Kergin-Lagrange Interpolation

JWR

Sometime Ago

1. For each k = 0,1,2,... denote by A* the standard k-simplex, the set of
all
u = (u1,ug, ..., u;) € RF

such that 0 < u; < uy < -+ <y, < 1. A singular k-simplex in a
topological space V is a continuous map o : A¥ — V. It determines a linear
functional (o) : C°(V) — R on the space of continuous functions on V' via
the formula

(o), fr=[ flo(u))du
Ak

for f € C°V); the integral on the right is with respect to the standard
measure on R¥. For a constant function the integral is independent of o:

(o), 1) = %

For a continuous map ¢ : V — W and a function g € C°(W) we have the
formula

((¢.0),9) = (o), ¢"9) -

(This formula is a triviality. It is not the change of variables formula for
integrals.)

2. From now on V' (and eventually W) will denote a finite dimensional vector
space over the real numbers R. An affine singular &k simplex o : A¥ — V
has the form

o(u) =z + Zuj(zj — 20)



for u € A*. The points
20 = 0(0), z =ol(ej),

where e; = (0,...,0,1,0,...,0) (1in the jth position) are called the vertices
of 0. (The terminology is somewhat misleading; if the vertices are not in
general position, some of them may fail to be extreme points of the image

a(AF).)

3. Denote by S*(V) the homogeneous polynomials of degree k on V. Via
polarization we have the identification

SHV) = Li(V.R)

with the symmetric k-multilinear forms. We denote the inhomogeneous poly-
nomials of degree < r by

P'(V) =P sH(V)

The dimensions of S*(V) and P"(V) are given by
E+n-—1

dimSk(V)—< L > dimP”(V)—(

(The former formula is by the Ehrenfest trick and the latter by the identifi-
cation P"(R") = S"(R"*!).) We take the binomial coefficient (') to be zero
if m < k and k > 0 so that S¥(V) = {0} if V = {0} and k > 0. Always
however we take S°(V') = R.

r+n

), n=dmV.
r

4. Let Q¢ (V) denote the vector space of constant coefficient linear differential
operators on V' which are homogeneous of degree k. The formula

((D)elé) = g(e)ee”
establishes a natural isomorphism
Qx(V) = S*(V™).

This isomorphism may be described as follows. Let C*(V) denotes the space
of k times continuously differentiable functions on V. Each ¢ € S*¥(V*) =
Sk(V)* corresponds to the element (D) € Q(V) defined by

(a(D)f)(x) = (a, D" f(x))
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where * € V and the k-the derivative D*f(x) € L*¥(V,R) = S*(V). Our
conventions require Qo(V) = R for any V and Q(V') = {0} when k£ > 0 and
V = {0}.

5. A vector v € V determines D, € Q1(V) via

(D.1)(x) = Di(ayo = & St

for x € V and f € C'(V). The vector space Q(V) is spanned by the k-fold
products Dy, Dy, -+ - D,, as vy, s, ... v, range over V. A function f € C(V)
and a vector v € V determine a vectorfield fv : V' — V satisfying the formula

div(fv) = D, f
for the divergence.

6. Let ¢ : V — W an affine map and ¢4 : V — W be its linear part, i.e. ¢4
is linear and ¢(x) = ¢(z9) + ¢ (x — x0) for z, 290 € V. There is an induced
transformation

¢z Qr(V) — Qe(W)
characterized by
¢#Dv - D¢#v
for v € V and
$4(01(D)q2(D)) = ¢4 (01(D)) d4 (q2(D))

for ¢1(D) € Qk, (V), q2(D) € Q, (V). The formula

¢*(o4a(D))g) = a(D)d"g
holds for ¢(D) € Qx(V) and g € C*(W).

7. Given a singular k-simplex o : A¥ — V and a differential operator ¢(D) €
Q;(D) we define a linear functional ¢(o,q) : C7(V) :— R via

((o,q), f) = ((0),q(D)f)

for f € C7(V). (In the sequel we only consider those functionals «(c,q) for
which k = j and where ¢ is affine.) The formula

((0,9),9"g) = ((¢s0, 0:q), 9)
holds for an affine map ¢ : V — W and function g € C7(W).

