
Notes 1 : Measure-theoretic foundations I

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Wil91, Section 1.0-1.8, 2.1-2.3, 3.1-3.11], [Fel68, Sections 7.2, 8.1,
9.6], [Dur10, Section 1.1-1.3].

1 Overview of the semester

1.1 Foundations

Recall the basic probabilistic framework in the discrete case. Say we are tossing
two unbiased coins:

• Sample space (finite space): Ω = {HH,HT,TH,TT}.

• Outcome (point): ω ∈ Ω.

• Probability measure (normalized measure): P[ω] = 1/4, ∀ω ∈ Ω.

• Random variable (function on Ω): X(ω) = # of heads. E.g. X(HH) = 2.

• Event (subset of Ω): A = {ω ∈ Ω : X(ω) = 1} = {HT,TH}; P[A] =
P[HT] + P[TH] = 1/2.

• Expectation (P-weighted sum): E[X] =
∑

ω∈Ω P[ω]X(ω) = 1.

• Distribution: X is distributed according to a binomial distributionB(2, 1/2).

The previous example generalizes to countable sample spaces. But problems
quickly arise when uncountably many outcomes are considered. Two examples:

EX 1.1 (Infinite sequence of Bernoulli trials) Consider an infinite sequence of
unbiased coin flips. The state space is

Ω = {ω = (ωn)n : ωn ∈ {H,T}}.

It is natural to think of this example as a sequence of finite probability spaces
(Ω(n),P(n)), n ≥ 1, over the first n trials. But the full infinite space is necessary
to consider many interesting events, e.g.,

B = {α consecutive H’s occur before β consecutive T’s}.
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How to define the probability of B in that case? (Note that B is uncountable.)

The problem is that we cannot assign a probability to all events (i.e., subsets) in a
consistent way. More precisely, note that probabilities have the same properties as
(normalized) volumes. In particular the probability of a disjoint union of subsets is
the sum of their probabilities:

• 0 ≤ P[A] ≤ 1 for all A ⊆ Ω.

• P[A ∪B] = P[A] + P[B] if A ∩B = ∅.

• P[Ω] = 1.

But Banach and Tarski have shown that there is a subset F of the sphere S2 such
that, for 3 ≤ k ≤ ∞, S2 is the disjoint union of k rotations of F

S2 =

k⋃
i=1

τ
(k)
i F,

so the “volume” of F must be 4π/3, 4π/4, . . . , 0 simultaneously. So if we were
picking a point uniformly at random from S2, the event F could not be assigned a
“meaningful” probability.

Measure theory provides a solution. The idea is to restrict the set of events
F ⊂ 2Ω to something more manageable—but big enough to contain all sets that
arise “naturally” from simpler sets. E.g., in the example above,

EX 1.2 (Infinite Bernoulli trials) In the infinite Bernoulli trials example above,
let pn be the probability thatB occurs by time n. Then clearly pn ↑ by monotonicity
and we can define the probability of B in the full space as the limit p∞.

In this course, we will start by developing such a rigorous measure-theoretic frame-
work for probability.

1.2 Limit laws

Whereas a major focus of undergraduate probability is on computing various prob-
abilities and expectations, the emphasis of this course is on deriving general laws
such as the law of large numbers (LLN).

Our intuitive understanding of probability is closely related to empirical fre-
quencies. If one flips a coin sufficiently many times, heads is expected come up
roughly half the time. The LLN gives a mathematical justification of this fact.
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THM 1.3 (Weak Law of Large Numbers (Bernoulli Trials)) Let (Ω(n),P(n)), n ≥
1, be the sequence of probability spaces corresponding to finite sequences of Bernoulli
trials. If Xn is the number of heads by trial n, then

P(n)

[∣∣∣∣Xn

n
− 1

2

∣∣∣∣ ≥ ε]→ 0, (1)

for all ε > 0.

Proof: Although we could give a direct proof for the Bernoulli case, we give a
more general argument.

LEM 1.4 (Chebyshev’s Inequality (Discrete Case)) Let Z be a discrete random
variable on a probability space (Ω,P). Then for all ε > 0

P[|Z| ≥ ε] ≤ E[Z2]

ε2
. (2)

Proof: Let A be the range of Z. Then

P[|Z| ≥ ε] =
∑

z∈A:|z|≥ε

P[Z = z] ≤
∑

z∈A:|z|≥ε

z2

ε2
P[Z = z] ≤ 1

ε2
E[Z2].

We return to the proof of (1). Let

Zn =
Xn

n
− 1

2

(
=
Xn − 1

2n

n
=
Xn − E(n)[Xn]

n

)
.

