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1 Introduction

The fair way to decide an election between two candidates a and b is majority
rule; if more than half the electorate prefer a to b, then a is elected; otherwise
b is elected. Arrow’s theorem asserts that no fair election procedure exists for
choosing from among three or more candidates. This note gives an exposition
of Arrow’s theorem. It also describes the relation of election procedures
between two candidates to Dedekind numbers.

2 Informal examples

To get a feeling for Arrow’s theorem let us consider how some existing election
procedures can lead to grossly unfair results. (I downloaded much of this stuff
from Wikipedia.)

One commonly used procedure is to have a second “runoff” election be-
tween the top two candidates if no candidate achieves a majority in the first
election. The electorate might be confronted with three candidates a, b and c
with candidates a and b extreme but opposite and c moderate. Suppose that
each of the three candidates is the first choice of a third of the electorate and
that all the supporters of a and b have c as their second choice. It seems clear
that c is the best choice, especially if the supporters of a detest b and the
supporters of b detest a. However, under the runoff procedure the electorate
might well be forced to choose between a and b in the second election.

Preferential voting (also called “instant runoff voting”) is a type of ballot
structure used in several electoral systems in which voters rank a list or group
of candidates in order of preference. The candidate receiving the least first
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place votes is eliminated and his votes (with the preferences shifted up) are
distributed among the remaining candidates. The process is repeated until
only one candidate remains. (Preferential voting is used in Australia, but
the term ”Australian Ballot” most commonly means simply ”secret ballot”.)
This process can produce a bad result in the same way that a second runoff
election does.

Condercet voting works as follows: Rank the candidates in order (1st,
2nd, 3rd, etc.) of preference. Comparing each candidate on the ballot to
every other, one at a time (pairwise), tally a ”win” for the victor in each
match. Sum these wins for all ballots cast. The candidate who has won
every one of their pairwise contests is the winner of the election. But if there
are three candidates a, b, c and three electors with preferences a > b > c,
c > a > b, b > c > a then a defeats b, b defeats c, and c defeats a so the
procedure does not produce an outcome.

Even when there are only two candidates paradoxical results can occur.
For example if we have an election where b wins over a and then a rerun
where everyone who voted for b over a does so again, it seems fair that b
should win over a in the rerun as well. This is called the monotonicity rule
below. But consider an even split of the US Senate. The vice president might
prefer a to b, but if one senator changes his/her vote from a over b to b over
a, then the outcome changes from a over b to b over a and the monotonicity
rule is violated. The fact that the vice president usually has no vote doesn’t
destroy this example; we could imagine an amendment to the US constitution
such that there is a single senator from the District of Columbia and the vice
president has full voting rights and in addition preserves the power to break
ties. The same paradox can occur.

3 Definitions

Our objective is to give a precise definition for what is a “fair election pro-
cedure”. First we define what is an “election procedure”.

§1. Setup. Throughout E denotes a nonempty set called the electorate
and C denotes a nonempty set called the set of candidates. The elements
of the set E represent the individual people who actually do the voting. A
state of the electorate is a function which assigns to each individual elector
x ∈ E a linear ordering of the set C of candidates. Denote the set of linear
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orderings of C by O(C) so a state is a map σ : E → O(C) and

Σ := O(C)E

denotes the set of all states. The set Σ has cardinality |Σ| = (n!)|E| where
n = |C| is the cardinality of C and |E| is the cardinality of E.

§2. Definition. An election procedure is a function which assigns to
each state of the electorate an ordering of the candidates (the outcome of the
election).1 In other words, an election procedure is a map

f : Σ→ O(C).

§3. Remark. The above definition is open to the criticism that it does not
correctly model the problem of constructing a “fair election procedure” in
that (i) it forces every elector to order his/her preferences linearly whereas
electors might not distinguish between candidates they don’t like, and (ii) it
forces an outcome which is a linear order even though all that is required in
a real election is a single winner. Such criticisms are discussed in [8].

§4. Notation. Introduce the abbreviation

C2 = {(a, b) ∈ C2 : a 6= b}

for the set of ordered pairs of distinct elements of C. For λ ∈ O(C) and
a, b ∈ C write

a <λ b

to mean that a precedes b in the order λ. Thus for a, b ∈ C the notation
a <σ(x) b means that elector x prefers candidate b to candidate a when the
state of the electorate is σ and the notation a <f(σ) b means that the election
procedure f ranks candidate b ahead of candidate a when the state of the
electorate is σ. For (a, b) ∈ C2 and σ ∈ Σ let

Pab(σ) := {x ∈ E : a <σ(x) b}

denote the set of electors x who prefer b to a when the state is σ. The
conditions

E = Pab(σ) ∪ Pba(σ), Pab(σ) ∩ Pba(σ) = ∅, Pab(σ) ∩ Pbc(σ) ⊆ Pac(σ)

for (a, b) ∈ C2 express the condition that <σ(x) is a linear order for x ∈ E.

