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THE GALOIS ACTION AND COHOMOLOGY OF A RELATIVE

HOMOLOGY GROUP OF FERMAT CURVES

RACHEL DAVIS, RACHEL PRIES, VESNA STOJANOSKA, AND KIRSTEN WICKELGREN

Abstract. For an odd prime p satisfying Vandiver’s conjecture, we give ex-
plicit formulae for the action of the absolute Galois group GQ(ζp) on the ho-

mology of the degree p Fermat curve, building on work of Anderson. Further,
we study the invariants and the first Galois cohomology group which are as-
sociated with obstructions to rational points on the Fermat curve.

1. Introduction

In this paper, we study the action of the absolute Galois group on the homology of
the Fermat curve. To describe the first main result, let p be an odd prime, let ζ be
a chosen primitive pth root of unity, and consider the cyclotomic field K = Q(ζ).
Let GK be the absolute Galois group of K. The Fermat curve of exponent p is
the smooth projective curve X ⊂ P2

K of genus g = (p − 1)(p − 2)/2 given by the
equation

xp + yp = zp.

Anderson [And87] proved several foundational results about the Galois module
structure of a certain relative homology group of the Fermat curve. These results
are closely related to [Iha86] [Col89], and were further developed in [AI88] [And89].
Consider the affine open U ⊂ X given by z 6= 0, which has equation xp + yp = 1.
Consider the closed subscheme Y ⊂ U defined by xy = 0, which consists of 2p
points. Let H1(U, Y ;Z/p) denote the étale homology group of the pair (U ⊗K,Y ⊗
K); it is a continuous module over GQ. There is a µp × µp action on X given by

(ζi, ζj) · [x, y, z] = [ζix, ζjy, z], (ζi, ζj) ∈ µp × µp,

which determines an action on U , preserving Y . By [And87, Theorem 6], the group
H1(U, Y ;Z/p) is a free rank one Z/p[µp × µp] module, with generator denoted β.
The Galois action of σ ∈ GK is then determined by σβ = Bσβ, for some unit
Bσ ∈ Z/p[µp × µp].

Let L be the splitting field of 1 − (1 − xp)p. By [And87, Section 10.5], the GK
action on H1(U, Y ;Z/p) factors through Gal(L/K). This implies that the full GK
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module structure of H1(U, Y ;Z/p) is determined by the finitely many elements Bq
for q ∈ Gal(L/K).

From Anderson’s work, the description of the elements Bq is theoretically complete
in the following sense: Anderson shows that Bq is determined by an analogue of

the classical gamma function Γq ∈ Fp[µp]. By [And87, Theorems 7 & 9], there is a
formula Bq = d̄′(Γq) (with d̄

′ as defined in Section 2.2). The canonical derivation

d : Fp[µp] → ΩFp[µp] to the module of Kähler differentials allows one to take the log-
arithmic derivative dlog Γq of Γq. Since p is prime, dlog Γq determines Bq uniquely
[And87, 10.5.2, 10.5.3]. The function q 7→ dlog Γq is in turn determined by a rela-

tive homology group of the punctured affine line H1(A
1 − V (

∑p−1
i=0 x

i), {0, 1};Z/p)
[And87, Theorem 10].

In this paper, we determine formulae for Bq for q ∈ Gal(L/K) which are explicit
enough to be used for applications. We require that p satisfies Vandiver’s Conjec-
ture, namely that p does not divide the order h+ of the class group of Q(ζ + ζ−1);
this is true for all p less than 163 million and all regular primes. Under this con-
dition, we proved in [DPSW16] that Gal(L/K) is isomorphic to (Z/p)r+1 where
r = (p − 1)/2. More precisely, let κ denote the classical Kummer map; i.e., for
θ ∈ K∗, let κ(θ) : GK → µp be defined by

κ(θ)(σ) =
σ p
√
θ

p
√
θ
.

In Section 2.1 we recall that the map

κ(ǫ)×
p−1

2
∏

i=1

κ(1 − ǫ−i) : Gal(L/K) → (µp)
p+1

2

is an isomorphism [DPSW16, Corollary 3.7], and give additional information about
the extension Gal(L/Q).

