Kergin-Lagrange Interpolation

JWR

Sometime Ago

1. For each k = 0, 1, 2, ... denote by Δ^k the standard k-simplex, the set of all

 $u = (u_1, u_2, \ldots, u_k) \in \mathbf{R}^k$

such that $0 \leq u_1 \leq u_2 \leq \cdots \leq u_k \leq 1$. A **singular** k-simplex in a topological space V is a continuous map $\sigma : \Delta^k \to V$. It determines a linear functional $\iota(\sigma) : C^0(V) \to \mathbf{R}$ on the space of continuous functions on V via the formula

$$\langle \iota(\sigma), f \rangle = \int_{\Delta^k} f(\sigma(u)) \, du$$

for $f \in C^0(V)$; the integral on the right is with respect to the standard measure on \mathbf{R}^k . For a constant function the integral is independent of σ :

$$\langle \iota(\sigma), 1 \rangle = \frac{1}{k!}.$$

For a continuous map $\phi: V \to W$ and a function $g \in C^0(W)$ we have the formula

$$\langle \iota(\phi_*\sigma), g \rangle = \langle \iota(\sigma), \phi^*g \rangle.$$

(This formula is a triviality. It is not the change of variables formula for integrals.)

2. From now on V (and eventually W) will denote a finite dimensional vector space over the real numbers **R**. An **affine singular** k **simplex** $\sigma : \Delta^k \to V$ has the form

$$\sigma(u) = z_0 + \sum_{j=1}^{\kappa} u_j (z_j - z_0)$$

for $u \in \Delta^k$. The points

$$z_0 = \sigma(0), \quad z_j = \sigma(e_j),$$

where $e_j = (0, \ldots, 0, 1, 0, \ldots, 0)$ (1 in the *j*th position) are called the **vertices** of σ . (The terminology is somewhat misleading; if the vertices are not in general position, some of them may fail to be extreme points of the image $\sigma(\Delta^k)$.)

3. Denote by $S^k(V)$ the homogeneous polynomials of degree k on V. Via polarization we have the identification

$$S^k(V) = L^k_s(V, \mathbf{R})$$

with the symmetric k-multilinear forms. We denote the inhomogeneous polynomials of degree $\leq r$ by

$$P^{r}(V) = \bigoplus_{k=0}^{r} S^{k}(V)$$

The dimensions of $S^k(V)$ and $P^r(V)$ are given by

$$\dim S^k(V) = \binom{k+n-1}{k}, \qquad \dim P^r(V) = \binom{r+n}{r}, \qquad n = \dim V.$$

(The former formula is by the Ehrenfest trick and the latter by the identification $P^r(\mathbf{R}^n) = S^r(\mathbf{R}^{n+1})$.) We take the binomial coefficient $\binom{m}{k}$ to be zero if m < k and k > 0 so that $S^k(V) = \{0\}$ if $V = \{0\}$ and k > 0. Always however we take $S^0(V) = \mathbf{R}$.

4. Let $Q_k(V)$ denote the vector space of constant coefficient linear differential operators on V which are homogeneous of degree k. The formula

$$q(D)e^{\langle \xi, \cdot \rangle} = q(\xi)e^{\langle \xi, \cdot \rangle}$$

establishes a natural isomorphism

$$Q_k(V) = S^k(V^*).$$

This isomorphism may be described as follows. Let $C^k(V)$ denotes the space of k times continuously differentiable functions on V. Each $q \in S^k(V^*) = S^k(V)^*$ corresponds to the element $q(D) \in Q_k(V)$ defined by

$$(q(D)f)(x) = \langle q, D^k f(x) \rangle$$

where $x \in V$ and the k-the derivative $D^k f(x) \in L_s^k(V, \mathbf{R}) = S^k(V)$. Our conventions require $Q_0(V) = \mathbf{R}$ for any V and $Q_k(V) = \{0\}$ when k > 0 and $V = \{0\}$.