1 I have seen other terminology in the literature. For example, in [8] an election
procedure is called a social welfare function and a state is called a profile of the electorate.
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§5. A linear order on a set C is a relation (i.e. a subset of C2) satisfying

(Irreflexivity) a < b ⇐⇒ ¬b < a

for (a, b) ∈ C2 and

(Transitivity) a < b and b < c =⇒ a < c.

Since these properties are preceded by an implicit universal quantifier on
a, b, c the empty relation is always an example. The irreflexivity condition
implies that a < b =⇒ a 6= b. If |C| = 1 then C2 = ∅ and O(C) = {∅}.
If |C| = 2 then |C2| = 2 and the transitivity condition holds vacuously so
|O(C)| = 2.

§6. The election procedure f satisfies the strong unanimity condition iff

Pab(σ) = E =⇒ a <f(σ) b (SU)

for all (a, b) ∈ C2. The election procedure f satisfies the weak unanimity
condition iff

σ−1(λ) = E =⇒ f(σ) = λ (WU)

for all λ ∈ O(C).

§7. Remark. The weak unanimity condition (WU) implies that f−1(λ) 6= ∅
for every λ ∈ O(C). This in turn implies that for every pair (a, b) ∈ C2

there exists σ ∈ Σ such that a <f(σ) b This last condition is called citizen’s
sovereignty in [8].

§8. The election procedure f satisfies the monotonicity condition iff

Pcd(σ) = Pcd(τ) ∀c, d ∈ C \ {b},
Pcb(σ) ⊆ Pcb(τ) ∀c ∈ C \ {b}, and
a <f(σ) b

 =⇒ a <f(τ) b. (M)

In other words

If in a second run of an election in which the electorate favored
b over a, some of the electors change their preferences between b
and other candidates in favor of b but except for this no elector
changes his/her vote, then b finishes ahead of a in the second
election as well.
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§9. The election procedure f satisfies the independence condition iff

Pab(σ) = Pab(τ) � =⇒ � a <f(σ) b ⇐⇒ a <f(τ) b.

In other words

Whether or not an election favors b over a is independent of how
the individual electors feel about the other candidates.

§10. Remark. In [8] pages 331-340 an election procedure is called a social
welfare function, a state is called a profile, the monotonicity condition §8(M)
is called the positive association of social and individual values, and the inde-
pendence condition §9(I) is called the independence of irrelevant alternatives.

§11. If |C| = 1 then C2 = ∅ and O(C) = {∅} so there is only one election
procedure, namely f(x) = ∅ for x ∈ X, i.e. the lone candidate always wins
(since s/he finishes ahead of all the other candidates) and always loses (since
s/he finishes behind all the other candidates).

If |C| = 2 then |C2| = 2 and the hypothesis Pab(σ) = Pab(τ) of the
independence condition (I) of §9 implies σ = τ so (I) automatically holds,
however the monotonicity condition (M) of§8 has some content. For exam-
ple, if |E| is odd, majority rule satisfies unanimity and monotonicity. See
Appendix 6.

If |C| = 2, weak and strong unanimity are equivalent. If there are three
or more candidates, condition (WU) is weaker than (SU) as there are states
where the electorate unanimously prefers one candidate to another but is
not unanimous on the other candidates. However, if f satisfies the indepen-
dence condition (I), then the following lemma says that (WU) and (SU) are
equivalent.

§12. Lemma. An election procedure which satisfies the strong unanimity
condition (SU) of §6 also satisfies the weak unanimity condition (WU) of §6.
If the election procedure satisfies the independence condition (I) from (§9),
then the converse holds.

Proof. Assume (SU) and σ−1(λ) = E. (We must show that f(σ) = λ.) As
σ−1(λ) =

⋂
a<λb

Pab(σ) it follows that Pab(σ) = E for all (a, b) ∈ C2 such
that a <λ b. Hence from (SU) it follows that a <λ b =⇒ a <f(σ) b. For
λ, µ ∈ O(C) the condition a <λ b =⇒ a <µ b for all (a, b) ∈ C2 holds if and
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only if λ = µ. (If λ 6= µ then a <λ b but b <µ a for some (a, b) ∈ C2.) Hence
f(σ) = λ. This proves (SU) =⇒ (WU).

