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Throughout M is a manifold, G is a Lie group and LG is the Lie algebra
of G. Denote by Diff(M) the group of smooth self diffeomorphisms of M ,
and by X (M) the Lie algebra of smooth vector fields on M . We denote by
Flow(X) the time one map of the flow of the vector field X. Note that

Flow : X (M) → Diff(M)

is formally analogous to the exponential map

exp : LG → G

More precisely if
f t = Flow(tX)

then
f 0 = idM

the identity map of M and

d

dt
f t

∣∣∣∣
t=t0

= X ◦ f t0

Given some structure ω on M we denote by Diff(M, ω) the subgroup
of Diff(M) consisting of those diffeomorphisms which preserve ω. Similarly,
X (M, ω) denotes the Lie subalgebra of X (M) consisting of those vector fields
which preserve the structure. For example, if ω is a differential form then

Diff(M, ω) = {f ∈ Diff(M) : f ∗ω = ω}

and
X (M, ω) = {X ∈ X (M) : `(X)ω = 0}
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where `(X)ω denotes the Lie derivative of ω in the direction X:

`(X)ω =
d

dt
Flow(tX)∗ω

∣∣∣∣
t=0

A Lie group action of G on M is a group homomorphism

G → Diff(M) : a 7→ aM

for which the evaluation map is smooth. A Lie group action determines (and
in case G is connected and simply connected is determined by) a Lie algebra
action

LG → X (M) : A 7→ AM

via the formula
exp(tA)M = Flow(tAM)

for A ∈ LG and t ∈ R. We can calculate AM by the formula

AM =
d

dt

∣∣∣∣
t=0

exp(tA)M .

1 Some formulas

The notations used in the exterior calculus vary slightly from author to au-
thor depending on the choice of multiplicative constants. In the following
three definitions one can take any value of e and the various laws (viz. ∧ is
associative, skew-commutative; ι() and d are ∧ skew-derivations, etc.) will
hold. Most authors take e = 1; some take e = 0.

For α ∈ Dp(M), β ∈ Dq(M), X0, X1, . . . , Xp ∈ X (M) we define (with
e = 1)

α ∧ β =

(
p + q

q

)e

ALT(α⊗ β)

ι(X1)αX2, . . . , Xp = p1−eα(X1, X2, . . . , Xp)

(dα)(X0, X1, . . . , Xp) = (p + 1)e−1
∑

i

(−)i(DXi
α)(X0, . . . , X̂i . . . , Xp)

In the last formula D is any covariant derivative (the result is independent
of the choice)
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Wedge product of one-forms

α ∧ β(X, Y ) = α(X)β(Y )− α(Y )β(X)

Wedge product of a one-form with a two-form

α ∧ β(X, Y, Z) = α(X)β(Y, Z) + α(Y )β(Z,X) + α(Z)β(X, Y )

Cartan’s infinitesimal homotopy formula

`(X)ω = dι(X)ω + ι(X)dω.

Palais’s Formula

(dα)(X0, X1, . . . , Xp) =
∑

j

(−)j`(Xj)
(
α(X0, . . . , X̂j, . . . , Xp

)
+

∑
j<k

(−)j+kα(`(Xj)Xk, X0 . . . , Xj . . . , Xk . . . , Xp).

Palais’s formula for zero-forms

dφ(X) = `(X)φ

Palais’s formula for one-forms

dθ(X, Y ) = `(X)(θ(Y ))− `(Y )(θ(X)) + θ([X, Y ])

Palais’s formula for two-forms

dω(X, Y, Z) = `(X)(ω(Y, Z)) + `(Y )(ω(Z,X)) + `(Z)(ω(X,Y ))

−ω(X, [Y, Z])− ω(Y, [Z,X])− ω(Z, [X, Y ])

2 Symplectic Mechanics

Let (M, ω) be a symplectic manifold: i.e. ω is a symplectic form (=closed,
non-degenerate two-form) on M . We call the diffeomorphisms f and vector
fields X which preserve ω symplectic. As usual Diff(M, ω) denotes the
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group of symplectic diffeomorphisms, and X (M, ω) denotes the Lie algebra
of symplectic vector fields.

Since dω = 0 Cartan’s formula gives

`(X)ω = dι(X)ω

so X ∈ X (M, ω) iff ι(X)ω is closed. Thus any function H on M determines
a vector field X ∈ X (M, ω) via the formula

ι(X)ω = dH

(X is the “symplectic gradient” of H) and when H1(M) = 0 every vector
field X ∈ X (M, ω) has this form. We call X the Hamiltonian vectorfield
and H a Hamiltonian for X. We also write

X = HM

for the Hamiltonian vector field with Hamiltonian H. Note that X deter-
mines H only up to a locally constant function (an additive constant when
M is connected.)

The Poisson brackets

F(M)×F(M) → F(M) : (H, K) 7→ {H, K}

defined by
{H, K} = ω(HM , KM)

give F(M) the structure of a Lie algebra which renders the map H 7→ HM a
homomorphism of Lie algebras:

{H, K}M = [HM , KM ].

In other words, the Poisson brackets {H, K} is a Hamiltonian for the Lie
brackets [HM , KM ]. This Lie algebra is called the Poisson algebra and
denoted by F(M, ω) so

F(M, ω) = F(M)

as vector spaces.
The kernel of the homomorphism H 7→ HM consists of the locally constant

functions and the homomorphism is onto if the first De Rham cohomology
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H1(M) of M vanishes. Hence in case M is connected and simply connected
we have an exact sequence

0 → R → F(M, ω) → X (M, ω) → 0

of Lie Algebras.
According to Darboux’s theorem there exist, at any point of M , co-

ordinates q1, . . . , qn, p1, . . . , pn such that

ω =
n∑

i=1

dqidpi.