3



8. Fix a sequence
X = (wg, 71, 29,...,2,) € V'

in a vector space V' of dimension n. We allow repetitions in X. For k =
0,1,2,...,r let X® denote the set of all affine singular k-simplices o with
vertices Ty, Ty, - .- oy, with 0 <ip < iy < -+ < i < r; the set o(A*) C V is

the convex hull of z;,, z;,,... 2,

9. For each 0 € X define a subspace B(o) C C"(V)* by
B(o) = span{i(o,q) : ¢ € Qu(V)}
and for j = —1,0,1,2,...,r define
Bj(X) =span{1:1 € B(o), 0 € X¥ k< j}.
Define B(X) = B,(X). There is a filtration
{0} = B_1(X) C By(X) C Bi(X)C--- C B.(X)=B(X)

and B(o) C Bj(X) for 0 € X® and k < j.
Theorem 10. There is a direct sum decomposition

C"(V)=P(V)® B(X)"
where B(X ) denotes the annihilator of B(X) C C™(V)*.
Proof. 1t suffices to prove
(A) If pe P"(V) is such that (n,p) =0 for all n € B(X), then p = 0, and
(B) dim B(X) < dim P"(V).

11. We prove (A). Let p € P"(V) satisfy the hypothesis of (A) and write p
in multiindex notation

py) = Y pay®
|| <r
with respect to affine coordinates yi,¥s,...,y, on V. Suppose inductively

that p, = 0 for |a| > k; we show that pg = 0 for |5] = k. Fix § and let
q(D) = (0/9y)?. Then
(¢(D)p)(y) = Blps
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(a constant) by the induction hypothesis. Choose any element o € X*),

Then

|
0= (o)) = 1

ao ps = 0 as required.
Lemma 12. Let 0 € X and v € V be parallel to o(A¥), i.e. v € a4(RF).
Then for any q(D) € Q—1(V') we have
t(o,vq) € Br_1(X)
where (vq)(D) € Qk(V) is the composition
(vq)(D) = Dy 0 q(D).

Proof. As v is parallel to o there exists w € RF with oyw = v. Let g = ¢(D) f
and id : A¥ — AF denote the identity map. Then

(o,v9), [) = (o), Dug)
= (uid),o"(Dug))
(t(id), (Dw(079)))
= <L(ld)>dw(0 g) ))

= Z(w d), T *g)

T

= Z(w ' 72) <L(Ta Q>a f>

T

where the penultimate step is by the divergence theorem, 7 ranges over the
faces of o, and 7 denotes the outward normal to 7. We have shown that

t(o,vq) = Z(w - 7U(T,q)

which proves the lemma.

13. Identify V and V* via an inner product. For o € X® let o~ C V denote
the vector subspace perpendicular to the simplex o(AF), i.e. the vectors in
ot and the vectors in o4 (R¥) are orthogonal. The inclusion o C V induces
an inclusion Qx(ct) C Qx(V) The lemma gives a direct sum decomposition

B(o) = B(o, 1) ® B(o) N B—1(X) ()
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where
B(o, 1) = {u(0,q) : ¢ € Qr(o")}.

To check this choose a basis of Q (V') consisting consisting of compositions
Dy, D,, - - D,, where each v; is either parallel or perpendicular to o(A¥). If
any v; is parallel to o(A*), the corresponding functional ¢(o, ¢) lies in B(a)N
By_1(X) by the lemma. Those compositions where all v; are perpendicular
to o(AF) lie in B(o, L) by definition.

14. We prove (B). We may assume w.l.o.g. that
dimo(AF) =k foroc € X® and k <n (Q)

where n = dim V. This is because the set of all X € V"*! for which (Q)
holds is dense (and open) in V" ™! and dim B(X) is a lower semicontinuous
function of X.

By (V) we have

1

dime-=n—k

for 0 € X® and k < n. Hence

dim B(o, 1) < dim Qu(0) = (k +(n . k) - 1) — ("; 1).

The set X® has cardinality (ZE) = (:f,lc) SO

dim By(X)/By_1(X) < (:: J_r i) (” . 1) .

As the subspaces By (X) filter B(X) we may sum these inequalities to obtain
N r+1\ (n—1 r+n
dim B(X) < = = dim P"(V
mo =3 () () = (77) zamew

as required. (In the last step we used the equation

Z”: a b\  [a+b
r—kJ\k) r
k=0
with a = r+ 1 and b = n — 1. This formula says that the hypergeometric
probabilities sum to one.)