In Section 2.2, we recall the formula (2.c) for dlog Γq from [DPSW16], which uses

the above description of Gal(L/K): Namely, if we write dlog Γq =
∑p−1

i=1 ciǫ
i dlog ǫ

for ci in Fp then the ci are linear in the coordinate projections of q viewed as an

element of (Fp)
p+1

2 ∼= (µp)
p+1

2 . (There is a chosen root of unity present.) See
Equation (2.d). In Section 3, we use this formula to compute Bq explicitly in terms
of the generators ǫ0 and ǫ1 for Λ1 = Z/p[µp × µp]. The result is in terms of the
truncated exponential maps E0 and E1 defined in (3.e) and (3.f) and a polynomial
γ defined in (3.g). Although γ has coefficients in F̄p, the resulting Bq is indeed in
Λ1. Here is the first main result (see Theorem 3.5).

Theorem 1.1. Suppose p is an odd prime satisfying Vandiver’s conjecture. Then
the action of Gal(L/K) on the relative homology

H1(U, Y ;Z/p) ∼= Λ1 = Z/p[µp × µp]

of the Fermat curve is determined as follows. For q ∈ Gal(L/K) ∼= (Fp)
p+1

2 , let the

image of q in (Fp)
p+1

2 be

q = (c0, c1, . . . , c p−1

2

)
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and for i > p−1
2 , let ci be ci = cp−i − ic0. Let F ∈ F̄p be a solution to the equation

F p − F +

p−1
∑

i=1

c = 0.

Let

γ(ǫ) =

p−1
∑

i=1

(

ci + c− F

i

)

ǫi −
p−1
∑

i=1

ci
i
.

Then q acts by multiplication by the element Bq ∈ Λ1 with the explicit formula

Bq =
E0(γ(ǫ0))E0(γ(ǫ1))

E0(γ(ǫ0ǫ1))
=
E1(γ0 + γ1)

E0(γ01)
,

where E0 and E1 are the truncated exponential maps of (3.e) and (3.f), respectively.

A useful corollary of this result is studied in Section 4. Namely, we deduce that
the norms of q ∈ Gal(L/K) act as zero on H1(U, Y ;Z/p) almost always: the only
exception is when p = 3 and q does not fix ζ9 ∈ L. See Theorem 4.6.

Having explicitly determined the action of Gal(L/K), and therefore of GK on
H1(U, Y ;Z/p), we proceed to studying the zeroth and first associated Galois co-
homology groups. Since the action of GK factors through Gal(L/K), the GK -
invariants are just the Gal(L/K)-invariants, and we study these in Section 5. Un-
fortunately, we do not arrive at a general closed-form answer, but we can identify a
uniform subspace in Lemmas 5.1 and 5.2, and if Question 5.4 has a positive answer,
we can deduce much more from the results in Section 5.2.

In Section 6, we work towards determining the first Galois cohomology group.
Initially, the material in this section might seem disjoint from the earlier sections.
However, these general results in commutative algebra will eventually play a key
role in understanding obstructions for rational points on Fermat curves.

To describe our second main result, consider an extension of finite (or profinite)
groups

(1.a) 1 → N → G→ Q→ 1.

Suppose M is a Z[G]-module on which N acts trivially. Note that this applies to
G = GK , Q = Gal(L/K), and M = H1(U, Y ;Z/p). Consider the differential in the
spectral sequence associated with (1.a)

d2 : H1(N,M)Q → H2(Q,M).

It gives a short exact sequence

0 → H1(Q,M) → H1(G,M) → Ker d2 → 0,

which reduces the calculation of H1(G,M) to the two simpler calculations of
H1(Q,M) and Ker d2. We address the first of these calculations in Remark 6.5,
while the rest of Section 6 concerns the second.