Such co-ordinates are called symplectic co-ordinates. In symplectic co-
ordinates the Poisson brackets are given by

{H, K} =
n∑

i=1

(
∂H

∂pi

∂K

∂qi

− ∂H

∂qi

∂K

∂pi

)
and the trajectories of the vector field HM are the solutions of Hamilto-
nian’s equations:

q̇i =
∂H

∂pi

, ṗi = −∂H

∂qi

.

3 Darboux

Darboux’s theorem is easily seen to be equivalent to the following

Theorem 3.1 Given two symplectic forms ω0 and ω1 defined in a neighbor-
hood of 0 in R2n there is a diffeomorphism f , defined in a possibly smaller
neighborhood of 0 with f(0) = 0 and

f ∗ω1 = ω0.

For the proof first make a linear change of co-ordinates so that ω1 and ω0

agree at 0. Then define

ωt = ω0 + t(ω1 − ω0)

for 0 ≤ t ≤ 1. Since that value of ωt at the origin 0 ∈ R2n is independent
of t (and hence non-degenerate) it follows that all the ωt are symplectic in
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a neighborhood of 0 ∈ R2n. We shall find a time-dependent vector field
Xt defined near 0 ∈ R2n so that the curve of diffeomorphism germs t 7→ t
determined by solving the differential equation

(1)
d

dt
ft = Xt ◦ ft

with initial condition

2) f0(x) = x

satisfies

(3) ft(0) = 0

and

(4) f ∗t ωt = ω0.

Assume for the moment that (1)-(4) hold. Differentiate with respect to t and
evaluate at t; we obtain

(5)
d

dt
f ∗t ωt = f ∗t

(
`(Xt)ωt + ω1 − ω0

)
.

Hence we require Xt to satisfy

(6) `(Xt)ωt + ω1 − ω0 = 0.

We will also imose the condition

(7) Xt(0) = 0.

Suppose we have found Xt satisfying (6) and (7). By the existence theorem
for ordinbary differential equations we may find ft satisfying (1) and (2).
Equation (6) implies equation (3) so that the diffeomorphisms ft fix the ori-
gin. (This will assure that the change of variables is valid in a neighborhood
of the origin.) Equations (5) and (6) give that f ∗t ωt is independent of t.
Hence, taking f = f 1 gives f ∗ω1 = ω0 as required. Thus it is enough to
construct Xt solving (6) and (7).

By Cartan’s formula it suffices to choose Xt to be the unique solution of

ι(Xt)ωt = θ

where dθ = ω1 − ω0. To achieve Xt(0) = 0 we require that θ vanishes at 0.
This is can be achieved by replacing θ by θ + dφ for some function φ.
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4 Invariance

The formula
`(HM)K = {K,H}

holds on any symplectic manifold (M, ω). Here’s the proof:

`(HM)K = ι(HM)dK

= ι(HM)ι(KM)ω

= ω(KM , HM)

= {KM , HM}.

Thus if {K, H} = 0, the function K is constant along the trajectories of the
vector field HM .

5 Volume

A symplectic manifold (M, ω) admits a volume

Ω = ωn

where the dimension of M is 2n. Obviously, any symplectic diffeomorphism
(or vector field) is volume-preserving (that is, it preserves Ω). This is called
Liouville’s theorem. (It is easy to see that a Hamiltonian vector field is
volume-preserving, since its divergence is zero in symplectic co-ordinates.)

When M is compact we can use Ω to choose a canonical Hamiltonian H
for any Hamiltonian vector field X: we simply impose the condition∫

M

HΩ = 0

in addition to the condition X = HM . When M is connected, this condition
determines a Hamiltonian H for X uniquely.1

For any functions H and K we have∫
M

{H, K}Ω = 0

1If M is not connected, impose this condition on each component.
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The proof is by Stokes theorem and

{H, K}Ω = (`(KM)H)Ω

= `(KM)(HΩ)

= dι(KM)(HΩ).

Hence the map X 7→ H determines a Lie algebra splitting of the exact
sequence

0 → R → F(M, ω) → X (M, ω) → 0.

6 Classical mechanics

When M = Rn ×Rn and (q, p) are the position and momentum of a particle
of mass m subjected to a potential V = V (q), we take

H =
1

2m
‖p‖2 + V (q)

to be the energy of the particle and Hamilton’s equations reduce to Newton’s
equations:

mq̇ = p

ṗ = −grad V.

where grad V is the gradient of V .

7 Symplectic Group Actions

A symplectic Lie group action is a Lie group action where each element of
the group G is represented by a symplectic diffeomorphism:

G → Diff(M, ω) : a 7→ aM .

In case G is connected, the action of G is symplectic if and only if corre-
sponding action of its Lie algebra LG is symplectic:

AM ∈ X (M, ω)

for A ∈ LG.
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We call the action Hamiltonian iff each vector field AM (for A ∈ LG)
is Hamiltonian. (This is always the case when M is simply connected.) The
action is Hamiltonian iff the Lie algebra homomorphism

LG → X (M, ω) : A 7→ AM

lifts to a linear map
LG → F(M, ω) : A 7→ µA.

For each A ∈ LG the function µA is a Hamiltonian for the vector field AM :

(♥) dµA = ι(AM)ω.

