition, |E[X,, — X |G]| < E[|X,, — X||g]. |
LEM 13.12 (cJENSEN) If f is convex and E[| f(X)|] < oo then
fEX]G]) <E[f(X)[7].

Proof: Exercise! []
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1.3.2 More properties

The next two properties provide some insight into the interpretation of the condi-
tional expectation.

LEM 13.13 (Taking out what is known) If Z € G is bounded then
E[ZX |G] = ZE[X | G].

This is also true if X, Z > 0 and E[ZX]| < +ooc or X € LP(F) and Z € L1(G)
withp ' +q¢ ' =1landp > 1.

Proof: By (LIN), we restrict ourselves to X > 0. Clear if Z = 1 is an indicator
with G’ € G since

EllgX;G) =E[X;GNG =E[E[X |G]; GNG] =E[lgE[X | G];G],
for all G € G. Use the standard machinery to conclude. ]

LEM 13.14 (Role of independence) If X is independent of H then E[X | H]| =
E[X]. In fact, if H is independent of o(c(X),G), then

E[X[o(G,H)] = E[X|G].

Proof: By taking positive and negative parts, we can assume that X > 0. Let
HeHand G €G. SinceY = E[X |G] € G, we have

pi1(GNH) = E[X;GNH] = E[X; G|P[H] = E[Y; GIP[H| = E]Y; GNH] = ua(GNH).
We conclude with the following lemma.

LEM 13.15 (Uniqueness of extension) Let 7 be a ww-system on a set S, that is,
a family of subsets stable under intersection. If 1, pe are finite measures on
(S,0(2)) with 11(2) = pa2(Q2) that agree on L, then py and po agree on o(I).

Indeed, note that the collection Z of sets G N H for G € G,H € H form a 7-
system generating o (G, H). (Clearly, Z C o(G,H) so o(Z) C (G, H). Moreover
GHCICo(T)soo(G,H)Co(T)) ]
1.3.3 Law of total probability

The following is often useful in computations.
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LEM 13.16 (Tower) We have E[E[X | G]] = E[X]. Infact, if H C G is a o-field
E[E[X |G]|H] = E[X | #].

(i.e., the smallest o-field wins).

Proof: LetY =E[X |G]and Z = E[X |H]|. Then Z € Handfor He HC G

E[Z; H] = E[X; H] = E[Y; H].

1.4 Regular conditional probability
The conditional probability of A € F given G is
PlA|G] = E[14]G].

For fixed A, P[A | G] is a RV. What about the opposite? For fixed w € €2, is P[- | G]
a probability measure a.s.? The answer is, unfortunately, not always.

DEF 13.17 The map i : Q2 x F — [0, 1] is a regular conditional probability given
gif

e Foreach A € F, u(-, A) is a version of P[A | G].
e For almost every w € Q, pu(w, ) is a probability measure on F.

(They are known to exist on “nice” spaces. See [Durl0].)

EX 13.18 Let (X,Y) have joint density fxy. For simplicity, assume fy(y) =
[ fxy(x,y)dx > 0 for all y. Define

_ Ixx(@.y)

Then,
o, B) =PLX € BIYIw) = [ fuv(alY (@),

is a regular conditional distribution function. Indeed, for

G={YeB}eg=0o(),
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we have
BlixesiGl = [ [ forteg)dody
— / / Fr () Fpy (@ly) dady
B JB’
- [ hw ( / fxy<xry>dx) dy
B’ B
— E[P[X € B|Y];G],

by Fubini (where note that everything is non-negative).
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