When Q ≃ (Z/p)r+1, we determine the kernel of d2 algebraically. To state the result

about Ker(d2), fix a set of generators τ0, . . . , τr of Q. Let Nτj = 1 + τj + · · · τp−1
j

denote the norm of τj . Let s : Q → G be a set-theoretic section of (1.a). The
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element ω ∈ H2(Q,M) classifying (1.a) is determined by elements aj , cj,k ∈ N
where aj = s(τj)

p for 0 ≤ j ≤ r and where, for 0 ≤ j < k ≤ r,

cj,k = [s(τk), s(τj)] = s(τk)s(τj)s(τk)
−1s(τj)

−1.

Here is the second main result of this paper (see Theorem 6.11).

Theorem 1.2. Suppose φ ∈ H1(N,M)Q is a class represented by a homomorphism
φ : N →M . Then φ is in the kernel of d2 if and only if there exist m0, . . . ,mr ∈M
such that

(1) φ(aj) = −Nτjmj for 0 ≤ i ≤ r and

(2) φ(cj,k) = (1− τk)mj − (1− τj)mk for 0 ≤ j < k ≤ r.

This theorem is a consequence of the general result about d2 given in Proposi-
tion 6.1, combined with a direct comparison of cocycle representatives coming from
two different resolutions which compute H∗(Q,M).

The last section of this paper is disjoint from the main results and is not new, but
the methods use new topological tools, and are included for this reason. We recover
results about the zeta function mod p of the Fermat curve of exponent p over a
finite field of coprime characteristic.

Here is the motivation for studying the first Galois cohomology group of the relative
homology H1(U, Y ;Z/p)). Let X be a smooth, proper curve over a number field k
and let b be a geometric point of X . Let π = π1(Xk, b) denote the geometric étale

fundamental group of X based at b, and let

π = [π]1 ⊇ [π]2 ⊇ . . . ⊇ [π]n ⊇ . . .

denote the lower central series. LetG denote the Galois group of the maximal exten-
sion of k ramified only over the primes of bad reduction for X , the infinite places,
and a chosen prime p. Using work of Schmidt and Wingberg [SW92], Ellenberg
[Ell00] defines a series of obstructions to a point of the Jacobian of a curve X lying
in the image of the Abel-Jacobi map. Namely, X(k) and JacX(k) can be viewed as
subsets ofH1(G, πab

p ), where for a nilpotent profinite group, the p-subscript denotes
the p-Sylow [Sti13, Chapter 7]. The first of these obstructions

δ2 : H1(G, πab
p ) → H2(G, ([π]2/[π]3)p)

was also studied by Zarkhin [Zar74]; it is the coboundary map associated to the
p-part of the exact sequence

0 → [π]2/[π]3 → π/[π]3 → π/[π]2 → 0,

and has the property that Ker δ2 ⊃ X(k). Ellenberg’s obstructions are related to
the non-abelian Chabauty methods of [Kim05] [Kim05] [DCW15] [BDCKW14].
The work of [CNGJ13] gives interesting information related to the embedding
JacX(k) ⊂ H1(G, πab

p ) for the Fermat curve.

To pursue this application in the case of Fermat curves, set M = H1(U, Y ;Z/p)
and Q = Gal(L/K). In future work, we provide information about N (the Galois
group of the maximal extension of L ramified only over the prime above p and the
infinite places) and the elements aj , cj,k ∈ N which classify (1.a).
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In the mentioned future work, to apply Theorem 1.2, we need additional information
about the elements Bq ∈ Z/p[µp×µp] which we include in Sections 4 - 5. Specifically,
we need Theorem 4.6 which states that the norm Nq of Bq is zero for all q ∈ Q and
all p ≥ 5. We also need Proposition 5.8 about the kernels of Bτj − 1.

2. Review and extension of previous results

Throughout this paper, p is an odd prime satisfying Vandiver’s conjecture.

In our previous paper [DPSW16], we extended results of Anderson [And87] regard-
ing the action of the absolute Galois group of a number field on the first homology
of Fermat curves. In this section we briefly summarize and generalize the results
we need in the sequel.