Conversely assume (WU) and choose (a, b) ∈ C2 satisfying Pab(σ) = E.
(We must show that a <f(σ) b.) Choose an enumeration C = {c1, . . . , cn}
with a = c1 and b = c2 and define λ ∈ O(C) by ci <λ cj ⇐⇒ i < j.
Let τ : E → O(C) be the constant map τ(x) = λ. Then Pab(τ) = E so
Pab(τ) = Pab(σ). By (I) a <f(σ) b ⇐⇒ a <f(τ) b and by (WU) a <f(τ) b.
Hence a <f(σ) b. Thus proves (WU) =⇒ (SU).

§13. Dictator. A dictator for election procedure f is an elector z ∈ E
whose preferences always coincide with the result of the election. In other
words, z ∈ E is a dictator for f iff for all states σ ∈ Σ we have f(σ) = σ(z),
i.e.

a <f(σ) b ⇐⇒ a <σ(z) b (D)

for all (a, b) ∈ C2. It is immediate that an election procedure which has a
dictator satisfies the other conditions (WU), (SU), (M), and (I). We would
hardly call an election procedure fair if it has a dictator but

§14. Arrow’s Theorem (finite version). Let f : E → O(C) be an election
procedure with a nonempty finite electorate E and a finite set C of at least
three candidates. Then f satisfies the weak unanimity condition (WU) of §6
and independence condition (I) of §9 conditions if and only if there is a
dictator z for f .

See http://en.wikipedia.org/wiki/Arrow’s_impossibility_theorem
for an informal proof. There is a proof in [8] and a citation to the original
paper of Arrow appears there. In §23 we will prove a generalization which in-
cludes the case where the electorate E is infinite. Note that the monotonicity
condition §8(M) is not assumed in Arrow’s Theorem.

4 Some Preliminary Lemmas

In this section X ⊆ E is a fixed subset of the electorate and f : E → O(C)
denotes an election procedure satisfying the weak unanimity condition (WU)
of §6, the independence condition (I) of §9, and hence (by the lemma of §12)
the strong unanimity condition (SU) of §6.

§15. Lemma. For X ⊆ E and (a, b) ∈ C2 the following are equivalent.
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(i) ∃σ0 ∈ Σ � X = Pab(σ0) and a <f(σ0) b.

(ii) ∀σ ∈ Σ � X = Pab(σ) =⇒ a <f(σ) b.

Proof. To prove (ii) =⇒ (i) assume (ii). (We must construct σ0 satisfying
the two conditions X = Pab(σ0) and a <f(σ0) b.) Define σ0 : E → O({a, b})

a <σ0(x) b if x ∈ X,
b <σ0(x) a otherwise.

For each x ∈ X extend the order σ0(x) to an element of O(C) arbitrarily.
Then σ0 ∈ Σ and X = Pab(σ0). Read σ0 for σ in (ii) to conclude a <f(σ0) b.
This proves (ii) =⇒ (i).

To prove that (i) =⇒ (ii) assume (i) and choose σ such that X = Pab(σ).
(We must show a <f(σ) b.) By (i)X = Pab(σ0) so Pab(σ) = Pab(σ0). Therefore
a <f(σ) b ⇐⇒ a <f(σ0) b by the independence condition (§9). But a <f(σ0) b
by (i) so a <f(σ) b. This proves (i) =⇒ (ii).

§16. Lemma. Fix a subset X ⊆ E and for each (a, b) ∈ C2 introduce the
abbreviation2

D(a, b) ! ∀σ ∈ Σ � X = Pab(σ) =⇒ a <f(σ) b.

Then for all distinct a, b, c ∈ C we have

D(a, b) =⇒ D(c, b) and D(a, b) =⇒ D(a, c).

Proof. To prove that D(a, b) =⇒ D(c, b) assume D(a, b) and choose σ ∈ Σ
satisfying X = Pcb(σ). (We must show c <f(σ) b.) Define τ : E → O({a, b, c})
by

c <τ(x) a <τ(x) b if c <σ(x) b,
b <τ(x) c <τ(x) a if b <σ(x) c,

and extend each order τ(x) to an element of O(C) arbitrarily. Then

Pca(τ) = E and Pab(τ) = Pcb(τ) = Pcb(σ) = X.

