
Kergin-Lagrange Interpolation

JWR

Sometime Ago

1. For each k = 0, 1, 2, . . . denote by ∆k the standard k-simplex, the set of
all

u = (u1, u2, . . . , uk) ∈ Rk

such that 0 ≤ u1 ≤ u2 ≤ · · · ≤ uk ≤ 1. A singular k-simplex in a
topological space V is a continuous map σ : ∆k → V . It determines a linear
functional ι(σ) : C0(V ) → R on the space of continuous functions on V via
the formula

〈ι(σ), f〉 =

∫
∆k

f(σ(u)) du

for f ∈ C0(V ); the integral on the right is with respect to the standard
measure on Rk. For a constant function the integral is independent of σ:

〈ι(σ), 1〉 =
1

k!
.

For a continuous map φ : V → W and a function g ∈ C0(W ) we have the
formula

〈ι(φ∗σ), g〉 = 〈ι(σ), φ∗g〉 .

(This formula is a triviality. It is not the change of variables formula for
integrals.)

2. From now on V (and eventually W ) will denote a finite dimensional vector
space over the real numbers R. An affine singular k simplex σ : ∆k → V
has the form

σ(u) = z0 +
k∑

j=1

uj(zj − z0)
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for u ∈ ∆k. The points

z0 = σ(0), zj = σ(ej),

where ej = (0, . . . , 0, 1, 0, . . . , 0) (1 in the jth position) are called the vertices
of σ. (The terminology is somewhat misleading; if the vertices are not in
general position, some of them may fail to be extreme points of the image
σ(∆k).)

3. Denote by Sk(V ) the homogeneous polynomials of degree k on V . Via
polarization we have the identification

Sk(V ) = Lk
s(V,R)

with the symmetric k-multilinear forms. We denote the inhomogeneous poly-
nomials of degree ≤ r by

P r(V ) =
r⊕

k=0

Sk(V )

The dimensions of Sk(V ) and P r(V ) are given by

dim Sk(V ) =

(
k + n− 1

k

)
, dim P r(V ) =

(
r + n

r

)
, n = dim V.

(The former formula is by the Ehrenfest trick and the latter by the identifi-
cation P r(Rn) = Sr(Rn+1).) We take the binomial coefficient

(
m
k

)
to be zero

if m < k and k > 0 so that Sk(V ) = {0} if V = {0} and k > 0. Always
however we take S0(V ) = R.

4. Let Qk(V ) denote the vector space of constant coefficient linear differential
operators on V which are homogeneous of degree k. The formula

q(D)e〈ξ,·〉 = q(ξ)e〈ξ,·〉

establishes a natural isomorphism

Qk(V ) = Sk(V ∗).

This isomorphism may be described as follows. Let Ck(V ) denotes the space
of k times continuously differentiable functions on V . Each q ∈ Sk(V ∗) =
Sk(V )∗ corresponds to the element q(D) ∈ Qk(V ) defined by

(q(D)f)(x) =
〈
q, Dkf(x)

〉
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where x ∈ V and the k-the derivative Dkf(x) ∈ Lk
s(V,R) = Sk(V ). Our

conventions require Q0(V ) = R for any V and Qk(V ) = {0} when k > 0 and
V = {0}.

5. A vector v ∈ V determines Dv ∈ Q1(V ) via

(Dvf)(x) = Df(x)v =
d

dt

∣∣∣∣
t=0

f(x + tv)

for x ∈ V and f ∈ C1(V ). The vector space Qk(V ) is spanned by the k-fold
products Dv1Dv2 · · ·Dvk

as v1, v2, . . . vk range over V . A function f ∈ C1(V )
and a vector v ∈ V determine a vectorfield fv : V → V satisfying the formula

div(fv) = Dvf

for the divergence.

6. Let φ : V → W an affine map and φ# : V → W be its linear part, i.e. φ#

is linear and φ(x) = φ(x0) + φ#(x − x0) for x, x0 ∈ V . There is an induced
transformation

φ# : Qk(V ) → Qk(W )

characterized by
φ#Dv = Dφ#v

for v ∈ V and

φ#

(
q1(D)q2(D)

)
= φ#

(
q1(D)

)
φ#

(
q2(D)

)
for q1(D) ∈ Qk1(V ), q2(D) ∈ Qk2(V ). The formula

φ∗(φ#q(D))g
)

= q(D)φ∗g

holds for q(D) ∈ Qk(V ) and g ∈ Ck(W ).

