Math 221 Review Sheet

BN

Fall 2000

Disclaimer: This may not be comprehensive! If a topic is not on this review sheet, it might still be on the exam!

Advice: Learn how to do the problems you missed on the earlier exams and quizzes. Study the examples in the text. Many have appeared on earlier exams.

1. Write the formula which defines the derivative $f^{\prime}(a)$ of the function $f(x)$ at the point $x=a$.
2. (i) Define the terms differentiable function and continuous function. (ii) Give an example of a continuous function which is not differentiable. (iii) Prove that a differentiable function is continuous. (Use the definitions you gave in part (i). You may use without proof the theorem that the limit of a product is the product of the limits.)
3. State the Mean Value Theorem.
4. State the Intermediate Value Theorem.
5. (i) Complete the definition: The Taylor polynomial of the function f of degree n centered at a is

$$
P(x)=\sum_{k=0}^{n} \ldots
$$

(ii) In what sense is the Taylor polynomial close to the function f ?
6. Let $f(x)$ be a function defined on the interval $a \leq x \leq b$. A Riemann sum for f on the interval $[a, b]$ is an expression of form

$$
S=\sum_{k=1}^{n} f\left(c_{k}\right)\left(x_{k}-x_{k-1}\right)
$$

where $a=x_{0}<x_{1}<\cdots<x_{n}=b$ and $x_{k-1} \leq c_{k} \leq x_{k}$ for $k=1,2, \ldots, n$. Complete the sentence: When the quantity \qquad is small, the Riemann sum is close to \qquad
7. (i) Find the Taylor Polynomial of degree 5 for $f(x)=e^{x}$ at $a=0$. (ii) Estimate the error if you use part (i) to approximate e^{-1}.
8. Find the polynomial of degree 4 which best approximates the function $f(x)=$ $\tan x$ near the point $x=\frac{\pi}{4}$.
9. Graph, indicate limits at $x= \pm \infty$ and the one sided limits where the function is undefined, and label all maxima, minima, and points of inflection:

$$
\begin{array}{ll}
\text { (i) } y=x e^{-x^{2}} . & \text { (ii) } y=\frac{1}{(x-1)(x-2)} .
\end{array}
$$

10. Find the limits:
(i) $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{5}}$
(ii) $\lim _{x \rightarrow \infty} \frac{x^{2}}{2^{x}}$
(iii) $\lim _{x \rightarrow 0} x \ln x$
(iv) $\lim _{x \rightarrow a} \frac{2^{x}-2^{a}}{x-a}$
(v) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{\sin x}$
(vi) $\lim _{x \rightarrow 1} \frac{x^{a}-1}{x^{b}-1}$
(vii) $\lim _{x \rightarrow 0} \frac{1}{x}-\csc x$
(viii) $\lim _{x \rightarrow \infty} \frac{(\ln x)^{3}}{x^{2}}$
(ix) $\lim _{x \rightarrow 1} \frac{a^{x}-1}{b^{x}-1}$
11. The altitude of a triangle is increasing at a rate of $1 \mathrm{~cm} / \mathrm{min}$ while the area is increasing at a rate of $2 \mathrm{~cm}^{2} / \mathrm{min}$. At what rate is the base of the triangle changing when the altitude is 10 cm , and the area is $100 \mathrm{~cm}^{2}$.
12. Find the maximum value and the minimum value of $f(x)=\frac{\ln x}{x}$ on $[1,3]$.
13. Find the point of the graph of $x+y^{2}=0$ that is closest to the point $(-3,0)$.
14. Find the volume of the largest right circular cone that can be inscribed in a sphere of radius 5 .
15. Find the area under the curve $y=2 x+1$, from $a=0$ to $b=5$, using Riemann sums. Hint: $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$.
16. Evaluate $\int_{1}^{1} x^{2} \cos x d x$.
17. Given that $\int_{4}^{9} \sqrt{x} d x=\frac{38}{3}$, what is $\int_{9}^{4} \sqrt{t} d t$?
18. Use a Riemann sum with four terms to find a number slightly larger than $\int_{0}^{1} \sqrt{1+x^{3}} d x$. Illustrate this with a picture.
19. Find $\frac{d y}{d x}$ if $y=\int_{x^{2}}^{\pi} \frac{\sin t}{t} d t$.
20. Find the interval on which the curve $y=\int_{0}^{x} \frac{1}{1+t+t^{2}} d t$ is concave upward.
21. Verify that $\int x^{2} \sin x d x=-x^{2} \cos x+2 \int x \cos x d x$
22. Evaluate:
(i) $\int \frac{2 a x+b}{\sqrt{a x^{2}+b x+c}} d x$
(ii) $\int \sin (3 A)-\sin (3 x) d x$
(iii) $\int \frac{\tan ^{-1} x}{1+x^{2}} d x$
(iv) $\int \sec ^{2}(3 \theta) d \theta$
23. Find the values of c such that the area of the region bounded by $y=x^{2}-c^{2}$ and $y=c^{2}-x^{2}$ is 576 .
24. Set up integrals for the volume of the solid obtained by rotating the region bounded by the given curves about the given line:
(i) $y=\ln x, y=1, x=1$, about the x-axis.
(ii) $2 x+3 y=6,(y-1)^{2}=4-x$, about $x=-5$.
(iii) $y=\cos x, y=0, x=0, x=\frac{\pi}{2}$, about $y=1$.
(iv) $y=\frac{1}{1+x^{2}}, y=0, x=0, x=3$, about y-axis.
25. The temperature of a metal rod, 5 m long, is $4 x^{\circ} \mathrm{C}$ at a distance x meters from one end of the rod. What is the average temperature of the rod?
26. If $\int_{0}^{x^{2}} f(t) d t=x \sin (\pi x)$ find $f(4)$.
27. The displacement in meters of a particle moving in a straight line is given by $s=t^{2}-8 t+18$, where t is measured in seconds.
28. Simplify:
(i) $\tan ^{-1}(\sqrt{3})$
(ii) $\sin \left[\sin ^{-1}\left(\frac{1}{3}\right)+\sin ^{-1}\left(\frac{2}{3}\right)\right]$
(iii) $\sin \left(\tan ^{-1} x\right)$
29. Find the equation of the tangent line to the curve $y=\tan ^{-1}(3 x-2)$ at $x=1$
30. Find the derivative:
(i) $f(x)=\cos ^{-1}(\sin x)$
(ii) $g(x)=x \tan ^{-1} x$
(iii) $h(x)=\left(\sin ^{-1} x\right)(\ln x)$
31. Find the length of the curve $y=\ln (\cos x)$ from $0 \leq x \leq \frac{\pi}{4}$.
32. Find the area and centroid of the region bounded by the given curves:
(i) $y=x^{2}, y=0, x=2$.
(ii) $y=x, y=0, y=\frac{1}{x}, x=2$.
33. Given that $\frac{d}{d y}(\ln y)=\frac{1}{y}$, prove that $\frac{d}{d x}\left(e^{x}\right)=e^{x}$.
34. Find $\frac{d y}{d x}$ if $\tan ^{-1} x+\sin ^{-1} y=\ln (x y)$
35. If $x[f(x)]^{3}+x f(x)=6$ and $f(3)=1$, find $f^{\prime}(3)$.
36. Find z if

$$
\frac{d z}{d x}=e^{-x^{2} / 2} x \quad \text { and } z=1 \text { when } x=0
$$

37. A population Y is growing exponentially in time. (i) If $Y=100$ at time $t=0$ and $Y=300$ at time $t=2$ what is Y at time $t=5$? (ii) Express $d Y / d t$ as a function of Y.