The map
µ : M → LG∗

given by
〈µ(z), A〉 = µA(z)

is called a moment map for the action. Equation (♥) determines the mo-
ment map µ only up to an additive constant which depends on A; i.e. for
α ∈ LG∗

µ̃A = µA + α(A)

is also a Hamiltonian for AM .

8 Equivariance

Let µ : M → LG∗ be a moment for a Hamiltonian group action. Recall the
co-adjoint action

G → Aut(LG∗) : a 7→ ad(a−1)∗.

of the Lie group on the dual of its Lie algebra.

Proposition 8.1 Assume that G is connected. Then the map

µ : M → LG∗

is equivariant iff the map

LG → F(M, ω) : A 7→ µA

is a homomorphism of Lie algebras:

{µA, µB} = µ[A,B]

for A, B ∈ LG.
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Proof: Since G is connected, equivariance with respect to the Lie group
actions is the same as equivariance with respect to the corresponding Lie
algebra action. In other words, the map µ is equivariant iff

`(AM)µ = −Ad(A)∗µ

for A ∈ LG. Evaluate both sides at B ∈ LG. The left side becomes

`(AM)µB = −{µA, µB}

(since µA and µB are Hamiltonians for AM and BM) and the right hand side
becomes −µ[A,B].

Now in case M is connected, any two Hamiltonians for the same vector
field differ by an additive constant so that each moment map µ determines
a skew-symmetric bilinear form β ∈ Λ2(LG) by

{µA, µB} = µ[A,B] + β(A, B).

Now β solves a “co-cycle” identity:

dβ = 0

and replacing µ by
µ̃ = µ + α

(where α ∈ LG∗) replaces β by β̃ defined by

β̃ = β + dα

where d : Λ2(LG) → Λ3(LG) is defined by

dβ(A, B, C) = β([A, B], C) + β([B, C], A) + β([C, A], B)

and d : Λ1(LG) → Λ2(LG) is defined by

dα(A, B) = α([A, B]).

If we can solve dα = β (for example, if the Lie algebra cohomology H2(LG)
vanishes which is the case when LG is semi-simple) then we can choose µ so
that the map A 7→ µA is a homomorphism of Lie algebras; i.e. so that µ is
equivariant.

Of course, when M is compact it is easy to choose an equivariant moment:
we impose the condition that ∫

µAΩ = 0.

(See section 5.)
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9 Angular Momentum

Take M = Rn ×Rn as before, and G = SO(n) the special orthogonal group:

SO(n) = {a ∈ Rn×n : det(a) = 1, a∗ = a−1}.

Take the action to be given by:

aM(q, p) = (aq, ap).

This action is symplectic. To prove this note that ω = dθ where

θ =
n∑

i=1

pidqi = 〈p, dq〉

so

a∗Mθ = 〈ap, d(aq)〉
= 〈ap, a(dq)〉
= 〈p, dq〉
= θ

so a∗Mω = a∗Mdθ = da∗Mθ = dθ = ω. The Lie algebra of SO(n) is

so(n) = {A ∈ Rn×n : A∗ = −A}

A (equivariant) moment map is given by

µA(q, p) = 〈p, Aq〉.

When n = 3 there is a bijective correspondence

so(3) → R3 : A 7→ α

determined by
Av = α× v

for v ∈ R3 (× is the cross product) which identifies µA with the angular
momentum about the axis α.
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10 Heisenberg

The action of R2 on itself by translations is Hamiltonian. To see this let
ω = dp ∧ dq and note that the infinitessimal translations ∂/∂p and ∂/∂q are
Hamiltonian with respective Hamiltonian’s

H(q, p) = q + h, K(q, p) = −p + k.

For any choice of the additive constants h and k the map µ = (H, K) is a
moment for this action, but

{H, K} = 1

whereas the group is abelian so there can be no equivariant moment.
The Heisenberg group is the set of all real 3× 3 matrices of form

a =

 1 x z
0 1 y
0 0 1

 .

It acts on M = R2 via the formula

aM(p, q) = (p + x, q + y)

and this action is also Hamiltonian. This time however there is a equivariant
moment

µ(p, q) = (q,−p, 1)

where the triple α = (ξ, η, ζ) ∈ R3 is identified with a point in the dual of
the Heisenberg algebra via the formula

〈α, A〉 = ξx̂ + ηŷ + ζẑ

for

A =

 0 x̂ ẑ
0 0 ŷ
0 0 0

 .
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11 Co-adjoint

A Lie group G acts linearly on its Lie algebra LG via the adjoint action:

ad : G → Aut(LG),

ad(a)A = aAa−1

for a ∈ G and A ∈ LG. Hence G acts linearly on the dual LG∗ of the Lie
algebra LG via the co-adjoint action:

G → Aut(LG∗) : a 7→ ad(a−1)∗.

Theorem 11.1 Let N ⊂ LG∗ be an orbit of the co-adjoint action of G.
Denote by a 7→ aN the restriction of the co-adjoint action to N :

aN = ad(a−1)∗|N

for a ∈ G. Then there is a unique G-invariant symplectic form ω on N such
that the inclusion

µ : N → LG∗

is an equivariant moment. It is defined by the formula

(♦) ω(AN(α), BN(α)) = 〈α, [A, B]〉

for α ∈ N ⊂ LG∗ and A, B ∈ LG.

Proof: Before we start the proof, note that the tangent space TαN to N at
α ∈ N is the vector subspace of LG∗ given by

TαN = {AN(α) : A ∈ LG}.