7. Given a singular k-simplex σ : ∆k → V and a differential operator q(D) ∈
Qj(D) we define a linear functional ι(σ, q) : Cj(V ) :→ R via

〈ι(σ, q), f〉 = 〈ι(σ), q(D)f〉

for f ∈ Cj(V ). (In the sequel we only consider those functionals ι(σ, q) for
which k = j and where σ is affine.) The formula

〈ι(σ, q), φ∗g〉 = 〈ι(φ∗σ, φ∗q), g〉

holds for an affine map φ : V → W and function g ∈ Cj(W ).
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8. Fix a sequence
X = (x0, x1, x2, . . . , xr) ∈ V r+1

in a vector space V of dimension n. We allow repetitions in X. For k =
0, 1, 2, . . . , r let X(k) denote the set of all affine singular k-simplices σ with
vertices xi0 , xi1 , . . . xik with 0 ≤ i0 < i1 < · · · < ik ≤ r; the set σ(∆k) ⊂ V is
the convex hull of xi0 , xi1 , . . . xik .

9. For each σ ∈ X(k) define a subspace B(σ) ⊂ Cr(V )∗ by

B(σ) = span {ι(σ, q) : q ∈ Qk(V )}

and for j = −1, 0, 1, 2, . . . , r define

Bj(X) = span {ι : ι ∈ B(σ), σ ∈ X(k), k ≤ j}.

Define B(X) = Br(X). There is a filtration

{0} = B−1(X) ⊂ B0(X) ⊂ B1(X) ⊂ · · · ⊂ Br(X) = B(X)

and B(σ) ⊂ Bj(X) for σ ∈ X(k) and k ≤ j.

Theorem 10. There is a direct sum decomposition

Cr(V ) = P r(V )⊕B(X)⊥

where B(X)⊥ denotes the annihilator of B(X) ⊂ Cr(V )∗.

Proof. It suffices to prove

(A) If p ∈ P r(V ) is such that 〈η, p〉 = 0 for all η ∈ B(X), then p = 0, and

(B) dim B(X) ≤ dim P r(V ).

11. We prove (A). Let p ∈ P r(V ) satisfy the hypothesis of (A) and write p
in multiindex notation

p(y) =
∑
|α|≤r

pαyα

with respect to affine coordinates y1, y2, . . . , yn on V . Suppose inductively
that pα = 0 for |α| > k; we show that pβ = 0 for |β| = k. Fix β and let
q(D) = (∂/∂y)β. Then (

q(D)p
)
(y) = β!pβ
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(a constant) by the induction hypothesis. Choose any element σ ∈ X(k).
Then

0 = 〈ι(σ, q), p〉 =
β!pβ

k!

ao pβ = 0 as required.

Lemma 12. Let σ ∈ X(k) and v ∈ V be parallel to σ(∆k), i.e. v ∈ σ#(Rk).
Then for any q(D) ∈ Qk−1(V ) we have

ι(σ, vq) ∈ Bk−1(X)

where (vq)(D) ∈ Qk(V ) is the composition

(vq)(D) = Dv ◦ q(D).

Proof. As v is parallel to σ there exists w ∈ Rk with σ#w = v. Let g = q(D)f
and id : ∆k → ∆k denote the identity map. Then

〈ι(σ, vq), f〉 = 〈ι(σ), Dvg〉
= 〈ι(id), σ∗(Dvg)〉
= 〈ι(id), (Dw(σ∗g))〉
= 〈ι(id), div(σ∗g)w)〉
=

∑
τ

(w · τ̂) 〈ι(id), τ ∗ g〉

=
∑

τ

(w · τ̂) 〈ι(τ, q), f〉

where the penultimate step is by the divergence theorem, τ ranges over the
faces of σ, and τ̂ denotes the outward normal to τ . We have shown that

ι(σ, vq) =
∑

τ

(w · τ̂ ι(τ, q)

which proves the lemma.