Now c <f(τ) a by unanimity (§6) and a <f(τ) b by reading τ for σ in (ii).
Hence c <f(τ) b as <f(τ) is transitive. But Pcb(τ) = Pcb(σ) so c <f(σ) b by
independence (§9). This proves D(a, b) =⇒ D(c, b) .

2 The notation ! means that the formula on the left is an abbreviation for the for
the one on the right.
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The proof that D(a, b) =⇒ D(a, c) is similar. Assume D(a, b) and
choose σ ∈ Σ satisfying X = Pac(σ). (We must show that a <f(σ) c.) As in
the proof of D(a, b) =⇒ D(c, b) construct τ so that

Pbc(τ) = E and Pab(τ) = Pac(τ) = Pac(σ) = X.

Then b <f(τ) c by unanimity and a <f(τ) b by D(a, b), so a <f(τ) c by
transitivity and hence a <f(σ) c by independence. Any τ satisfying

a <τ(x) b <τ(x) c if a <σ(x) c,
b <τ(x) c <τ(x) a if c <σ(x) a

has the desired properties.

§17. Corollary. Assume that |C| ≥ 3. Then if D(a, b) holds for some
(a, b) ∈ C2 it holds for all (a, b) ∈ C2.

Proof. AssumeD(a, b). Choose c ∈ C so that a, b, c are distinct. ThenD(c, b)
and D(a, c) by §16. Read (c, b) for (a, b) in §16 to conclude D(c, a) and read
(a, c) for (a, b) in §16 to conclude D(b, c). Finally D(c, a) =⇒ D(b, a) follows
from §16 by reading (b, c, a) for (a, b, c) so D(b, a) holds as we have already
proved D(c, a).

5 Proof of Arrow’s Theorem

Throughout this section f : E → O(C) denotes an election procedure satis-
fying the weak unanimity condition (WU) of §6, the independence condition
(I) of (§9), and hence (by the lemma of §12) the strong unanimity condi-
tion (SU) of §6. We also assume that |C| ≥ 3, i.e. that there are at least
three candidates. For X ⊆ E let

X ′ := E \X

denote the complement of X in E.

§18. Definition. A subset X ⊆ E is called a decisive iff

X ⊆ Pab(σ) =⇒ a <f(σ) b

for all (a, b) ∈ C2. The set of decisive subsets will be denoted by D.
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§19. ∅ 6∈ D.

Proof. The set Σ is nonempty as E and C are and C2 is nonempty as |C| ≥ 2.
Hence there exists at least one σ ∈ Σ and and at least one pair (a, b) ∈ C2 i.e.
a 6= b and at least two distinct elements λ and µ in O(C), one where a <λ b
and another where b <µ a. Now ∅ ⊆ σ−1(λ) so f(σ) = λ and ∅ ⊆ σ−1(µ) so
f(σ) = µ. This is a contradiction so ∅ 6∈ D.

§20. E ∈ D.

Proof. This is a reformulation of the unanimity condition (SU) of §6.

§21. X ∈ D and X ⊆ Y =⇒ Y ∈ D.

Proof. In other words, enlarging a decisive set gives another decisive set. To
prove this assume X ∈ D and X ⊆ Y . To prove Y ∈ D choose a, b ∈ C,
σ ∈ Σ, and assume Y ⊆ Pab(σ). (We must show a <f(σ) b.) Then X ⊆ Pab(σ)
as X ⊆ Y . Hence a <f(σ) b as X ∈ D. As a, b, and σ were arbitrary this
proves Y ∈ D.

§22. X, Y ∈ D =⇒ X ∩ Y ∈ D.

Proof. In other words, the intersection of two decisive sets is again decisive.
Choose X, Y ∈ D. To show X ∩ Y ∈ D choose a, b ∈ C and σ ∈ Σ with
X ∩ Y ⊆ Pab(σ); we must show that a <f(σ) b. To do this it is enough to
choose c 6= a, b (this is possible as |C| ≥ 3) and construct τ ∈ Σ satisfying

X ⊆ Pac(τ), Y ⊆ Pcb(τ), Pab(τ) = Pab(σ),

for then a <f(τ) c (because X ∈ D), c <f(τ) b (because Y ∈ D), a <f(τ) b (by
transitivity), and hence a <f(σ) b (by independence).

Abbreviate Pab(σ) by P so P ′ = Pba(σ). The following table defines a
map τ : E → O

(
{a, b, c}

)
.