Then

P(n)[|Zn| ≥ ε] ≤
E(n)[Z2

n]

ε2
=

1

ε2

n(1
2)(1

2)

n2
=

1

4ε2n
→ 0,

using the variance of the binomial.
Among other things, we will prove a much stronger result on the infinite space

where the probability and limit are interchanged.
In fact a finer result can be derived.

THM 1.5 (DeMoivre-Laplace Theorem (Symmetric Case)) Let Xn be a bino-
mial B(n, 1/2) on the space (Ω(n),P(n)) and assume n = 2m. Then for all
z1 < z2

P(n)

[
z1 ≤

Xn − n/2√
n/2

≤ z2

]
→ 1√

2π

∫ z2

z1

e−x
2/2dx.
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Proof: Let

ak = P(n)[Xn = m+ k] =
n!

(m− k)!(m+ k)!
2−n = a0

(m− k + 1) · · ·m
(m+ 1) · · · (m+ k)

,

where recall that m = n/2. Then

P(n)

[
z1 ≤

Xn − n/2√
n/2

≤ z2

]
=

∑
z1
√
m/2≤k≤z2

√
m/2

ak.

By Stirling’s formula:
n! ∼ nne−n

√
2πn,

we have
a0 =

n!

m!m!
2−n ∼ 1√

πm
.

Divide the numerator and denominator by mk and use that, for j/m small,

1 +
j

m
= e

j
m

+O( j2

m2 ).

Noticing that

0− 2

m
[1 + · · ·+ k − 1]− k

m
= − 2

m

k(k − 1)

2
− k

m
= −k

2

m
,

and bounding the error term in the exponent by O(k3/m2), we get

ak ∼
1√
πm

e−k
2/m =

1√
2π

√
2

m
e
−(k

√
2
m

)2/2
,

as long as k3/m2 → 0 or k = o(m2/3).

Then, letting ∆ =
√

2
m ,

P(n)

[
z1 ≤

Xn − n/2√
n/2

≤ z2

]
∼

∑
z1∆−1≤k≤z2∆−1

1√
2π

∆e−(k∆)2/2

→ 1√
2π

∫ z2

z1

e−x
2/2dx.

The previous proof was tailored for the binomial. We will prove this theorem
in much greater generality using more powerful tools.



Lecture 1: Measure-theoretic foundations I 5

1.3 Martingales

Finally, we will give an introduction to martingales, which play an important role
in the theory of stochastic processes, developed further in the second semester.

2 Measure spaces

2.1 Basic definitions

Let S be a set. We discussed last time an example showing that we cannot in
general assign a probability to every subset of S. Here we discuss “well-behaved”
collections of subsets. First, an algebra on S is a collection of subsets stable under
finitely many set operations.

DEF 1.6 (Algebra on S) A collection Σ0 of subsets of S is an algebra on S if

1. S ∈ Σ0;

2. F ∈ Σ0 implies F c ∈ Σ0;

3. F,G ∈ Σ0 implies F ∪G ∈ Σ0.

That, of course, implies that the empty set and intersections are in Σ0. The col-
lection Σ0 is an actual algebra (i.e., a vector space with a bilinear product) with
symmetric difference as the sum, intersection as product and the underlying field
being the field with two elements.

EX 1.7 On R, sets of the form
k⋃
i=1

(ai, bi]

where the union is disjoint with k < +∞ and −∞ ≤ ai ≤ bi ≤ +∞ form an
algebra.

Finite set operations are not enough for our purposes. For instance, we want to
be able to take limits. A σ-algebra is stable under countably many set operations.

DEF 1.8 (σ-Algebra on S) A collection Σ of subsets of S is a σ-algebra on S if

1. S ∈ Σ;

2. F ∈ Σ implies F c ∈ Σ0;

3. Fn ∈ Σ,∀n implies ∪nFn ∈ Σ.
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EX 1.9 2S is a trivial example.

To give a nontrivial example, we need the following definition. We begin with a
lemma.

LEM 1.10 (Intersection of σ-algebras) Let Fi, i ∈ I , be σ-algebras on S where
I is arbitrary. Then ∩iFi is a σ-algebra.

Proof: We prove only one of the conditions. The other ones are similar. Suppose
A ∈ Fi for all i. Then Ac is in Fi for all i.

DEF 1.11 (σ-Algebra generated by C) Let C be a collection of subsets of S. Then
we let σ(C) be the smallest σ-algebra containing C, defined as the intersection of
all such σ-algebras (including in particular 2S).