13. Identify V and V ∗ via an inner product. For σ ∈ X(k) let σ⊥ ⊂ V denote
the vector subspace perpendicular to the simplex σ(∆k), i.e. the vectors in
σ⊥ and the vectors in σ#(Rk) are orthogonal. The inclusion σ⊥ ⊂ V induces
an inclusion Qk(σ

⊥) ⊂ Qk(V ) The lemma gives a direct sum decomposition

B(σ) = B(σ,⊥)⊕B(σ) ∩Bk−1(X) (♦)
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where
B(σ,⊥) = {ι(σ, q) : q ∈ Qk(σ

⊥)}.

To check this choose a basis of Qk(V ) consisting consisting of compositions
Dv1Dv2 · · ·Dvk

where each vi is either parallel or perpendicular to σ(∆k). If
any vi is parallel to σ(∆k), the corresponding functional ι(σ, q) lies in B(σ)∩
Bk−1(X) by the lemma. Those compositions where all vi are perpendicular
to σ(∆k) lie in B(σ,⊥) by definition.

14. We prove (B). We may assume w.l.o.g. that

dim σ(∆k) = k for σ ∈ X(k) and k ≤ n (♥)

where n = dim V . This is because the set of all X ∈ V r+1 for which (♥)
holds is dense (and open) in V r+1 and dim B(X) is a lower semicontinuous
function of X.

By (♥) we have
dim σ⊥ = n− k

for σ ∈ X(k) and k ≤ n. Hence

dim B(σ,⊥) ≤ dim Qk(σ
⊥) =

(
k + (n− k)− 1

k

)
=

(
n− 1

k

)
.

The set X(k) has cardinality
(

r+1
k+1

)
=

(
r+1
r−k

)
so

dim Bk(X)/Bk−1(X) ≤
(

r + 1

r − k

)(
n− 1

k

)
.

As the subspaces Bk(X) filter B(X) we may sum these inequalities to obtain

dim B(X) ≤
r∑

k=0

(
r + 1

r − k

)(
n− 1

k

)
=

(
r + n

r

)
= dim P r(V )

as required. (In the last step we used the equation

r∑
k=0

(
a

r − k

)(
b

k

)
=

(
a + b

r

)
with a = r + 1 and b = n − 1. This formula says that the hypergeometric
probabilities sum to one.)
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Remark 15. It follows that dim B(X) = dim P r(V ). The subspaces B(σ)
span B(X) by definition so by (♦) and induction the spaces B(σ,⊥) span
B(X). Under the nondegeneracy hypothesis (♥) the proof gives a direct sum
decomposition

B(X) =
n−1⊕
k=0

⊕
σ∈X(k)

B(σ,⊥).

(If the sum were not direct, the dimension on the left would be smaller than
the dimension on the right.)

Definition 16. The projection

IX : Cr(V ) → P r(V )

corresponding to the splitting in theorem 10 is called Kergin-Lagrange
interpolation. For f ∈ Cr(V ) the polynomial IXf is the unique polynomial
satisfying

〈ι(σ, q), f〉 = 〈ι(σ, q), IXf〉
for every k = 0, 1, 2, . . . , r every σ ∈ X(k), and every q(D) ∈ Qk(V ).

Remark 17. By the previous remark, under the nondegeneracy hypothe-
sis (♥), the polynomial IXf is determined by the derivatives of f of order
< n, but in general, higher derivatives are required. For example, in the ex-
treme case x0 = x1 = · · ·xr, IXf is the Taylor polynomial of f at the point
x0. In case n = 1 the nondegeneracy hypothesis says that all the points xi

are distinct, so that IXf is the unique polynomial p of degree r such that
p(xi) = f(xi) for i = 0, 1, . . . , r, i.e. IX is the Lagrange interpolant of f .

Proposition 18. Suppose that φ : V → W is affine. Then

φ∗Iφ(X)g = IXφ∗g

for g ∈ Cr(W ).

Proof. As both sides of the equation are elements of P r(V ) it suffices to show
they give the same value at each element ι(σ, q) of B(X). The calculation is〈

ι(σ, q), φ∗Iφ(X)g
〉

=
〈
ι(φ∗σ, φ∗q), Iφ(X)g

〉
= 〈ι(φ∗σ, φ∗q), g〉
= 〈ι(σ, q), φ∗g〉
= 〈ι(σ, q), IXφ∗g〉
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as required.