The homology group associated to the Fermat curve of exponent p in which one sees
the Galois action most transparently is the relative homology group H1(U, Y ;Z/p).
By [And87, Theorem 6], this group is a free rank one module (on a generator called
β) over the group ring

Λ1 = Z/p[µp × µp] = Z/p[ǫ0, ǫ1]/〈ǫpi − 1〉.
Note that Λ1 itself has an action by GQ, where g ∈ GQ acts on both ǫ0 and ǫ1 as
it does on a primitive p-th root of unity ζ in K = Q(ζ). The action of g ∈ GQ on
H1(U, Y ;Z/p) is twisted in the sense that

g · (f(ǫ0, ǫ1)β) = (g · f(ǫ0, ǫ1))(g · β) = (g · f(ǫ0, ǫ1))Bgβ.
In particular, if g fixes K, it is easier to describe the action.

Further, by [And87, Section 10.5], if a Galois element fixes the splitting field L
of 1 − (1 − xp)p, then it acts trivially on H1(U, Y ;Z/p). Hence to determine the
action of GQ, we are reduced to determining the action of the finite Galois group
Gal(L/Q). To do this explicitly, we need to know the structure of these Galois
groups; this is described in the first subsection.

The next subsection introduces the question of determining Bq, where q is an
element of the Galois group Q := Gal(L/K).

2.1. The Galois groups Gal(L/K) and Gal(L/Q). Let r = p−1
2 ; by [DPSW16,

Lemma 3.3], the splitting field of L of 1− (1− xp)p is

L = K( p
√

ζ, p
√

1− ζ−i|1 ≤ i ≤ r).

Let σ ∈ GK ; for an element θ of K, let p
√
θ be a choice of a primitive p-root. We

define κ(θ)σ to be the element of Z/p such that

σ · p
√
θ = ζκ(θ)σ

p
√
θ.

Then κ(θ) defines a homomorphismGK → Z/p, which factors through Gal(K( p
√
θ)/K).

From [DPSW16, Corollary 3.7], the map

C = κ(ζ)×
r
∏

i=1

κ(1− ζ−1) : Gal(L/K) → (Z/p)r+1(2.b)
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is an isomorphism. This relationship has a geometric meaning explored further in
[DPSW16, Section 4]. We use C to give a convenient basis of Q = Gal(L/K).

Definition 2.1. For 0 ≤ i ≤ r, let τi be the inverse image under C of the ith
standard basis vector of (Z/p)r+1. In other words, consider the basis for L/K

given by t0 = p
√
ζ and ti =

p
√

1− ζ−i for 1 ≤ i ≤ r. Then τi acts by multiplication
by ζ on ti and acts trivially on tj for 0 ≤ j ≤ r, j 6= i.

Now we turn to studying the Galois group Gal(L/Q); note that L/Q is itself Galois
since L is a splitting field. There is an extension

1 → Q→ Gal(L/Q) → (Z/p)∗ → 1.

Since Gal(K/Q) ∼= (Z/p)∗ has order coprime to the order ofQ, the Schur-Zassenhaus
theorem implies that Gal(L/Q) splits as a semidirect product of Q and (Z/p)∗. The
next result determines this semidirect product.

Lemma 2.2. The extension L/Q is Galois with group Q ⋊ψ (Z/p)∗ where ψ :
(Z/p)∗ → Aut(Q) is given by the conjugation action

ψ(a) · τi =
{

(τia)
a, if i 6= 0,

τ0, if i = 0.

In particular, if a is a generator of (Z/p)∗, then ψ(a) acts transitively on the set of
subgroups 〈τi〉 for 1 ≤ i ≤ r.

Proof. We already remarked that Gal(L/Q) is a semi-direct product Q⋊ψ (Z/p)∗;
we just need to determine ψ. For a ∈ (Z/p)∗, let αa ∈ Aut(K) be given by ζ 7→ ζa.
For the case i 6= 0, we need to show

αaτiα
−1
a (z) = (τia)

a(z), for all z ∈ L, 0 ≤ i ≤ r.

As in Definition 2.1, let tj = p

√

1− ζ−jp , for 1 ≤ j ≤ r, and t0 = p
√
ζ. Since tj ,

0 ≤ j ≤ r, generate L over K, it suffices to check the above for z = tj .