5. A vector $v \in V$ determines $D_v \in Q_1(V)$ via

$$(D_v f)(x) = Df(x)v = \left. \frac{d}{dt} \right|_{t=0} f(x+tv)$$

for $x \in V$ and $f \in C^1(V)$. The vector space $Q_k(V)$ is spanned by the k-fold products $D_{v_1}D_{v_2}\cdots D_{v_k}$ as $v_1, v_2, \ldots v_k$ range over V. A function $f \in C^1(V)$ and a vector $v \in V$ determine a vectorfield $fv : V \to V$ satisfying the formula

$$\operatorname{div}(fv) = D_v f$$

for the divergence.

6. Let $\phi: V \to W$ an affine map and $\phi_{\#}: V \to W$ be its linear part, i.e. $\phi_{\#}$ is linear and $\phi(x) = \phi(x_0) + \phi_{\#}(x - x_0)$ for $x, x_0 \in V$. There is an induced transformation

$$\phi_{\#}: Q_k(V) \to Q_k(W)$$

characterized by

$$\phi_{\#} D_v = D_{\phi_{\#} v}$$

for $v \in V$ and

$$\phi_{\#}(q_1(D)q_2(D)) = \phi_{\#}(q_1(D))\phi_{\#}(q_2(D))$$

for $q_1(D) \in Q_{k_1}(V), q_2(D) \in Q_{k_2}(V)$. The formula

$$\phi^*(\phi_\# q(D))g) = q(D)\phi^*g$$

holds for $q(D) \in Q_k(V)$ and $g \in C^k(W)$.

7. Given a singular k-simplex $\sigma : \Delta^k \to V$ and a differential operator $q(D) \in Q_j(D)$ we define a linear functional $\iota(\sigma, q) : C^j(V) :\to \mathbf{R}$ via

$$\langle \iota(\sigma, q), f \rangle = \langle \iota(\sigma), q(D) f \rangle$$

for $f \in C^{j}(V)$. (In the sequel we only consider those functionals $\iota(\sigma, q)$ for which k = j and where σ is affine.) The formula

$$\langle \iota(\sigma,q),\phi^*g\rangle = \langle \iota(\phi_*\sigma,\phi_*q),g\rangle$$

holds for an affine map $\phi: V \to W$ and function $g \in C^{j}(W)$.

8. Fix a sequence

$$X = (x_0, x_1, x_2, \dots, x_r) \in V^{r+1}$$

in a vector space V of dimension n. We allow repetitions in X. For $k = 0, 1, 2, \ldots, r$ let $X^{(k)}$ denote the set of all affine singular k-simplices σ with vertices $x_{i_0}, x_{i_1}, \ldots, x_{i_k}$ with $0 \leq i_0 < i_1 < \cdots < i_k \leq r$; the set $\sigma(\Delta^k) \subset V$ is the convex hull of $x_{i_0}, x_{i_1}, \ldots, x_{i_k}$.

9. For each $\sigma \in X^{(k)}$ define a subspace $B(\sigma) \subset C^r(V)^*$ by

$$B(\sigma) = \operatorname{span} \left\{ \iota(\sigma, q) : q \in Q_k(V) \right\}$$

and for j = -1, 0, 1, 2, ..., r define

$$B_j(X) = \operatorname{span} \{\iota : \iota \in B(\sigma), \ \sigma \in X^{(k)}, \ k \le j\}.$$

Define $B(X) = B_r(X)$. There is a filtration

$$\{0\} = B_{-1}(X) \subset B_0(X) \subset B_1(X) \subset \dots \subset B_r(X) = B(X)$$

and $B(\sigma) \subset B_j(X)$ for $\sigma \in X^{(k)}$ and $k \leq j$.

Theorem 10. There is a direct sum decomposition

$$C^{r}(V) = P^{r}(V) \oplus B(X)^{\perp}$$

where $B(X)^{\perp}$ denotes the annihilator of $B(X) \subset C^{r}(V)^{*}$.