EX 1.12 The smallest σ-algebra containing all open sets in R, denoted B(R) =
σ(Open Sets), is called the Borel σ-algebra. This is a non-trivial σ-algebra in the
sense that it can be proved that there are subsets of R that are not in B, but any
“reasonable” set is in B. In particular, it contains the algebra in EX 1.7.

EX 1.13 The σ-algebra generated by the algebra in EX 1.7 is B(R). This follows
from the fact that all open sets of R can be written as a countable union of open
intervals. (Indeed, for x ∈ O an open set, let Ix be the largest open interval
contained in O and containing x. If Ix ∩ Iy 6= ∅ then Ix = Iy by maximality
(take the union). Then O = ∪xIx and there are only countably many disjoint ones
because each one contains a rational.)

We now define measures.

DEF 1.14 (Additivity) A non-negative set function on an algebra Σ0

µ0 : Σ0 → [0,+∞],

is additive if

1. µ0(∅) = 0;

2. F,G ∈ Σ0 with F ∩G = ∅ implies µ0(F ∪G) = µ0(F ) + µ0(G).

Moreover, µ0 is σ-additive if the latter is true for Fn ∈ Σ0, n ≥ 0, disjoint with
∪nFn ∈ Σ0.
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EX 1.15 For the algebra in the EX 1.7, the set function

λ0

(
k⋃
i=1

(ai, bi]

)
=

k∑
i=1

(bi − ai)

is additive. (In fact, it is also σ-additive. We will show this later.)

DEF 1.16 (Measure space) Let Σ be a σ-algebra on S. A σ-additive function µ
on Σ is called a measure. Then (S,Σ, µ) is called a measure space.

DEF 1.17 (Probability space) If (Ω,F ,P) is a measure space with P(Ω) = 1
then P is called a probability measure and (Ω,F ,P) is called a probability triple.

2.2 Extension theorem

To define a measure on B(R) we need the following tools from abstract measure
theory.

THM 1.18 (Caratheodory’s extension theorem) Let Σ0 be an algebra on S and
let Σ = σ(Σ0). If µ0 is σ-additive on Σ0 then there exists a measure µ on Σ that
agrees with µ0 on Σ0. (If in addition µ0 is finite, the next lemma implies that the
extension is unique.)

LEM 1.19 (Uniqueness of extensions) Let I be a π-system on S, i.e., a family
of subsets stable under finite intersections, and let Σ = σ(I). If µ1, µ2 are finite
measures on (S,Σ) that agree on I, then they agree on Σ.

EX 1.20 The sets (−∞, x] for x ∈ R are a π-system generating B(R).

2.3 Lebesgue measure

Finally we can define Lebesgue measure. We start with (0, 1] and extend to R in
the obvious way. We need the following lemma.

LEM 1.21 (σ-Additivity of λ0) Let λ0 be the set function defined above, restricted
to (0, 1]. Then λ0 is σ-additive.

DEF 1.22 (Lebesgue measure on unit interval) The unique extension of λ0 to (0, 1]
is denoted λ and is called Lebesgue measure.
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3 Measurable functions

3.1 Basic definitions

Let (S,Σ, µ) be a measure space and let B = B(R).

DEF 1.23 (Measurable function) Suppose h : S → R and define

h−1(A) = {s ∈ S : h(s) ∈ A}.

The function h is Σ-measurable if h−1(B) ∈ Σ for all B ∈ B. We denote by
mΣ (resp. (mΣ)+, bΣ) the Σ-measurable functions (resp. that are non-negative,
bounded).

3.2 Random variables

In the probabilistic case:

DEF 1.24 A random variable is a measurable function on a probability triple
(Ω,F ,P).

The behavior of a random variable is characterized by its distribution function.

DEF 1.25 (Distribution function) Let X be a RV on a triple (Ω,F ,P). The law
of X is

LX = P ◦X−1,

which is a probability measure on (R,B). By LEM 1.19, LX is determined by the
distribution function (DF) of X

FX(x) = P[X ≤ x], x ∈ R.

EX 1.26 The distribution of a constant is a jump of size 1 at the value it takes. The
distribution of Lebesgue measure on (0, 1] is linear between 0 and 1.

Distribution functions are characterized by a few simple properties.

PROP 1.27 Suppose F = FX is the distribution function of a RV X on (Ω,F ,P).
Then

1. F is non-decreasing.

2. limx→+∞ F (x) = 1, limx→−∞ F (x) = 0.

3. F is right-continuous.
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Proof: The first property follows from monotonicity.
For the second property, note that the limit exists by the first property. That the

limit is 1 follows from the following important lemma.