Remark 15. It follows that dim B(X) = dim P"(V). The subspaces B(o)
span B(X) by definition so by ({) and induction the spaces B(o, L) span
B(X). Under the nondegeneracy hypothesis () the proof gives a direct sum

decomposition
n—1
BX)=p & Blo.1).
k=0 e X ()
(If the sum were not direct, the dimension on the left would be smaller than

the dimension on the right.)

Definition 16. The projection
Iy :C"(V)— P"(V)

corresponding to the splitting in theorem is called Kergin-Lagrange
interpolation. For f € C"(V) the polynomial Ix f is the unique polynomial
satisfying

((0,q), f) = (lo,q). Ix [)
for every k =0,1,2,...,7 every 0 € X and every ¢(D) € Qx(V).

Remark 17. By the previous remark, under the nondegeneracy hypothe-
sis (©), the polynomial Ixf is determined by the derivatives of f of order
< n, but in general, higher derivatives are required. For example, in the ex-
treme case ro = x1 = -+ - x,, Ix f is the Taylor polynomial of f at the point
Zo. In case n = 1 the nondegeneracy hypothesis says that all the points z;
are distinct, so that [y f is the unique polynomial p of degree r such that
p(z;) = f(z;) for i =0,1,...,r, i.e. Iy is the Lagrange interpolant of f.

Proposition 18. Suppose that ¢ : V. — W is affine. Then
" lyx)g = Ix9*g
for g € C"(W).

Proof. As both sides of the equation are elements of P (V) it suffices to show
they give the same value at each element (o, q) of B(X). The calculation is

(1(0,9), 0" Isx19) = (U(ds0,0.q), Isx)9)

o~ o~
~



as required.

Proposition 19. Assume that f € C"(V) and q¢(D) € Qr(V) with k < r.
Then
qD)f =0 = q(D)Ixf=0.

Proof. Assume that ¢(D)f = 0 and write
Ixf=potpi+p2t---+pr

with p; € S7(V). Assume inductively that ¢(D)p; = 0 for i > j; we will show
that ¢(D)p; = 0. For j < k this is automtatic, so assume that j > k. Using
affine coordinates and mutiindex notation write

a(D)p;(w) = D bay”.

1Bl=3—k
For |a| = j — k the induction hypothesis gives
do(D)p = alb,
where ¢ (D) € Q;(V) is defined by

olal

D) = D%(D D= .
¢a(D) a(D), o

We have ¢,(D)f =0 as ¢(D)f = 0. Choose 0 € X, Then

0= ((0,qa), ) = ((0,¢a), p) =

50 b, = 0 so (as this holds for all &) ¢(D)p; = 0 as required.

Corollary 20. Let L be a vector subspace of V' and suppose that f € C"(V).
Then if f is constant on the translates of L the same is true of Ix f.

Proof. The hypothesis is that D,f = 0 for v € L and the conclusion is that
D,Ixf =0 for v € L. (This proof will be reused in the proof of theorem
below.) We can also use proposition : a function f is constant on the
translates of L iff f = ¢*g for some g € W = V/L where ¢ : V — W is the
projection.



Remark 21. The corollary says that if y;,vs,...,y, are affine coordinates
and f depends only on the first m of these coordinates, then the same is true

of [Xf

Theorem 22. The map Ix is the unique linear map I : C"(V) — P"(X)
such that (i) I is continuous (in the topology of uniform converegence of
derivatives of order < r on compact sets) and (ii) for any linear functional & :
V — R and any g € C"(R) the polynomial 1&*g is the Lagrange polynomial
interpolating g at the points {(xo),&(z1), ..., &(zy).

Proof. The map Ix satisfies (ii) by proposition :

Ix&g =& Iexyg.
The map Iy satisfies (i) since the functionals ¢(c,q) are continuous. For
uniqueness assume that [ satisfies (i) and (ii). By (i) and the fact that
the polynomials are dense it suffices that If = Ixf for any polynomial.
By proposition and remark condition (ii) says that If = Ixf for
any function f € C"(V) of form f = £*¢g where ¢ € C"(R). Hence by
linearity it suffices to show that (for any m) the polynomials of form f = {*g
where ¢ € V* and g € P™(R) span P™(V). If g(t) = >, gxt", then
£9 =>4l 9rPre Where

pre() = (€,2)" .

Hence it suffices to prove the following

Lemma 23. The vector space P™(V') is spanned by the polynomials pye (k =
0,1,2,...,m, £ € V*).