(

Proof. It suffices to prove

- (A) If $p \in P^r(V)$ is such that $\langle \eta, p \rangle = 0$ for all $\eta \in B(X)$, then p = 0, and
- (B) $\dim B(X) \leq \dim P^r(V)$.

11. We prove (A). Let $p \in P^r(V)$ satisfy the hypothesis of (A) and write p in multiindex notation

$$p(y) = \sum_{|\alpha| \le r} p_{\alpha} y^{\alpha}$$

with respect to affine coordinates y_1, y_2, \ldots, y_n on V. Suppose inductively that $p_{\alpha} = 0$ for $|\alpha| > k$; we show that $p_{\beta} = 0$ for $|\beta| = k$. Fix β and let $q(D) = (\partial/\partial y)^{\beta}$. Then

$$q(D)p)(y) = \beta! p_{\beta}$$

(a constant) by the induction hypothesis. Choose any element $\sigma \in X^{(k)}$. Then

$$0 = \langle \iota(\sigma, q), p \rangle = \frac{\beta! p_{\beta}}{k!}$$

ao $p_{\beta} = 0$ as required.

Lemma 12. Let $\sigma \in X^{(k)}$ and $v \in V$ be parallel to $\sigma(\Delta^k)$, i.e. $v \in \sigma_{\#}(\mathbf{R}^k)$. Then for any $q(D) \in Q_{k-1}(V)$ we have

$$\iota(\sigma, vq) \in B_{k-1}(X)$$

where $(vq)(D) \in Q_k(V)$ is the composition

$$(vq)(D) = D_v \circ q(D).$$

Proof. As v is parallel to σ there exists $w \in \mathbf{R}^k$ with $\sigma_{\#}w = v$. Let g = q(D)f and id: $\Delta^k \to \Delta^k$ denote the identity map. Then

$$\begin{aligned} \langle \iota(\sigma, vq), f \rangle &= \langle \iota(\sigma), D_v g \rangle \\ &= \langle \iota(\mathrm{id}), \sigma^*(D_v g) \rangle \\ &= \langle \iota(\mathrm{id}), (D_w(\sigma^*g)) \rangle \\ &= \langle \iota(\mathrm{id}), \mathrm{div}(\sigma^*g) w) \rangle \\ &= \sum_{\tau} (w \cdot \hat{\tau}) \langle \iota(\mathrm{id}), \tau * g \rangle \\ &= \sum_{\tau} (w \cdot \hat{\tau}) \langle \iota(\tau, q), f \rangle \end{aligned}$$

where the penultimate step is by the divergence theorem, τ ranges over the faces of σ , and $\hat{\tau}$ denotes the outward normal to τ . We have shown that

$$\iota(\sigma, vq) = \sum_{\tau} (w \cdot \hat{\tau}\iota(\tau, q))$$

which proves the lemma.

13. Identify V and V^* via an inner product. For $\sigma \in X^{(k)}$ let $\sigma^{\perp} \subset V$ denote the vector subspace perpendicular to the simplex $\sigma(\Delta^k)$, i.e. the vectors in σ^{\perp} and the vectors in $\sigma_{\#}(\mathbf{R}^k)$ are orthogonal. The inclusion $\sigma^{\perp} \subset V$ induces an inclusion $Q_k(\sigma^{\perp}) \subset Q_k(V)$ The lemma gives a direct sum decomposition

$$B(\sigma) = B(\sigma, \bot) \oplus B(\sigma) \cap B_{k-1}(X) \tag{(\diamond)}$$

where

$$B(\sigma, \bot) = \{\iota(\sigma, q) : q \in Q_k(\sigma^{\bot})\}.$$

To check this choose a basis of $Q_k(V)$ consisting consisting of compositions $D_{v_1}D_{v_2}\cdots D_{v_k}$ where each v_i is either parallel or perpendicular to $\sigma(\Delta^k)$. If any v_i is parallel to $\sigma(\Delta^k)$, the corresponding functional $\iota(\sigma, q)$ lies in $B(\sigma) \cap B_{k-1}(X)$ by the lemma. Those compositions where all v_i are perpendicular to $\sigma(\Delta^k)$ lie in $B(\sigma, \bot)$ by definition.