P ∩X ∩ Y a < c < b
P ∩X ∩ Y ′ a < c < b
P ∩X ′ ∩ Y a < c < b
P ∩X ′ ∩ Y ′ a < b

P ′ ∩X ∩ Y ∅
P ′ ∩X ∩ Y ′ b < a < c
P ′ ∩X ′ ∩ Y c < b < a
P ′ ∩X ′ ∩ Y ′ b < a

In the bottom row it does not matter where c fits into the order and the
upper right hand entry is ∅ as X ∩ Y ⊆ P , i.e. P ′ ∩X ∩ Y = ∅. Now define
τ to take values in O(C) by extending each τ(x) ∈ O

(
{a, b, c}

)
to O(C)

arbitrarily. The state τ ∈ Σ has the desired properties.
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§23. Arrow’s Theorem (Ultrafilter Version.) D is an ultrafilter.

Proof. §19, §20, §21, §22 say that D is a filter. To show that D is an ultrafilter
we must show (see the theorem in §33) that for every subset X ⊆ E either it
or its complement X ′ = E \X is an element of D. Choose σ0 ∈ Σ (possible
as Σ 6= ∅) and distinct a0, b0 ∈ C (possible as |C| ≥ 3). Interchanging a
and b if necessary we may assume that a <f(σ0) b. Let X = Pa0b0(σ0). Then
D(a0, b0) holds by the lemma of §15. Hence by the corollary in §17 D(a, b)
holds for all a, b ∈ C2, i.e. X is decisive, i.e. X ∈ D.

§24. I learned the ultrafilter formulation given below from a talk by Alan
Kirman at a mathematics-economics conference held at the University of
Warwick around 1975. It is due to Kirman and Sondermann (see [6]). See [7]
for another exposition. The finite version of Arrow’s Theorem (§14) is an
immediate corollary. By definition, an elector z ∈ E is a dictator iff the
singleton {z} is a decisive set. When E is finite, the ultrafilter D is principal
by the theorem in §37 and the generator is the dictator.

6 Election Procedures With Two Candidates

In this section we consider election procedures between two candidates. In
this case the independence axiom from §9 is automatic (there are no “irrel-
evant third alternatives”) and there is no difference between the strong and
weak unanimity conditions from §6. Any nonconstant election procedure
with a finite electorate which satisfies the monotonicity condition (M) from
§8 also satisfies the unanimity condition.

§25. Represent the two linear orderings of the two element set C = {a, b} by
0 and 1, say a <0 b and b <1 a. The set Σ of states of the electorate is the
same as the power set of the set E and an election procedure f : Σ→ {0, 1}
satisfies the monotonicity condition (M) if and only if it is monotonic i.e.

X ⊆ Y =⇒ f(X) ≤ f(Y )

for X, Y ⊆ E. (If X = σ−1(1) and Y = τ−1(1) then the condition X ⊆ Y is
the same as the condition ∀x ∈ E � σ(x) ≤ τ(x).) Let

E = {x1, . . . , xn}
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and for each i = 1, . . . , n let ei : Σ → {0, 1} denote the election procedure
which as xi as dictator, i.e.

ei(X) =

{
1 if xi ∈ X,
0 otherwise

§26. The set of all election procedures f : Σ → {0, 1} forms a distributive
lattice under the operations

(f ∧ g)(x) = min{f(x), g(x)}, (f ∨ g)(x) = max{f(x), g(x)}.

The election procedures e1, . . . , en generate this lattice, i.e. any election
procedure f is expressible in the form

f = eI1 ∨ · · · ∨ eIr

for some collection I1, . . . , Ir of subsets of {1, . . . , n} where

eI := ei1 ∧ · · · ∧ eik for I = {i1, . . . , ik} ⊆ {1, . . . , n}.

§27. Each antichain {X1, . . . , Xr} of subsets of E determines an election
procedure f by

f(X) =

{
1 if Xi ⊆ X for some i,
0 otherwise

(An antichain of subsets of E sets is a family of sets none of which is contained
in any other set.) This defines a bijective correspondence between election
procedures and antichains.

§28. Each election procedure f : Σ → {0, 1} determines an abstract sim-
plicial complex with n vertices. The corresponding antichain is the set of
maximal faces. This defines a bijective correspondence between the set of
election procedures on electorate of size n and the set of abstract simplicial
complexes with n vertices.

§29. Dedekind’s Problem3 [4] is to compute the number of monotonic election
procedures as a function of the cardinality of E. Apparently this is quite
difficult. According to [3] page 121 the first eight values are

3See http://en.wikipedia.org/wiki/Dedekind_number
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1 3
2 6
3 20
4 168
5 7581
6 7828354
7 2414682040998
8 56130437228687557907788

§30. Each map v : E → R+ determines an election procedure f via the
formula

a <f(σ) b ⇐⇒
∑

b<σ(x)a

v(x) <
∑

a<σ(x)b

v(x).