Proposition 19. Assume that f ∈ Cr(V ) and q(D) ∈ Qk(V ) with k ≤ r.
Then

q(D)f = 0 =⇒ q(D)IXf = 0.

Proof. Assume that q(D)f = 0 and write

IXf = p0 + p1 + p2 + · · ·+ pr

with pj ∈ Sj(V ). Assume inductively that q(D)pi = 0 for i > j; we will show
that q(D)pj = 0. For j < k this is automtatic, so assume that j ≥ k. Using
affine coordinates and mutiindex notation write

q(D)pj(y) =
∑

|β|=j−k

bβyβ.

For |α| = j − k the induction hypothesis gives

qα(D)p = α!bα

where qα(D) ∈ Qj(V ) is defined by

qα(D) = Dαq(D), Dα =
∂|α|

∂yα
.

We have qα(D)f = 0 as q(D)f = 0. Choose σ ∈ X(j). Then

0 = 〈ι(σ, qα), f〉 = 〈ι(σ, qα), p〉 =
bαα!

(j − k)!

so bα = 0 so (as this holds for all α) q(D)pj = 0 as required.

Corollary 20. Let L be a vector subspace of V and suppose that f ∈ Cr(V ).
Then if f is constant on the translates of L the same is true of IXf .

Proof. The hypothesis is that Dvf = 0 for v ∈ L and the conclusion is that
DvIXf = 0 for v ∈ L. (This proof will be reused in the proof of theorem 25
below.) We can also use proposition 18: a function f is constant on the
translates of L iff f = φ∗g for some g ∈ W = V/L where φ : V → W is the
projection.
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Remark 21. The corollary says that if y1, y2, . . . , yn are affine coordinates
and f depends only on the first m of these coordinates, then the same is true
of IXf .

Theorem 22. The map IX is the unique linear map I : Cr(V ) → P r(X)
such that (i) I is continuous (in the topology of uniform converegence of
derivatives of order ≤ r on compact sets) and (ii) for any linear functional ξ :
V → R and any g ∈ Cr(R) the polynomial Iξ∗g is the Lagrange polynomial
interpolating g at the points ξ(x0), ξ(x1), . . . , ξ(xr).

Proof. The map IX satisfies (ii) by proposition 18:

IXξ∗g = ξ∗IξXg.

The map IX satisfies (i) since the functionals ι(σ, q) are continuous. For
uniqueness assume that I satisfies (i) and (ii). By (i) and the fact that
the polynomials are dense it suffices that If = IXf for any polynomial.
By proposition 18 and remark 17 condition (ii) says that If = IXf for
any function f ∈ Cr(V ) of form f = ξ∗g where g ∈ Cr(R). Hence by
linearity it suffices to show that (for any m) the polynomials of form f = ξ∗g
where ξ ∈ V ∗ and g ∈ Pm(R) span Pm(V ). If g(t) =

∑m
k=0 gkt

k, then
ξ∗g =

∑m
k=0 gkpkξ where

pkξ(x) = 〈ξ, x〉k .

Hence it suffices to prove the following

Lemma 23. The vector space Pm(V ) is spanned by the polynomials pkξ (k =
0, 1, 2, . . . ,m, ξ ∈ V ∗).

Proof. By the multinomial formula

pkξ(x) =
∑
|α|=k

(
k

α

)
ξαxα.

Suppose that ` ∈ Pm(V )∗ annihilates all pkξ. Let

〈`, p〉 =
∑
|α|≤m

`αpα, p(x) =
∑
|α|≤m

pαxα.

Then

0 = 〈`, pkξ〉 =
∑
|α|=k

`α

(
k

α

)
ξα

for all ξ (and k) so that `α = 0 for all α so ` = 0 as required.
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Definition 24. A map I : Cr(V ) → Cr(V ) satisfies the GMVP (Generalized
Mean Value Property) iff for every k = 0, 1, . . . , r, every q(D) ∈ Qk(V ), and
every choice 0 ≤ i0 < i1 < i2 < · · · ik ≤ r of distimct indices there is a point
x̄ in the convex hull of the points xi0 , xi1 , xi2 , . . . , xik such that

q(D)f(x̄) = q(D)If(x̄).

Theorem 25. The map IX is the unique map I : Cr(V ) → P r(X) which
(i) is linear and (ii) satisfies the GMVP for X.