Proof. By the multinomial formula
k o,
Pre(x) = le (oz)5 v

Suppose that ¢ € P™(V)* annihilates all pye. Let

<€7p> - Z Eozpom p(w) = Z pa{L‘a.

laf<m laf<m

0= (lpee) = 3 a <i>§a

la|=k
for all £ (and k) so that £, = 0 for all a so £ = 0 as required.

Then
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Definition 24. Amap [ : C"(V) — C" (V) satisfies the GM VP (Generalized
Mean Value Property) iff for every k = 0,1,...,7, every ¢(D) € Qx(V), and
every choice 0 < ig < i1 < 15 < -+ -1 < r of distimct indices there is a point
Z in the convex hull of the points x;,, x;,, Z;,, ..., z;, such that

q(D)f(z) = q(D)I f(T).

Theorem 25. The map Ix is the unique map I : C"(V) — P"(X) which
(1) is linear and (ii) satisfies the GMVP for X.

k

Proof. To see that Iy satisfies the GMVP for X note that the convex hull
of T4, iy, ...,z is o(AF) for the corresponding o € X*®). Thus (i) says
that for every for every k =0,1,2,...,r, every q(D) € Qr(V), and for every
o € X% the functions ¢(D)f and (D)Ixf agree at some point T of o(AF).
The equation

((0,9), ) = (0, q), Ix [)

takes the form

[ a0 ew)dn= [ Do) du
Ak Ak
Now if g; and g5 are real valued continuous functions on a connected set which
have the same integral over that set then there must be a point in that set
where they are equal: otherwise, one would be greater than the other at every
point and the integrals would not be equal. Thus ¢(D)f(z) = q(D)Ix f(Z)
at some T = () as required.

To prove uniqueness assume that [ satisfies (i) and (ii) of theorem 25} we
prove that I satisfies (i) and (ii) of theorem 22

Step 1. Theorem (24 is true whem n = 1. The GMVP says that f and [f
agree to order my — 1 where my, is the number of 7 such that x; = xj (so that
my = 1 when the elements of X are distinct). The Lagrange interpolant of
f is the unique polynomial of degree < r with this propoerty.

Step 2. Pmposition (and hence also comllary@) remains true when I
is read for Ix. The proof is essentially the same: Assume that ¢(D)f = 0
and write

If=po+pi+p+--+p

with p; € S7(V). Assume inductively that ¢(D)p; = 0 for i > j; we will show
that ¢(D)p; = 0. For j < k this is automtatic, so assume that j > k. Using
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mutiindex notation write
a(D)p;(y) = > bay”.
|B|=5—Fk

For |a| = j — k the induction hypothesis gives
do(D)p = alb,

where ¢, (D) = D*q(D) as the the proof of proposition[19} We have ¢,(D)f =
0 as ¢(D)f = 0. Choose o € XU). By the GMVP we have

0 = 4a(D)F(7) = qu (D) F(&) = alb,

for some 7 = o(u) in the o(A*) so b, = 0 so (as this holds for all «)
q(D)p; = 0 as required.

Step 3. The map I satisfies condition (i) of theorem . In other words,
for any £ € V* we have I£*g = *I¢(x)g for g € C"(R). By step 2 (the analog
of corollary each g € C"(V) determines a polynomial p € P"(R) with
{'p = 1¢7g; define (&.1) : C"(R) — P"(R) by (&1)g = p. Then *(&.1) = I¢”
so &I satisfies the GMVP. Hence by step 1 we have I§* = £*I¢(x) as required.

Step 4. The map I is continuous. We write [ f in multiindex notation:
1)) = 3 (e
la|<r

We must shows that each of the linear functionals I, is continuous. Assume
inductively that this is true for |a| > k; we show it is true for |a| = k. Apply
D = 911 /9x® to obtain

D(If)(x) = allaf + (Raf)(z)

where
A Ca
(Raf)(x) = ; Foay D"

By the induction hypothesis there is a large compact set (which might as
well be the convex hull of X) and a constant C' such that

|(Raf) ()] < C|f]:
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where
[fllr = sup{[D7f(z) : |y <, x € K}.
Choose o € X®). By the GMVP there is an Z € o(A*) such that

|DH(Lf) (@) = [Df(@)] < [ f]]r-

Honce Df(#) — Rof(®)] _ C+1
o f(Z) — Ry f(T +
I.f| = , < £l
! (8]
as required.
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