14. We prove (B). We may assume w.l.o.g. that

dim
$$\sigma(\Delta^k) = k$$
 for $\sigma \in X^{(k)}$ and $k \le n$ (\heartsuit)

where $n = \dim V$. This is because the set of all $X \in V^{r+1}$ for which (\heartsuit) holds is dense (and open) in V^{r+1} and $\dim B(X)$ is a lower semicontinuous function of X.

By (\heartsuit) we have

$$\dim \sigma^{\perp} = n - k$$

for $\sigma \in X^{(k)}$ and $k \leq n$. Hence

$$\dim B(\sigma, \bot) \le \dim Q_k(\sigma^{\bot}) = \binom{k + (n - k) - 1}{k} = \binom{n - 1}{k}.$$

The set $X^{(k)}$ has cardinality $\binom{r+1}{k+1} = \binom{r+1}{r-k}$ so

$$\dim B_k(X)/B_{k-1}(X) \le \binom{r+1}{r-k}\binom{n-1}{k}$$

As the subspaces $B_k(X)$ filter B(X) we may sum these inequalities to obtain

$$\dim B(X) \le \sum_{k=0}^{r} \binom{r+1}{r-k} \binom{n-1}{k} = \binom{r+n}{r} = \dim P^{r}(V)$$

as required. (In the last step we used the equation

$$\sum_{k=0}^{r} \binom{a}{r-k} \binom{b}{k} = \binom{a+b}{r}$$

with a = r + 1 and b = n - 1. This formula says that the hypergeometric probabilities sum to one.)

Remark 15. It follows that dim $B(X) = \dim P^r(V)$. The subspaces $B(\sigma)$ span B(X) by definition so by (\diamondsuit) and induction the spaces $B(\sigma, \bot)$ span B(X). Under the nondegeneracy hypothesis (\heartsuit) the proof gives a direct sum decomposition

$$B(X) = \bigoplus_{k=0}^{n-1} \bigoplus_{\sigma \in X^{(k)}} B(\sigma, \bot).$$

(If the sum were not direct, the dimension on the left would be smaller than the dimension on the right.)

Definition 16. The projection

$$I_X: C^r(V) \to P^r(V)$$

corresponding to the splitting in theorem 10 is called **Kergin-Lagrange** interpolation. For $f \in C^r(V)$ the polynomial $I_X f$ is the unique polynomial satisfying

 $\langle \iota(\sigma,q), f \rangle = \langle \iota(\sigma,q), I_X f \rangle$

for every k = 0, 1, 2, ..., r every $\sigma \in X^{(k)}$, and every $q(D) \in Q_k(V)$.

Remark 17. By the previous remark, under the nondegeneracy hypothesis (\heartsuit), the polynomial $I_X f$ is determined by the derivatives of f of order < n, but in general, higher derivatives are required. For example, in the extreme case $x_0 = x_1 = \cdots x_r$, $I_X f$ is the Taylor polynomial of f at the point x_0 . In case n = 1 the nondegeneracy hypothesis says that all the points x_i are distinct, so that $I_X f$ is the unique polynomial p of degree r such that $p(x_i) = f(x_i)$ for $i = 0, 1, \ldots, r$, i.e. I_X is the Lagrange interpolant of f.

Proposition 18. Suppose that $\phi: V \to W$ is affine. Then

$$\phi^* I_{\phi(X)} g = I_X \phi^* g$$

for $g \in C^r(W)$.