This is because G acts transitively on N .
Now assume ω is G-invariant and that the inclusion µ is a moment for

the (symplectic) action of G on the orbit N . We prove uniqueness of ω by
proving the formula (♦). Evidently for A ∈ LG, a Hamiltonian µA for AN

is given by
µA(α) = 〈α, A〉
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for α ∈ N . Hence

ω(AN(α), BN(α)) = (ι(AN)ω)(BN(α))

= dµA(α)BN(α)

= 〈BN(α), A〉
= −〈Ad(B)∗α, A〉
= −〈α, Ad(B)A〉
= −〈α, [B, A]〉
= 〈α, [A, B]〉

Now we prove existence. Define ω by (♦). If AN(α) = 0 then the right side
of (♦) vanishes (by part of the last calculation) and similarly if BN(α) = 0.
Hence, ω is well-defined. The above computation verifies the formula

dµA = ι(AN)ω.

The formula
TaN ◦ AN ◦ a−1

N = (ad(a)A)N

(which holds for any action) easily implies the invariance of ω. To see that
ω is closed we use Palais’s formula:

dω(AN , BN , CN) = `(AN)ω(BN , CN) + `(BN)ω(CN , AN) + `(CN)ω(AN , BN)

+ω(AN , [BN , CN ]) + ω(BN , [CN , AN ]) + ω(CN , [AN , BN ]).

Both the first three and the last three terms on the right vanish by the Jacobi
identity.

12 Reduction

Let P be a manifold and ωP be a closed two-form on P . (Typically P will be
a submanifold of a symplectic manifold M and ωP will be the restriction to
P of the symplectic form ωM on M .) For each point p ∈ P define a subspace

Kp = {p̂ ∈ TpP : ι(p̂)ωP = 0}

Proposition 12.1 Assume that p 7→ Kp is a sub-bundle of TW , i.e. that
dim(Kp) is constant. Then the subundle K is integrable.
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Proof: If X is a vector field on P then X is a section of K iff ι(X)ωP = 0.
When X is a section of K, we have `(X)ωP = dι(X)ωP + ι(X)dωP = 0 since
ωP is closed. Hence, any section of K leaves ωP invariant. Hence, if X and
Y are sections of K, then

ι([X, Y ])ωP = ι(`(Y )X)ωP

= `(Y ) (ι(X)ωP )− ι(X)`(Y )ωP

= 0

as required.
Now assume that the foliation admits a quotient manifold. This means

that there is a surjective submersion

π : P → B

whose fibers are the leaves of the foliation. Thus

Kp = Tpπ
−1(π(p))

for p ∈ P .

Proposition 12.2 There is a unique two-form ωB on B such that

ωP = π∗ωB.

Moreover, ωB is symplectic. The symplectic manifold (B, ωB) is called the
reduction of (P, ωP ).

Proof: To define ωB at a point b ∈ B choose a point p ∈ P with π(p) = b
and define

(♣) ωB(v, w) = ωP (ṽ, w̃)

for v, w ∈ TbN where ṽ, w̃ ∈ TzW are lifts of v, w:

(Tpπ)ṽ = v, (Tpπ)w̃ = w.

Since the right hand side of (♣) vanishes if either v = 0 or w = 0 the
definition is independent of the choice of the lifts ṽ, w̃. Since the vector fields
tangent to the fiber leave ωP invariant and act transitively on the fiber, the
definition is independent of the choice of p ∈ π−1(b). Since π∗dωB = dωP = 0
and π is a surjective submersion, it follows that dωB = 0, i.e. ωB is closed.
Finally, ωB is non-degenerate, for if v ∈ TbB is such that ωB(v, w) = 0 for
all w ∈ TbB, then ωP (ṽ, w̃) = 0 for all w̃ ∈ TpP , so ṽ ∈ Kp, so v = 0.
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13 Reduction and Moment

Now assume that µ : M → LG∗ is an equivariant moment for a sympletic
G-manifold and put

P = µ−1(α)

where α ∈ LG∗ is a regular value for µ. The tangent space to P at a point
p ∈ P is given by

TpP = {p̂ ∈ TpM : dµA(p)p̂ = 0 ∀ A ∈ LG}.

This can be rewritten in the form

TpP = {p̂ ∈ TpM : ω(AM(p), p̂) = 0 ∀ A ∈ LG}

i.e.
TpP = (TpO)⊥

where O is the orbit of G through P and ⊥ denotes “sympletic orthogonal
complement”. Thus

Kp = (TpP ) ∩ (TpP )⊥

= (TpP ) ∩ (TpO)

= {BM(p) : dµA(p)BM(p) = 0 ∀A ∈ LG}
= {BM(p) : Ad(B)∗α = 0}
= {BM(p) : B ∈ LStab(α, G)}

where
Stab(α, G) = {a ∈ G : ad(a)∗α = α}

is the stabilizer (isotropy) group of α = µ(p). This stabilizer group Stab(α, G)
leaves invariant the manifold P = µ−1(α) since the moment µ is equivariant.
If the stabilizer group is connected its orbits are the leaves of the foliation
tangent to the sub-bundle K so the reduction π : P → B (if it exists) is the
projection of the Stab(α, G)-manifold P = µ−1(α) onto its orbit space.

14 Reduction of the order

Classically, the reduction construction was used to study a Hamiltonian
system which admitted some symmetry. By restricting to a level surface
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P = µ−1(α) of the moment and passing to the reduction B one obtains a
system on a lower dimensional manifold B. One says the new system is
obtained by reduction of the order.