If j = ia, then (τia)
a(tj) = ζatj and

αaτiα
−1
a (tia) = αaτi(ti) = αa(ζti) = ζatj .

If j 6= ia, then tj is fixed by both αaτiα
−1
a and τia.

For the case i = 0, we need to show αaτ0α
−1
a (tj) = τ0(tj), for all 0 ≤ j ≤ r. For

j > 0, tj is fixed by both τ0 and ατ0α
−1. If j = 0, then τ0(t0) = ζt0 and

αaτ0α
−1
a (t0) = αaτ0(t

a−1

0 ) = αa(ζ
a−1

ta
−1

0 ) = ζt0.

�

2.2. Determining the action of Q on H1(U, Y ;Z/p). The action of q ∈ Q on
H1(U, Y ;Z/p) is determined by a unit Bq of Λ1, where Λ1 = Z/p[µp × µp] ∼=
Z/p[ǫ0, ǫ1]/〈ǫpi − 1〉. Denote by Λ0 the group ring Z/p[µp] = Z/p[ǫ]/〈ǫp − 1〉. Let

Λ̄i = Λi ⊗Fp
F̄p. Define a map d̄′ : Λ̄×

0 → Λ̄×
1 by

d̄′(u(ǫ)) =
u(ǫ0)u(ǫ1)

u(ǫ0ǫ1)
.
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By [And87, Theorems 7 and 9], Bq is in the image of d̄′; in fact, Bq = d̄′(Γq), where

Γq ∈ Λ̄×
0 is unique modulo the kernel of d̄′, which consists of ǫj , 0 ≤ j ≤ p − 1.

Moreover, for such a Γq, if we write Γq =
∑p−1
i=0 diǫ

i with di ∈ F̄p, then
∑p−1
i=0 di = 1

[DPSW16, Lemma 5.4].

The element Bq has several nice properties; it is symmetric under the involution of
Λ1 exchanging ǫ0 and ǫ1. Further, Bq − 1 is in the ideal 〈(1 − ǫ0)(1 − ǫ1)〉 of Λ1,
which corresponds to the homology group H1(U ;Z/p) [DPSW16, Lemma 6.1].

As we will see shortly, the image of Γq under the logarithmic derivative dlog :

Λ̄×
0 → Ω(Λ̄0) (to the Kähler differentials on Λ̄0) gives us the information needed to

determine Γq and therefore Bq. Namely, we know from [DPSW16, Corollary 4.2]
that, modulo a term in F̄p dlog ǫ,

dlog(Γq) =

p−1
∑

i=1

ciǫ
i dlog ǫ,(2.c)

where ci = κ(1 − ζ−i)(q). Moreover, (2.b) along with [DPSW16, Corollary 4.4]
determines the coefficients ci from q. Namely, let c0 = κ(ζ)(q); then c0, . . . cr are
determined by the isomorphism C, and for i > r,

ci = cp−i − ic0.(2.d)

3. Explicit formula for the action of the Galois group

In this section, we find an explicit formula for Bq for each q ∈ Q, starting with the
results summarized in the previous section. This is possible since Ψq := dlog Γq
uniquely determines Bq by [And87, 10.5] (see also [DPSW16, Proposition 5.1]).

3.1. Truncated exponential maps. Consider the group ring Λ0
∼= Fp[ǫ]/(ǫ

p−1);
let y = ǫ − 1, so that Λ0

∼= Fp[y]/〈yp〉. An element f ∈ Λ0 (or Λ̄0) can be written

uniquely in the form f =
∑p−1

i=0 aiy
i. Let fy be the derivative of f with respect to

y. Then fy(0) = a1.

For f ∈ yΛ0 (or f ∈ yΛ̄0), we define an exponential in Λ0 by

E0(f) =

p−1
∑

i=0

f i/i!.(3.e)

If f, g ∈ yΛ̄0, then E0(f)E0(g) = E0(f + g) and E0(f)
−1 = E0(−f).