Proof. To see that IX satisfies the GMVP for X note that the convex hull
of xi0 , xi1 , . . . , xik is σ(∆k) for the corresponding σ ∈ X(k). Thus (ii) says
that for every for every k = 0, 1, 2, . . . , r, every q(D) ∈ Qk(V ), and for every
σ ∈ X(k) the functions q(D)f and (D)IXf agree at some point x̄ of σ(∆k).
The equation

〈ι(σ, q), f〉 = 〈ι(σ, q), IXf〉

takes the form∫
∆k

(q(D)f)(σ(u)) du =

∫
∆k

(q(D)IXf)(σ(u)) du.

Now if g1 and g2 are real valued continuous functions on a connected set which
have the same integral over that set then there must be a point in that set
where they are equal: otherwise, one would be greater than the other at every
point and the integrals would not be equal. Thus q(D)f(x̄) = q(D)IXf(x̄)
at some x̄ = σ(x̄) as required.

To prove uniqueness assume that I satisfies (i) and (ii) of theorem 25; we
prove that I satisfies (i) and (ii) of theorem 22.

Step 1. Theorem 25 is true whem n = 1. The GMVP says that f and If
agree to order mk−1 where mk is the number of i such that xi = xk (so that
mk = 1 when the elements of X are distinct). The Lagrange interpolant of
f is the unique polynomial of degree ≤ r with this propoerty.

Step 2. Proposition 19 (and hence also corollary 20) remains true when I
is read for IX . The proof is essentially the same: Assume that q(D)f = 0
and write

If = p0 + p1 + p2 + · · ·+ pr

with pj ∈ Sj(V ). Assume inductively that q(D)pi = 0 for i > j; we will show
that q(D)pj = 0. For j < k this is automtatic, so assume that j ≥ k. Using
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mutiindex notation write

q(D)pj(y) =
∑

|β|=j−k

bβyβ.

For |α| = j − k the induction hypothesis gives

qα(D)p = α!bα

where qα(D) = Dαq(D) as the the proof of proposition 19. We have qα(D)f =
0 as q(D)f = 0. Choose σ ∈ X(j). By the GMVP we have

0 = qα(D)f(x̄) = qα(D)If(x̄) = α!bα

for some x̄ = σ(ū) in the σ(∆k) so bα = 0 so (as this holds for all α)
q(D)pj = 0 as required.

Step 3. The map I satisfies condition (ii) of theorem 22. In other words,
for any ξ ∈ V ∗ we have Iξ∗g = ξ∗Iξ(X)g for g ∈ Cr(R). By step 2 (the analog
of corollary 20) each g ∈ Cr(V ) determines a polynomial p ∈ P r(R) with
ξ∗p = Iξ∗g; define (ξ∗I) : Cr(R) → P r(R) by (ξ∗I)g = p. Then ξ∗(ξ∗I) = Iξ∗

so ξ∗I satisfies the GMVP. Hence by step 1 we have Iξ∗ = ξ∗Iξ(X) as required.

Step 4. The map I is continuous. We write If in multiindex notation:

(If)(x) =
∑
|α|≤r

(Iαf)xα;

We must shows that each of the linear functionals Iα is continuous. Assume
inductively that this is true for |α| > k; we show it is true for |α| = k. Apply
Dα = ∂|α|/∂xα to obtain

Dα(If)(x) = α!Iαf + (Rαf)(x)

where

(Rαf)(x) =
∑
β>α

β!

(β − α)!
(Iβf)xβ−α.

By the induction hypothesis there is a large compact set (which might as
well be the convex hull of X) and a constant C such that

|(Rαf)(x)| ≤ C‖f‖r
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where
‖f‖r = sup{|Dγf(x) : |γ| ≤ r, x ∈ K}.

Choose σ ∈ X(k). By the GMVP there is an x̄ ∈ σ(∆k) such that

|Dα(If)(x̄)| = |Dαf(x̄)| ≤ ‖f‖r.

Hence

|Iαf | = |Dαf(x̄)−Rαf(x̄)|
α!

≤ C + 1

α
‖f‖r

as required.
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[3] C.A. Micchelli: Algebraic aspects of interpolation, in Approximation
Theory, Proceedings of Symposia in Applied Mathematics, 36 AMS
(1986) pp. 81-102.

12