Here’s how it works. Take a symplectic manifold (M, ω) with a symplectic
group action G → Diff(M, ω) : a 7→ aM and equivariant moment µ : M →
LG∗. Assume that the Hamiltonian H is invariant by G:

a∗MH = H

for a ∈ G. Let P = µ−1(α) be a regular level of the moment µ, ωP = ω|P
the restriction, B = P/Stab(α, G) the orbit space of P by the stabilizer sub-
group, π : P → B the projection onto the orbit space, and ωB the unique
symplectic form on B satisfying π∗ωB = ωP .

If we differentiate the equation a∗MH = H we obtain that `(AM)H = 0
for A ∈ LG. Hence

`(HM)µA = −{H, µA} = `(AM)H = 0

for all A so `(HM)µ = 0 so the vector field HM is tangent to the level surfaces
of µ. In particular, HM is tangent to P = µ−1(α) so we define the vector
field HP ∈ X (P, ωP ) to be the restriction

HP = HM |P.

On the other hand the condition a∗MH = H for a ∈ G shows that H|P is
invariant by the stabilizer subgroup Stab(α, G). Hence there is a function
K ∈ F(B, ωB) which lifts to H|P :

π∗K = H|P.

This K determnes a Hamiltonian vector field KB on B.
It is easy to see that the projection π : P → B intertwines the vector

field HP on P and the vector field KB on B:

Tπ ◦HP = KB.

Here’s the proof. Choose b ∈ B and p ∈ π−1(b). We must show that
TπHP (p) = KB(b). For this it is enough to show that ωB(TπHP (p), b̂) =
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ωB(KB(b), b̂) for all b̂ ∈ TbB. Choose b̂ ∈ TbB and p̂ ∈ TpP with Tπp̂ = b̂.
Then

ωB(TπHP (p), b̂) = π∗ωB(HP (p), p̂)

= ωP (HP (p), p̂)

= ω(HM(p), p̂)

= dH(p)p̂

= d(π∗K(b))p̂

= (π∗dK)(b)p̂

= dK(b)b̂

= ωB(KB(b), b̂)

as required.

15 Projective space

For example, take M = Cn+1 \ {0}, G = S1 acting diagonally

aM(z) = exp(iθ)z

for z ∈ Cn+1, a = exp(iθ) ∈ S1, and

ω = −i
n∑

j=0

dzjdz̄j = 2
n∑

j=0

dyjdxj

where zj = xj + iyj are the standard co-ordinates on Cn+1. Also ω is the
imaginary part of the (flat) Hermitean inner product on Cn+1:

ω(v, w) = 〈v, iw〉 − 〈w, iv〉

for v, w ∈ TzM = Cn+1 where

〈v, w〉 =
n∑

j=0

vjw̄j

for v = (v0, v1, . . . , vn), w = (w0, w1, . . . , wn).
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A moment for the action is given by

µ(z) = ‖z‖2.

The level surface P = µ−1(1) is the unit sphere S2n+1 and the stabalizer
subgroup Stab(1, G) is the whole group S1 (because the group is abelian)
so the orbit space N = CP n is complex projective space and the projection
π : S2n+1 → CP n is the Hopf map.

A skew-Hermitean matrix A ∈ u(n+1) determines a real valued function
H : Cn+1 → R by

H(z) = 〈Az, iz〉.

The corresponding Hamiltonian vector field on M = Cn+1 \ {0} is given by

HM(z) = Az.

Since H is invariant by the circle action, we obtain a symplectic vector field
AN on N = CP n. Thus the usual action of the unitary group U(n + 1) on
CP n is symplectic.

16 Linear actions

If G → GL(V ) is a linear representation of a compact group G on a real
vector space V there is a direct sum decomposition

V = V0 ⊕W1 ⊕ · · · ⊕Wq

where V0 is the fixed point set of the linear representation and W1, . . . ,Wq

are the irreducible components of the representation. By averaging we may
find an invariant inner product 〈·, ·〉 on V and take the decomposition to be
orthogonal.

Now suppose ω is a non-degenerate skew symmetric form on V invariant
by G. Then there is a skew-symmetric automorphism Ω of V with

ω(v, w) = 〈Ωv, w〉

for v, w ∈ V . Write Ω = PJ where P is positive definite and J is orthogonal.
Since Ω∗ = −Ω, Ω and Ω∗ commute, hence P =

√
ΩΩ∗ and J = P−1Ω

commute. By replacing 〈·, ·〉 by (v, w) 7→ 〈Pv, w〉 we may assume Ω = J .
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Now J−1 = J∗ = −J so J2 = −I: J is a complex structure on V . The
Hermitean inner product

(v, w) 7→ 〈v, w〉+ iω(v, w)

is invariant by G. We may decompose V into irreducible complex represen-
tations (this might be different from the real decomposition)2 and obtain a
J-invariant orthogonal decomposition

V = V0 ⊕ V1 ⊕ · · ·Vp.

Now the summands are orthogonal with respect to ω as well as with repect
to the inner product. Any infinitessimally unitary endomorphism A of V is
Hamiltonian:

A = J grad Q

where

Q(v) =
1

2
〈JAv, v〉.

Now specialize to the case where G is the torus T = T n = Rn/Zn. In this
case the irreducible components V1, . . . , Vp are all two dimensional (over R)
and the decomposition over R agrees with the decomposition over C. Any A
in the image of LT has form A = J grad Q where

Q = a1(x
2
1 + y2

1) + · · · ap(x
2
p + y2

p)

where (xi, yi) are suitable symplectic linear co-ordinates on Vi for i = 1, . . . , p.
Note in particular that

(1) The index of the quadratic form Q is even.

(2) The restriction of the skew-symmetric form ω to the space Vi is non-
degenerate. In particular, ω|V0 is non-degenerate.