Proof. As both sides of the equation are elements of $P^r(V)$ it suffices to show they give the same value at each element $\iota(\sigma, q)$ of B(X). The calculation is

$$\begin{aligned} \left\langle \iota(\sigma,q),\phi^*I_{\phi(X)}g\right\rangle &= \left\langle \iota(\phi_*\sigma,\phi_*q),I_{\phi(X)}g\right\rangle \\ &= \left\langle \iota(\phi_*\sigma,\phi_*q),g\right\rangle \\ &= \left\langle \iota(\sigma,q),\phi^*g\right\rangle \\ &= \left\langle \iota(\sigma,q),I_X\phi^*g\right\rangle \end{aligned}$$

as required.

Proposition 19. Assume that $f \in C^r(V)$ and $q(D) \in Q_k(V)$ with $k \leq r$. Then

$$q(D)f = 0 \implies q(D)I_Xf = 0.$$

Proof. Assume that q(D)f = 0 and write

$$I_X f = p_0 + p_1 + p_2 + \dots + p_r$$

with $p_j \in S^j(V)$. Assume inductively that $q(D)p_i = 0$ for i > j; we will show that $q(D)p_j = 0$. For j < k this is automatic, so assume that $j \ge k$. Using affine coordinates and mutiindex notation write

$$q(D)p_j(y) = \sum_{|\beta|=j-k} b_{\beta} y^{\beta}.$$

For $|\alpha| = j - k$ the induction hypothesis gives

$$q_{\alpha}(D)p = \alpha!b_{\alpha}$$

where $q_{\alpha}(D) \in Q_j(V)$ is defined by

$$q_{\alpha}(D) = D^{\alpha}q(D), \qquad D^{\alpha} = \frac{\partial^{|\alpha|}}{\partial y^{\alpha}}.$$

We have $q_{\alpha}(D)f = 0$ as q(D)f = 0. Choose $\sigma \in X^{(j)}$. Then

$$0 = \langle \iota(\sigma, q_{\alpha}), f \rangle = \langle \iota(\sigma, q_{\alpha}), p \rangle = \frac{b_{\alpha} \alpha!}{(j-k)!}$$

so $b_{\alpha} = 0$ so (as this holds for all α) $q(D)p_j = 0$ as required.

Corollary 20. Let L be a vector subspace of V and suppose that $f \in C^r(V)$. Then if f is constant on the translates of L the same is true of $I_X f$.

Proof. The hypothesis is that $D_v f = 0$ for $v \in L$ and the conclusion is that $D_v I_X f = 0$ for $v \in L$. (This proof will be reused in the proof of theorem 25 below.) We can also use proposition 18: a function f is constant on the translates of L iff $f = \phi^* g$ for some $g \in W = V/L$ where $\phi : V \to W$ is the projection.

Remark 21. The corollary says that if y_1, y_2, \ldots, y_n are affine coordinates and f depends only on the first m of these coordinates, then the same is true of $I_X f$.

Theorem 22. The map I_X is the unique linear map $I : C^r(V) \to P^r(X)$ such that (i) I is continuous (in the topology of uniform convergence of derivatives of order $\leq r$ on compact sets) and (ii) for any linear functional ξ : $V \to \mathbf{R}$ and any $g \in C^r(\mathbf{R})$ the polynomial $I\xi^*g$ is the Lagrange polynomial interpolating g at the points $\xi(x_0), \xi(x_1), \ldots, \xi(x_r)$.

Proof. The map I_X satisfies (ii) by proposition 18:

$$I_X \xi^* g = \xi^* I_{\xi X} g$$

The map I_X satisfies (i) since the functionals $\iota(\sigma, q)$ are continuous. For uniqueness assume that I satisfies (i) and (ii). By (i) and the fact that the polynomials are dense it suffices that $If = I_X f$ for any polynomial. By proposition 18 and remark 17 condition (ii) says that $If = I_X f$ for any function $f \in C^r(V)$ of form $f = \xi^* g$ where $g \in C^r(\mathbf{R})$. Hence by linearity it suffices to show that (for any m) the polynomials of form $f = \xi^* g$ where $\xi \in V^*$ and $g \in P^m(\mathbf{R})$ span $P^m(V)$. If $g(t) = \sum_{k=0}^m g_k t^k$, then $\xi^* g = \sum_{k=0}^m g_k p_{k\xi}$ where

$$p_{k\xi}(x) = \langle \xi, x \rangle^k \,.$$

Hence it suffices to prove the following

Lemma 23. The vector space $P^m(V)$ is spanned by the polynomials $p_{k\xi}$ $(k = 0, 1, 2, ..., m, \xi \in V^*)$.