Lemma 3.1. If f ∈ yΛ̄0, then

dlog(E0(f)) = (1 + fy(0)
p−1yp−1)df.

Proof. Write f = yg and note that fy(0) = g(0) = a1. Then fp−1 = yp−1ap−1
1

because yp = 0. So E0(−f)fp−1 = yp−1ap−1
1 , again because yp = 0. Hence,

dlog(E0(f)) = E0(f)
−1 dE0

df
df = E0(−f)(E0(f)−

1

(p− 1)!
fp−1)df

= (1 + E0(−f)fp−1)df = (1 + fy(0)
p−1yp−1)df.

�
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Now we move on to the group ring Λ1 = Fp[µp × µp] ∼= Fp[ǫ0, ǫ1]/〈epi − 1〉. Let
yi = ǫi − 1, so Λ1 = Fp[y0, y1]/〈yp0 , yp1〉.

Let W denote the Witt vectors over Fp (respectively F̄p). Since the characteristic
of W[ 1p ] is zero, the usual exponential map

exp(f) =

∞
∑

n=0

fn

n!

is well-defined for f ∈ W[ 1p ][y0, y1]/〈y
p
0 , y

p
1〉.

Lemma 3.2. If f ∈ 〈y0, y1〉 ⊂ W[y0, y1]/〈yp0 , yp1〉, then exp(f) ∈ W[y0, y1]/〈yp0 , yp1〉.

Proof. It suffices to check that fn/n! has coefficients in W for each n. This is
clear if n < p. If n ≥ p, write f = f0y0 + f1y1 for f0, f1 ∈ W[y0, y1]/〈yp0 , yp1〉. Then
fp =

∑p−1
i=1

(

p
i

)

f i0f
p−i
1 yn0 y

p−i
1 . Since p |

(

p
i

)

for 1 ≤ i ≤ p−1, it follows that fp/p! has
coefficients in W. If p < n ≤ 2p−2, then fn/n! = (fp/p!)fn−p/((p+1)(p+2) · · ·n)
and so fn/n! has coefficients in W. If n ≥ 2p− 1, then fn/n! = 0. �

We now define an exponential E1 for f ∈ 〈y0, y1〉 ⊂ Λ1. Let f̃ ∈ W[y0, y1]/〈yp0 , yp1〉
be any lift of f ; define

E1(f) = exp(f̃)(3.f)

where exp(f̃) denotes the image in Λ1 (or Λ̄1) of exp(f̃).

Lemma 3.3. If f, g ∈ 〈y0, y1〉 ⊂ Λ1 (or Λ̄1), then

(1) E1(f)E1(g) = E1(f + g),

(2) E1(f)
−1 = E1(−f), and

(3) E1(f) =
∑2p−2
i=0 f i/i!.

Proof. First, if f, g ∈ W[ 1p ][y0, y1]/〈y
p
0 , y

p
1〉, then exp(f + g) = exp(f) exp(g). By

Lemma 3.2, if f ∈ 〈y0, y1〉, then exp(f) ∈ W[y0, y1]/〈yp0 , y
p
1〉. Thus exp(f +

g), exp(f), and exp(g) are in W[y0, y1]/〈yp0 , yp1〉. Reducing mod p shows that
E1(f)E1(g) = E1(f + g).

Next, E1(f) is invertible because E1(f) = 1+N for some element N of the nilrad-
ical. Then E1(f)

−1 = E1(−f) because E1(f)E1(−f) = E1(0) = 1.

The last statement follows from the fact that f2p−1 = 0. �

3.2. Γq from Ψq. In this subsection, we determine a formula for Γq in terms of
Ψq = dlog Γq. For convenience, we drop the subscript q, but everything depends
on this chosen element of Q.

Proposition 3.4. Write

Ψ =

p−1
∑

i=1

ciǫ
i dlog ǫ,
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and let c =
∑p−1

i=1 ci be its coefficient sum. Let F ∈ F̄p be a solution to the equation
F p − F + c = 0, and define

(3.g) γ(ǫ) =

p−1
∑

i=1

(

ci + c− F

i

)

ǫi −
p−1
∑

i=1

ci
i
.