2An example where the decomposition into real irreducibles is different from the de-
composition into complex irreducibles is given by O(n) acting on Cn. (The skew form ω
is the imaginary part of the standard Hermitean inner product on Cn.)
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17 Symplectic linearization

The action of a compact group G on a manifold M may be “linearized” near
a fixed point z ∈ M : use an equivariant exponential map TzM → M , say
the one arising from the geodesic spray of an invariant Riemannian metric.
The equivariant exponential map intertwines the linear action of G on TzM
with the action of G on M . Since the fixed point set of the linearized action
of G on TzM is a vector subspace of TzM , this proves that the fixed point
set of the action of G on M is a submanifold of M .

Now suppose that the action is symplectic. The equivariant exponential
map need not be symplectic, but we shall prove that there is a symplectic
linearization of the action. What is required is an equivariant Darboux’s
theorem: if ω0 and ω1 are G-invariant symplectic forms which agree at a
fixed point z of the G-action, then there is an equivariant diffeomorphism f ,
defined in an invariant neighborhood of z, satisfying f(z) = z and f ∗ω1 = ω0.

To prove this we simply imitate the proof of Darboux’s theorem given in
section 3 above. First write ω1 − ω0 = dθ and choose θ to be invariant by
averaging over the group. Then the vector field Xt defined by ι(Xt)ωt = θ
is equivariant with respect to G since ωt and θ are. Hence the solution
ft commutes with the G-action. In particular, the diffeomorphism f = f1

commutes with the G-action. As it solves f ∗ω1 = ω0 it provides the required
linearization.

18 Morse inequalities

In their most general form, the Morse inequalities state that

dim Hk(M) ≤
r∑

i=1

dim Hk(Mi, Mi−1)

where the Mi form a filtration of the space M :

∅ = M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ Mr = M.

These inequalities are usually applied in the following situation:

Mi = {x ∈ M : f(x) ≤ ai}
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where f : M → R is a smooth function and the ai are regular values of f
and there is exactly one critical value ci with

ai−1 < ci < ai.

We denote by Σ = Σ(f) the set of critical points of f :

Σ = {x ∈ M : df(x) = 0}

and by Σi those at level ci:

Σi = {x ∈ Σ : f(x) = ci}

so that
Σ = Σ1 ∪ Σ2 ∪ · · · ∪ Σr

and
Σi ⊂ int (Mi \Mi−1) .

The critical elements of f we mean the connected components of the
set Σ(f) of critical points of f . To ease the exposition we shall assume that
each Σi connected, so that the critical elements are Σ1, Σ2, . . . , Σr. This
assumption can easily be dropped.

Let x be a critical point f . The Hessian D2f(x) is the quadratic form on
the tangent space defined by

D2f(x)x̂2 =
d2

dt2

∣∣∣∣
t=0

f(γ(t))

where x̂ ∈ TxM and γ is any curve in M with γ(0) = x and γ̇(0) = x̂. (Since
df(x) = 0 the definition is independent of the choice of γ.) The dimension of
a maximal subspace of TxM on which the Hessian D2f(x) is negative-definite
is called the index of the critical point x. Thus at any critical point x we
have a (non-unique) direct sum decomposition

TxM = N0
x ⊕N s

x ⊕Nu
x

orthogonal with respect to the Hessian D2f(x) such that D2f(x) vanishes on
N0

x , is positive-definite on N s
x, and negative-definite on Nu

x . The dimension
u of Nu

x is the index of the critical point x.
The function f is called non-degenerate in the sense of Morse iff each

critical point x ∈ Σ is non-degenerate meaning that the Hessian D2f(x) is a
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non-degenerate quadratic form on the tangent space TxM . It follows in this
case that the critical points are isolated so that Σ is a discrete set (finite if M
is compact). In this case the critical elements are points. By our assumption
that each Σi is connected it follows that Σi is a single point and Mi/Mi−1

has the homotopy type of Su where u is the index. Hence

dim Hk(Mi, Mi−1) =

{
1 if k = u,
0 otherwise.

We obtain

Proposition 18.1 (Morse inequalities) For a function f which is non-
degenerate in the sense of Morse we have that

dim Hk(M) ≤ nk(f)

where nk(f) is the number of critical points of f with index k.

The function f is called non-degenerate in the sense of Bott iff
the critical set Σ is a submanifold of M and at each x ∈ Σ the restriction
of the Hessian D2f(x) to the normal space TxM

⊥ is non-degenerate. (This
condition is independent of the choice of Riemannian metric used to compute
the normal space.) In this case the index of a critical point x is constant for
x ∈ Σi. In this case for each x ∈ Σ the Hessian vanishes on TxΣ. In fact
the restriction of TM to each critical element Σi of Σ admits a (non-unique)
vector bundle splitting

TM |Σi = TΣi ⊕N s
i ⊕Nu

i

orthogonal with respect to the Hessian D2f such that the Hessian vanishes
on TxΣi, is positive definite on N s

i and negative definite on Nu
i . The fiber

dimension u of Nu
i is the the common index of the critical points x ∈ Σi.

The space Mi/Mi−1 has the homotopy type of the Thom space D/∂D where
D is the unit disk bundle of Nu

i . Hence, by the Thom isomorphism, we have
that

dim Hk(Mi, Mi−1) = dim Hk−u(Σi).

In particular, dim Hk(Mi, Mi−1) = 0 for k < u and dim Hu(Mi, Mi−1) = 1
(by our assumption that Σi is connected). We obtain
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Proposition 18.2 (Morse-Bott inequalities) For a function f which is
non-degenerate in the sense of Bott we have that

dim Hk(M) ≤ nk(f)

where nk(f) is the number of critical elements of f with index k.