If v is such that the sums
∑

x∈X v(x) are distinct, then this election procedure
satisfies the unanimity condition (SU) of §6 and the monotonicity condition
(M) of §8.

Here is an example4 which shows that not every election procedure satis-
fying (SU) and (M) arises this way.

Pab(σ) a <f(σ) b?
∑

b<σ(x)a
v(x) <

∑
a<σ(x)b

v(x)

∅ no 0 < v1 + v2 + v3 + v4
{x1} no v1 < v2 + v3 + v4
{x2} no v2 < v1 + v3 + v4
{x3} no v3 < v1 + v2 + v4
{x4} no v4 < v1 + v2 + v3
{x1, x2} yes v3 + v4 < v1 + v2
{x1, x3} no v1 + v3 < v2 + v4
{x1, x4} no v1 + v4 < v2 + v3
{x2, x3} no v2 + v3 < v1 + v4
{x2, x4} no v2 + v4 < v1 + v3
{x3, x4} yes v1 + v2 < v3 + v4
{x1, x2, x3} yes v4 < v1 + v2 + v3
{x1, x2, x4} yes v3 < v1 + v2 + v4
{x1, x3, x4} yes v2 < v1 + v3 + v4
{x2, x3, x4} yes v1 < v2 + v3 + v4
{x1, x2, x3, x4} yes 0 < v1 + v2 + v3 + v4

4Eric Bach helped me with this. The example comes from [9].
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7 Reflections

When I have discussed Arrow’s theorem with nonmathematicians I discover
that they tend to attack the theorem by attacking its assumptions. This
is of course quite reasonable, but the nonmathematicians do this by trying
to impose additional assumptions. They say something like “Well of course
you reached an antidemocratic solution: your hypotheses didn’t assume all
members of the electorate are equal!” What they don’t understand is that
additional hypotheses cannot possibly falsify a true theorem.

It is tempting to conclude that the theorem proves something about po-
litical life like the most stable countries are those which have a two party
system. Possibly some people might even take the theorem as an argument
against democracy. I am skeptical of such inferences. It seems to me that
democracy is successful when all voices are heard and the citizenry under-
stand one another and have some control over their fate. I don’t see what
Arrow’s theorem says about that.

Appendices

A Ultrafilters

Let E be a nonempty set. A filter on E is a set D of subsets of E satisfying
the following three conditions:

1. E ∈ D and ∅ /∈ D;

2. If X ⊆ Y ⊆ E and X ∈ D, then Y ∈ D;

3. If X ∈ D and Y ∈ D, then X ∩ Y ∈ D.

§31. Example. Let Z be any nonempty subset of E. Then the set

D = {X ⊆ E : Z ⊆ X}

is a filter called the principal filter generated by Z.

§32. Example. Let E be any infinite set. Then the set D of cofinite subsets
of E is a filter. (A subset X ⊆ E is called cofinite iff its complement E \X
is finite.) This filter is not principal.
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§33. Theorem. Let D be a filter on E. Then the following conditions are
equivalent:

1. D is a maximal filter, i.e. if D′ is a filter on E and D ⊆ D′ then
D = D′.

2. D is a prime filter, i.e. if X, Y ⊆ E and X ∪Y ∈ D then either X ∈ D
or Y ∈ D.

3. For every X ⊆ E either X ∈ D or E \X ∈ D.

4. For any partition E = E1 ∪ · · · ∪ Er of E into pairwise disjoint sets,
Ei ∈ D for some (necessarily unique) i.

5. If Y ⊆ E and Y ∩X ∈ D for all X ∈ D, then Y ∈ D.

A filter which satisfies these equivalent conditions is called an ultrafilter.

§34. Example. A principal ultrafilter is a principal filter which is an ultra-
filter. A principal filter is an ultrafilter if and only if its generator Z consists
of a single point.

§35. Theorem. Every filter extends to an ultrafilter.

§36. Corollary. There exist nonprincipal ultrafilters on an infinite set.

§37. Theorem. On a finite set every filter is principal.

§38. Corollary. Every ultrafilter D on a finite set E has form

D = {X ⊆ E : z ∈ X}

for some element d ∈ E.