Proof. By the multinomial formula

$$p_{k\xi}(x) = \sum_{|\alpha|=k} \binom{k}{\alpha} \xi^{\alpha} x^{\alpha}.$$

Suppose that $\ell \in P^m(V)^*$ annihilates all $p_{k\xi}$. Let

$$\langle \ell, p \rangle = \sum_{|\alpha| \le m} \ell_{\alpha} p_{\alpha}, \qquad p(x) = \sum_{|\alpha| \le m} p_{\alpha} x^{\alpha}.$$

Then

$$0 = \langle \ell, p_{k\xi} \rangle = \sum_{|\alpha|=k} \ell_{\alpha} \binom{k}{\alpha} \xi^{\alpha}$$

for all ξ (and k) so that $\ell_{\alpha} = 0$ for all α so $\ell = 0$ as required.

Definition 24. A map $I : C^r(V) \to C^r(V)$ satisfies the **GMVP** (Generalized Mean Value Property) iff for every k = 0, 1, ..., r, every $q(D) \in Q_k(V)$, and every choice $0 \le i_0 < i_1 < i_2 < \cdots > i_k \le r$ of distinct indices there is a point \bar{x} in the convex hull of the points $x_{i_0}, x_{i_1}, x_{i_2}, \ldots, x_{i_k}$ such that

$$q(D)f(\bar{x}) = q(D)If(\bar{x}).$$

Theorem 25. The map I_X is the unique map $I : C^r(V) \to P^r(X)$ which (i) is linear and (ii) satisfies the GMVP for X.

Proof. To see that I_X satisfies the GMVP for X note that the convex hull of $x_{i_0}, x_{i_1}, \ldots, x_{i_k}$ is $\sigma(\Delta^k)$ for the corresponding $\sigma \in X^{(k)}$. Thus (ii) says that for every for every $k = 0, 1, 2, \ldots, r$, every $q(D) \in Q_k(V)$, and for every $\sigma \in X^{(k)}$ the functions q(D)f and $(D)I_Xf$ agree at some point \bar{x} of $\sigma(\Delta^k)$. The equation

$$\langle \iota(\sigma,q), f \rangle = \langle \iota(\sigma,q), I_X f \rangle$$

takes the form

$$\int_{\Delta^k} (q(D)f)(\sigma(u)) \, du = \int_{\Delta^k} (q(D)I_X f)(\sigma(u)) \, du$$

Now if g_1 and g_2 are real valued continuous functions on a connected set which have the same integral over that set then there must be a point in that set where they are equal: otherwise, one would be greater than the other at every point and the integrals would not be equal. Thus $q(D)f(\bar{x}) = q(D)I_X f(\bar{x})$ at some $\bar{x} = \sigma(\bar{x})$ as required.

To prove uniqueness assume that I satisfies (i) and (ii) of theorem 25; we prove that I satisfies (i) and (ii) of theorem 22.

Step 1. Theorem 25 is true when n = 1. The GMVP says that f and If agree to order $m_k - 1$ where m_k is the number of i such that $x_i = x_k$ (so that $m_k = 1$ when the elements of X are distinct). The Lagrange interpolant of f is the unique polynomial of degree $\leq r$ with this property.