19 Conected levels

Lemma 19.1 (Atiyah) Assume that M is compact and connected, that the
function f : M → R is non-degenerate in the sense of Bott, and that neither
f nor −f has a critical element of index 1. The each level f−1(c) for c ∈ R
is connected (or empty).

Proof: By continuity we may assume w.l.o.g that c is a regular value. Let

M+
c = f−1([c,∞)), M−

c = f−1((−∞, c]),

so
f−1(c) = M+

c ∩M−
c .

By Mayer-Vietoris we have an exact sequence

· · · → H1(M) → H0(f−1(c)) → H0(M+
c )⊕H0(M−

c ) → H0(M).

By the Morse-Bott inequalities we have

H1(M) = 0

so it is enough to prove that M−
c is connected. (To see that M+

c is also
connected replace f with −f .)

Now M−
c is diffeomorphic to Mk for some k = 1, 2, . . . , r. Consider the

exact sequence

· · · → H1(Mi, Mi−1) → H0(Mi−1) → H0(Mi) → H0(Mi, Mi−1).

Now H1(Mi, Mi−1) 6= 0 only if the index of the critical element Σi is 1
or 0. The former case is excluded by hypothesis and in the latter case Σi

is a local minimum. In any case (no matter what the index is) the map
H1(Mi, Mi−1) → H0(Mi−1) is zero so dim H0(Mi−1) ≤ dim H0(Mi). We
have equality for each i since by hypothesis dim H0(Mr) = dim H0(M) = 1.
Thus dim H0(Mi) = 1 for each i = 1, 2, . . . , r so each Mi is connected as
required.
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20 Symplectic toral actions

Let (M, ω) be a compact symplectic manifold and T n → Diff(M, ω) be a
Hamiltonian action of the torus T n = Rn/Zn. Using an invariant inner
product we identify

LT n = LT n∗ = Rn.

Let
µ = (f1, f2, . . . , fn) : M → Rn.

be an equivariant moment map for the action and

f = µA

be a linear combination of the components of µ Thus the corresponding
Hamiltonian vector field fM = AM is an infinitessimal generator of the toral
action. Its trajectories have tori as closures: sub-tori of the orbits of the
action. (Atiyah calls fM “almost periodic”.)

Lemma 20.1 Under these hypotheses the function f : M → R is non-
degenerate in the sense of Bott and has only crtical elements of even index.
(Hence, every level set f−1(c) is connected.)

Proof: The critical points of f are the zeros of the corresponding vector field
AM . With out loss of generality (replace T by a sub-torus) we may assume
that the one-parameter group subgroup of T generated by A is dense in T .
Now critical points of f = µA are the fixed points of the action. At any fixed
point z of the action we may choose symplectic co-ordinates which linearize
the action. In such co-ordinates f is a quadratic form

f = a1(x
2
1 + y2

1) + · · · ap(x
2
p + y2

p)

as in section 16 above which shows the critical point has even index.

21 Symplectic and convex

Theorem 21.1 (Atiyah) Let M be compact and symplectic and

µ : M → LT ∗ = Rn

be an equivariant moment for a symplectic action of the n dimensional torus
T = T n on M . Let Z1, . . . , Zr be the connected components of the fixed point
set of the action. Then
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(1) Each (non-empty) fiber µ−1(α) (α ∈ LT ∗) is connected.

(2) The moment µ is constant on each Zi (i = 1, . . . , r).

(3) The image µ(M) is a convex hull of the points f(Z1), . . . , f(Zr).

Proof: We prove part (1) by induction on n. The case n = 1 is lemma 20.1.
Now assume the theorem for n− 1 and write

µ(x) = (ν(x), f(x))

where ν : M → Rn−1 and f : M → R. Also put

α = (β, c)

where β ∈ Rn−1 and c ∈ R. It is enough to prove (1) for a dense set of α so
by Sard’s theorem we may assume that β is a regular value of ν. Form the
manifold

N = ν−1(β).

By the induction hypothesis N is connected. Since the torus is abelian, the
stabalizer is everything: Stab(β, T n−1) = T n−1.

As a warm-up we make the (unwarranted) assumption that the quotient
Q = N/T n−1 is a manifold. We’ll see how to eliminate this assumption at
the end of this section. Form the reduction π : N → Q where Q = N/T n−1.
The moment µ is invariant by the action of T n (since the torus is abelian)
so the function f is invariant by the action of T n−1 so there is a function
g : Q → R with f |N = g ◦ π. Evidentally µ−1(α) = π−1(g−1(c)). The fiber of
π is T n−1 which is connected and the level set g−1(c) ⊂ N is connected by
lemma 20.1. Hence µ−1(α) is connected as required.

For part (2) note that the fixed point set of the action is precisely the set
of points z ∈ M where dµA(z) = 0 for every A ∈ LT : in other words it is
the set of points z where dµ(z) = 0. As this set is a manifold it is clear that
µ is constant on each of its components.