B Birkhoff Representation

§ 39. A poset is a set P equipped with a partial order, i.e. a relation
satisfying

(reflexivity) x ≤ x,

(antisymmetry) x ≤ y and y ≤ x imply x = y,
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(transitivity) x ≤ y and y ≤ z imply x ≤ z,

for a, b, c ∈ P . The category of partially order sets and order preserving
maps will be denoted by P, i.e. for posets P,Q ∈ P the set of morphisms
from P to Q is the set

P(P,Q) := {φ : R→ Q x ≤ y =⇒ φ(x) ≤ φ(y) ∀x, y ∈ P}.

§40. A lattice is a set L equipped with two binary operations ∧ (meet)
and ∨ (join) satisfying

(associativity) a ∨ (b ∨ c) = (a ∨ b) ∨ c and a ∧ (b ∧ c) = (a ∧ b) ∧ c,

(commutativity) a ∨ b = b ∨ a and a ∧ b = b ∧ a,

(idempotence) a ∨ a = a and a ∧ a = a,

(absorption) a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a,

for all a, b, c ∈ L. Let L denote the category of lattices and lattice homo-
morphisms, i.e. an object of L is a lattice L for lattices L,K ∈ L the set of
morphisms from L to K is the set

L(L,K) :=

{
f : L→ K,

f(a ∧ b) = f(a) ∧ f(b) and
f(a ∨ b) = f(a) ∨ f(b) ∀a, b ∈ L

}
.

§41. (Equivalent Definition). (i) For any lattice L we have

a ∧ b = a ⇐⇒ a ∨ b = b.

(ii) The relation defined by a ≤ b ⇐⇒ a∧ b = a is a partial order. It is the
same as the relation defined by a ≤ b ⇐⇒ a ∨ b = b.

(iii) A poset P arises from a lattice L in this way if and only if for all a, b ∈ P
the set {c ∈ P : a ≤ c and b ≤ c} has a unique minimal element (namely
a ∧ b) and the set {c ∈ P : c ≤ a and c ≤ b} has a unique maximal element
(namely a ∨ b).

Proof. See [3] Theorem 2.10 page 40.
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§42. Lemma/Definition. A lattice L satisfies the identity

(a ∨ b) ∧ c = (a ∧ c) ∨ (a ∧ c)

for all a, b, c ∈ L if and only if its satisfies the identity

(a ∧ b) ∨ c = (a ∨ c) ∧ (a ∨ c).

A lattice which satisfies these equivalent identities is called distributive.
We denote by D ⊂ L the subcategory of distributive lattices.

Proof. See [3] Lemma 4.3 page 85.

§43. By the definitions in §41 and §42 we have an inclusion of categories

D ⊆ L ⊆ P.

The category D is a full subcategory of the category L, i.e. D(L,K) =
L(L,K) for K,L ∈ D, but the category L is not a full subcategory of the
category P. For example, subset of a lattice need not be closed under meet
and join.

§44. Every poset P determines a dual lattice

P ∗ := L(P, {0, 1}).

The lattice operations are defined by

(α ∧ β)(x) = min(α(x), β(x)), (α ∨ β)(x) = max(α(x), β(x)),

so α ≤ β ⇐⇒ α(x) ≤ β(x) for all x ∈ P . Each morphism φ ∈ P(P,Q)
induces a lattice homomorphism φ∗ ∈ L(Q∗, P ∗) defined by

φ∗α = α ◦ φ.

Thus P 7→ P ∗ is a contravariant functor from P to L. In [3] a set of form
σ−1(0) where σ ∈ P ∗ is called a down-set of the poset P and a set of form
σ−1(1) is up-set of P .5

5 Commonly used alternate terminology for down-set: lower set, decreasing set, order
ideal; for up-set: upper set, increasing set, order filter.
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§ 45. Example. Let E be a set and equip it with the partial order of
equality (so that any two distinct elements of E are incomparable). The
power set of E is a lattice with the meet operation intersection and join
operation union The rule which assigns to each subset of E its indicator
function defines an isomorphism (of lattices) from the power set of E to the
lattice L(E, {0, 1}) = {0, 1}E.

§46. Birkhoff Representation Theorem. The functor P 7→ P ∗ defines
a natural anti-isomorphism of categories from the category Pfinite of finite
posets and order preserving maps to the category Dfinite of finite distributive
lattices and lattice homomorphisms. In particular, every finite distributive
lattice L is isomorphic to the lattice of down-sets of a finite poset P and the
finite poset P is uniquely determined (up to order isomorphism) by L.

Proof. See [3] pages 112-123.