Step 2. Proposition 19 (and hence also corollary 20) remains true when I is read for I_X . The proof is essentially the same: Assume that q(D)f = 0 and write

$$If = p_0 + p_1 + p_2 + \dots + p_r$$

with $p_j \in S^j(V)$. Assume inductively that $q(D)p_i = 0$ for i > j; we will show that $q(D)p_j = 0$. For j < k this is automatic, so assume that $j \ge k$. Using

mutiindex notation write

$$q(D)p_j(y) = \sum_{|\beta|=j-k} b_{\beta} y^{\beta}.$$

For $|\alpha| = j - k$ the induction hypothesis gives

$$q_{\alpha}(D)p = \alpha!b_{\alpha}$$

where $q_{\alpha}(D) = D^{\alpha}q(D)$ as the proof of proposition 19. We have $q_{\alpha}(D)f = 0$ as q(D)f = 0. Choose $\sigma \in X^{(j)}$. By the GMVP we have

$$0 = q_{\alpha}(D)f(\bar{x}) = q_{\alpha}(D)If(\bar{x}) = \alpha!b_{\alpha}$$

for some $\bar{x} = \sigma(\bar{u})$ in the $\sigma(\Delta^k)$ so $b_{\alpha} = 0$ so (as this holds for all α) $q(D)p_j = 0$ as required.

Step 3. The map I satisfies condition (ii) of theorem 22. In other words, for any $\xi \in V^*$ we have $I\xi^*g = \xi^*I_{\xi(X)}g$ for $g \in C^r(\mathbf{R})$. By step 2 (the analog of corollary 20) each $g \in C^r(V)$ determines a polynomial $p \in P^r(\mathbf{R})$ with $\xi^*p = I\xi^*g$; define $(\xi_*I) : C^r(\mathbf{R}) \to P^r(\mathbf{R})$ by $(\xi_*I)g = p$. Then $\xi^*(\xi_*I) = I\xi^*$ so ξ_*I satisfies the GMVP. Hence by step 1 we have $I\xi^* = \xi^*I_{\xi(X)}$ as required.

Step 4. The map I is continuous. We write If in multiindex notation:

$$(If)(x) = \sum_{|\alpha| \le r} (I_{\alpha}f)x^{\alpha};$$

We must shows that each of the linear functionals I_{α} is continuous. Assume inductively that this is true for $|\alpha| > k$; we show it is true for $|\alpha| = k$. Apply $D^{\alpha} = \partial^{|\alpha|} / \partial x^{\alpha}$ to obtain

$$D^{\alpha}(If)(x) = \alpha! I_{\alpha}f + (R_{\alpha}f)(x)$$

where

$$(R_{\alpha}f)(x) = \sum_{\beta > \alpha} \frac{\beta!}{(\beta - \alpha)!} (I_{\beta}f) x^{\beta - \alpha}.$$

By the induction hypothesis there is a large compact set (which might as well be the convex hull of X) and a constant C such that

$$|(R_{\alpha}f)(x)| \le C||f||_r$$

where

$$||f||_r = \sup\{|D^{\gamma}f(x): |\gamma| \le r, x \in K\}.$$

Choose $\sigma \in X^{(k)}$. By the GMVP there is an $\bar{x} \in \sigma(\Delta^k)$ such that

$$|D^{\alpha}(If)(\bar{x})| = |D^{\alpha}f(\bar{x})| \le ||f||_{r}.$$

Hence

$$|I_{\alpha}f| = \frac{|D^{\alpha}f(\bar{x}) - R_{\alpha}f(\bar{x})|}{\alpha!} \le \frac{C+1}{\alpha} ||f||_{r}$$

as required.

References

- [1] P. Kergin: A natural interpolation of C^k functions, J. Approximation Theory, **19** (1980) 278-293.
- [2] S. Helgason: The Radon Transform, Birkhäuser, 1980.
- [3] C.A. Micchelli: Algebraic aspects of interpolation, in Approximation Theory, Proceedings of Symposia in Applied Mathematics, 36 AMS (1986) pp. 81-102.