For part (3) we first show that the image µ(M) is convex, i.e. that it
intersects every line L in Rn = LT ∗ in a segment. Choose a linear projection
π : Rn → Rn−1 and a point β ∈ Rn−1 so that L = π−1(β). Apply part (1) to
π ◦ µ. Then (π ◦ µ)−1(β) is connected so its image

µ

(
(π ◦ µ)−1(β)

)
= µ(M) ∩ π−1(β)
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is also connected as required.
For almost every A ∈ Rn = LT the one-parameter group t 7→ exp(tA) is

dense in T and so the trajectories of the corresponding vector field AM are
dense in the orbits of T . This means that the zeros of AM are precisly the
fixed points of the T -action. But the zeros of AM are the critical points of its
Hamiltonian µA. Hence µA achieves its maximum on one of the components
Zi of the fixed point set. This means that the image µ(M) lies to one side
of the hyperplane of all α ∈ LT ∗ such that

〈α, A〉 = 〈µ(Zi), A〉.

Since this holds for almost every A it follows that the image µ(M) is a subset
of the convex hull of the points µ(Zi) ∈ Rn = LT ∗. But we have already
seen that the image is convex so it must equal this convex hull.

Here’s how to get rid of the unwaranted assumption that Q is a manifold.
We work directly with N = ν−1(β). Since

µ−1(α) = (f |N)−1(c)

it is enough to show that f |N satisfies the hypothesis of Lemma 19.1, namely
that f |N is non-degenerate in the sense of Bott and the critical elements of
±f |N have even index. For this we choose a critical point x ∈ N of ±f |N .
By the method of Lagrange multipliers x is a critical point of the function

φ = f + λ ◦ ν : M → R

for some choice of the linear functional λ ∈ R(n−1)∗. Now φ is a linear
combination of the components of the moment map µ so by Lemma 20.1
its critical set Σ (that is, the fixed point set of its Hamiltonian flow) is a
submanifold of M and D2f(x) : TxM × TxM → R has even index. We will
show

22 Eigenvalue inequalities

Theorem 22.1 (Schur-Horn) A vector x = (x1, x2, . . . , xn) ∈ Rn is the
diagonal of a Hermitean matrix whose eigenvalues are the components of the
vector λ = (λ1, λ2, . . . , λn) if and only if x is a convex combination of the
vectors σ∗λ for σ ∈ Sn. Here Sn is the permutation group on {1, 2, . . . n} and
σ∗λ = (λσ(1), λσ(2), . . . , λσ(n)).
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The theorem may be reformulated as follows. Let Dn denote the set of
all real diagonal matrices. Let Λ ∈ Dn and let

O(Λ) = {aΛa−1 : a ∈ U(n)}

denote the orbit of Λ under unitary similarity. For any square n× n matrix
A, let δ(A) denote the n × n diagonal matrix having the same diagonal as
A. Then the Schur-Horn theorem takes the form

δ(O(Λ)) = convex hull of O(Λ) ∩Dn.

Let G = U(n) be the unitary group and LG = u(n) be its Lie algebra.
Thus u(n) is the set of all matrices iA where A is Hermitean. Notice that
LT = iDn is the Lie algebra of the maximal torus T = exp(iDn) in U(n)
consisting of all diagonal unitary matrices. The Lie algebra u(n) admits an
invariant inner product

〈A, B〉 = real part of tr(AB∗)

and with respect to this inner product the map

δ : u(n) → iDn

which assigns to each matrix A ∈ u(n) the diagonal matrix having the same
diagonal entries as A is orthogonal projection onto iDn. Thus the Schur-Horn
theorem is a special case of the following

Theorem 22.2 (Kostant) Let G be a compact Lie group, LG be its Lie
algebra, T be a maximal torus in G, and LT be its Lie Algebra. Let LG be
endowed with a G-invariant inner product. Then the orthogonal projection
of any orbit of G in LG onto LT is the convex hull of the intersection of that
orbit with LT .

Remark 22.3 The orthogonal projection LG → LT is independent of the
choice of the invariant inner product. To see this write

G = G1 ×G2 × · · · ×Gk × T0

where each Gi is compact with simple Lie algebra and T0 is a torus. Then

T = T1 × T2 × · · · × Tk × T0
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where Ti is a maximal torus in Gi for i = 1, 2, . . . , k. Now consider the
corresponding decompostion of the Lie algebra:

LG = LG1 ⊕ LG2 ⊕ · · · ⊕ LGk ⊕ LT0.

Each Gi acts irreducibly on LGi (else LGi would not be simple) so by Schur’s
lemma this direct sum decomposition must be orthogonal with respect to any
invariant inner product 〈·, ·〉 on LG. Thus the invariant inner product is given
by

〈A, B〉 = 〈A1, B1〉1 + 〈A2, B2〉2 + · · · 〈Ak, Bk〉k + 〈A0, B0〉0
where 〈·, ·〉i is a Gi-invariant inner product on LGi for i = 1, 2, . . . , k and
〈·, ·〉0 is a T0-invariant inner product on LT0. But the only invariant inner
product on a simple Lie algebra is a multiple of the Killing form, so the
orthogonal complement is given by

LT⊥ = LT⊥
1 ⊕ LT⊥

2 ⊕ · · · ⊕ LT⊥
k

where LT⊥
i is the sum of the root spaces of LGi. (This argument also shows

that to prove Kostant’s theorem it is enough to prove it when LG is simple.)

Proof of Kostant’s theorem: Using the G-invariant inner product we identify
LG and LG∗. The orbit N is a symplectic G-manifold and the inclusion
N ⊂ LG is an equivariant moment. Restrict the action to T : then the
inclusion followed by the orthogonal projection onto LT is an equivariant
moment. The fixed points of the action are the points α ∈ N at which

〈α, [A, B]〉 = 0

for all A ∈ LT and all B ∈ LG. In other words α is a fixed point for the
T -action exactly when [A, α] = 0 for all A ∈ LT and this the case exactly
when α ∈ LT .
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