§47. Remark. Birkhoff repesentation was incorrectly called Stone repre-
sentation in [10]. Birkhoff’s version (in [1]?) dealt with the case of finite
partially ordered sets whereas in [11] Stone generalized this duality to infi-
nite partially ordered sets. See [3] and the references cited therein for an
account of the history.

C First Order Logic

§48. Here’s how to view an election procedure as a relational structure in
the sense of model theory.6 Let C be a finite set. Let L be the signature

L := {Σ,E} ∪ {Fab}(a,b)∈C2 ∪ {Pab}(a,b)∈C2

where the predicates Σ, E, Fab are unary and the predicates Pab are binary.
Let Γ0 denote the set of universal closures of the following sentences:

Σ(w)↔ ¬E(w)

Pab(σ, x)↔ ¬Pba(σ, x)

Pab(σ, x) ∧ Pbc(σ, x)→ Pac(σ, x)

Fab(σ)→ ¬Fba(σ)

Fab(σ) ∧ Fbc(σ)→ Fab(σ)

6 See e.g.[2] for terminology.
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where (a, b) ranges over C2. The first sentence in this list says that there are
two sorts of individuals. We will use greek letters as variables ranging over
one and latin letters as variables which range over the other. Thus7

∀xΦ(x) ! ∀w � E(w)→ Φ(w), ∃xΦ(x) ! ∃w � E(w) ∧ Φ(w),

and similarly for ∀σΨ(σ) and ∃σΨ(σ). For λ ∈ O(C) introduce the abbre-
viations

Pλ(σ, x) ! Pa1a2(σ, x) ∧ Pa2a3(σ, x) ∧ · · · ∧ Pan−1an(σ, x)

Fλ(σ) ! Fa1a2(σ) ∧ Fa2a3(σ) ∧ · · · ∧ Fan−1an(σ)

where C = {a1, a2, . . . , an} and a1 <λ a2 <λ · · · <λ an. For any two formulas
Φ(σ, x) and Ψ(σ, x) introduce the abbreviations

Φ(σ) 4 Ψ(σ) ! ∀x � Φ(σ, x)→ Ψ(σ, x),

Φ(σ) ≡ Ψ(σ) ! ∀x � Φ(σ, x)↔ Ψ(σ, x).

§49. Each election procedure f : E → O(C) determines a relational structure
Mf of type L as follows. The underlying subset is the disjoint union E t Σ
and the predicate symbols are assigned values as follows:

Mf |= E(x) ⇐⇒ x ∈ E,

Mf |= Σ(σ) ⇐⇒ σ ∈ Σ,

Mf |= Pab(σ, x) ⇐⇒ a <σ(x) b,

Mf |= Fab(σ) ⇐⇒ a <f(σ) b.

The following formulas abbreviate the various conditions that were imposed

7 The notation ! means that the formula on the left is an abbreviation for the for
the one on the right.
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on election procedures in Section 3.

WUλ ! ∀σ � [Pλ(σ) ≡ E]→ Fλ(σ).

SUab ! ∀σ � [Pab(σ) ≡ E]→ Fab(σ).

Mab ! ∀σ∀τ � Fab(σ) ∧
∧
c 6=b
[
Pcb(σ) 4 Pcb(τ)

]
∧
∧
c,d6=b

[
Pcd(σ) ≡ Pcd(τ)

]
→ Fab(τ)

Iab ! ∀σ∀τ �

[
Pab(σ) ≡ Pab(τ)

]
→
[
Fab(σ)↔ Fab(τ)

]
.

D(z) ! ∀σ �

∧
λ∈O(C)

[
Pλ(σ, z)→ Fλ(σ)

]
.

§50. Lemma. A relational structure M of type L satisfies M |= Γ0 if and
only if M is isomorphic to Mf for some election procedure f . Moreover for
any election procedure f

1. f satisfies (WU) in §6 if and only if Mf |= WUλ for all λ ∈ O(C).

2. f satisfies (SU) in §6 if and only if Mf |= SUab for all (a, b) ∈ C2.

3. f satisfies (M) in §8 if and only if Mf |= Mab for all (a, b) ∈ C2.

4. f satisfies (I) in §9 if and only if Mf |= Iab for all (a, b) ∈ C2.

5. f satisfies (D) in §13 if and only if Mf |= ∃zD(z).

§51. With these notations Arrow’s Theorem from §14 says that every finite
model M of the set of sentences

Γ = Γ0 ∪ {WUλ}λ∈O(C) ∪ {Iab}(a,b)∈C2

also models the sentence ∃zD(z). (Here Γ0 is the set of sentences defined in
§48)
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