LEM 1.28 (Monotone-convergence properties of measures) Let (S,Σ, µ) be a
measure space.

1. If Fn ∈ Σ, n ≥ 1, with Fn ↑ F , then µ(Fn) ↑ µ(F ).

2. If Gn ∈ Σ, n ≥ 1, with Gn ↓ G and µ(Gk) < +∞ for some k, then
µ(Gn) ↓ µ(G).

Proof: Clearly F = ∪nFn ∈ Σ. For n ≥ 1, write Hn = Fn\Fn−1 (with F0 = ∅).
Then by disjointness

µ(Fn) =
∑
k≤n

µ(Hk) ↑
∑
k<+∞

µ(Hk) = µ(F ).

The second statement is similar. A counterexample when the finite assumption
is violated is given by taking Gn = (n,+∞).

Similarly, for the third property, by LEM 1.28

P[X ≤ xn] ↓ P[X ≤ x],

if xn ↓ x.
It turns out that the properties above characterize distribution functions in the

following sense.

THM 1.29 (Skorokhod representation) Let F satisfy the three properties above.
Then there is a RV X on

(Ω,F ,P) = ([0, 1],B[0, 1], λ),

with distribution function F . The law ofX is called the Lebesgue-Stieltjes measure
associated to F .

The result says that all real RVs can be generated from uniform RVs.
Proof: Assume first that F is continuous and strictly increasing. Define X(ω) =
F−1(ω), ω ∈ Ω. Then, ∀x ∈ R,

P[X ≤ x] = P[{ω : F−1(ω) ≤ x}] = P[{ω : ω ≤ F (x)}] = F (x).

In general, let
X(ω) = inf{x : F (x) ≥ ω}.
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It suffices to prove that

X(ω) ≤ x ⇐⇒ ω ≤ F (x). (3)

The⇐ direction is obvious by definition. On the other hand,

x > X(ω) ⇒ ω ≤ F (x).

By right-continuity of F , we have further ω ≤ F (X(ω)) and therefore

X(ω) ≤ x ⇒ ω ≤ F (X(ω)) ≤ F (x).

Turning measurability on its head, we get the following important definition.

DEF 1.30 Let (Ω,F ,P) be a probability triple. Let Yγ , γ ∈ Γ, be a collection of
maps from Ω to R. We let

σ(Yγ , γ ∈ Γ)

be the smallest σ-algebra on which the Yγ’s are measurable.

In a sense, the above σ-algebra corresponds to the partial information available
when the Yγ’s are observed.

EX 1.31 Suppose we flip two unbiased coins and let X be the number of heads.
Then

σ(X) = σ({{HH}, {HT,TH}, {TT}}),

which is coarser than 2Ω.

3.3 Properties of measurable functions

Note that h−1 preserves all set operations. E.g., h−1(A∪B) = h−1(A)∪h−1(B).
This gives the following important lemma.

LEM 1.32 (Sufficient condition for measurability) Suppose C ⊆ B with σ(C) =
B. Then h−1 : C → Σ implies h ∈ mΣ. That is, it suffices to check measurability
on a collection generating B.

Proof: Let E be the sets such that h−1(B) ∈ Σ. By the observation above, E is a
σ-algebra. But C ⊆ E which implies σ(C) ⊆ E by minimality.

As a consequence we get the following properties of measurable functions.

PROP 1.33 (Properties of measurable functions) Let h, hn, n ≥ 1, be in mΣ
and f ∈ mB.



Lecture 1: Measure-theoretic foundations I 11

1. f ◦ h ∈ mΣ.

2. If S is topological and h is continuous, then h is B(S)-measurable, where
B(S) is generated by the open sets of S.

3. The function g : S → R is in mΣ if for all c ∈ R,

{g ≤ c} ∈ Σ.

4. ∀α ∈ R, h1 + h2, h1h2, αh ∈ mΣ.

5. inf hn, suphn, lim inf hn, lim suphn are in mΣ.

6. The set
{s : limhn(s) exists in R},

is measurable.

Proof: We sketch the proof of a few of them.
(2) This follows from LEM 1.32 by taking C as the open sets of R.
(3) Similarly, take C to be the sets of the form (−∞, c].
(4) This follows from (3). E.g., note that, writing the LHS as h1 > c− h2,

{h1 + h2 > c} = ∪q∈Q[{h1 > q} ∩ {q > c− h2}],
which is a countable union of measurable sets by assumption.

(5) Note that
{suphn ≤ c} = ∩n{hn ≤ c}.

Further, note that lim inf is the sup of an inf .

Further reading

More background on measure theory [Dur10, Appendix A].
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