Then

Γ = E0(γ(ǫ)).

Proof. By (2.c) (and [DPSW16, Corollary 4.2]), dlog Γ = Ψ modulo F̄p dlog ǫ). We
rewrite Ψ in the nilpotent basis, i.e.,

Ψ =

p−1
∑

i=1

ciǫ
i dlog ǫ =

p−1
∑

i=1

ci(y + 1)i−1dy.

To find a solution to Ψ = dlog(Γ), we find f ∈ yΛ̄0 such that Γ = E0(f); any unit
in Λ0 is of this form up to scaling.

From the congruence
(

p−1
i

)

≡ (−1)i mod p, it follows that

yp−1 = ((y + 1)− 1)p−1 =

p−1
∑

i=0

(

p− 1

i

)

(y + 1)i(−1)p−1−i =

p−1
∑

i=0

(y + 1)i.(3.h)

By Lemma 3.1,

dlog(E0(f)) = (1 + fy(0)
p−1yp−1)df = df + fy(0)

p

(

p−1
∑

i=0

(y + 1)i

)

dy.

Define fi ∈ F̄p by f =
∑p−1
i=0 fi(y + 1)i, and note that fy(0) =

∑p−1
i=0 ifi. For

1 ≤ i ≤ p− 1, we need to solve the equation

ifi +

(

p−1
∑

i=0

ifi

)p

= ci

in such a way that
∑p−1
i=0 fi = 0. This last condition comes from the fact that

∑p−1
i=0 di = 1 if Γ =

∑p−1
i=0 diǫ

i, Section 2.2 (or [DPSW16, Lemma 5.4]).

Adding the first set of equations gives

c :=

p−1
∑

i=1

ci = (p− 1)

(

p−1
∑

i=0

ifi

)p

+

p−1
∑

i=0

ifi.

Let F =
∑p−1

i=0 ifi; then F is a solution of F p − F + c = 0. Choose any of the p
solutions F, F + 1, . . . , F + (p − 1) in F̄p. Then fi = (ci + c − F )/i for i > 0 and
f0 = −∑i>0 fi = −∑ ci/i. �
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3.3. Bq from Ψq. In this section, we determine a formula for B in terms of Ψ. Let
γi = γ(ǫi) for i = 0, 1 and let γ01 = γ(ǫ0ǫ1), where

γ(ǫ) =

p−1
∑

i=1

(
ci + c− F

i
)ǫi −

p−1
∑

i=1

ci
i
.

Theorem 3.5. Suppose p is an odd prime satisfying Vandiver’s conjecture. The
action of q ∈ Q = Gal(L/K) on the relative homology H1(U, Y ;Z/p) of the Fermat
curve is determined by the element Bq ∈ Λ1 with the explicit formula

Bq =
E0(γ0)E0(γ1)

E0(γ01)
=
E1(γ0 + γ1)

E1(γ01)− T
,

where T is the “error term”

T = E1(γ01)− E0(γ01) =

2p−2
∑

i=p

γi01
i!
.

Proof. By [And87, Section 8.4], B = Γ(ǫ0)Γ(ǫ1)/Γ(ǫ0ǫ1) in Λ1. By Proposition 3.4,
Γ(ǫ) = E0(γ(ǫ)). If i = 0, 1, then E0(γi) = E1(γi) since γpi = 0. By Lemma 3.3,
Γ(ǫ0)Γ(ǫ1) = E1(γ0+γ1). Since γ

p
01 is not necessarily zero, the error term T appears

in the denominator. �

Remark 3.6. The error term T is in the ideal 〈y0, y1〉p since γ01 ∈ 〈y0, y1〉.

In the atypical situation that γp01 = 0, then T = 0 and Bq = E1(γ0 + γ1 − γ01).

The next formula follows immediately from Theorem 3.5.

(3.i) Bq−1 = E1(γ01 − γ0 − γ1)− E1(−γ0 − γ1)T.

For better display in the next examples, let x = ǫ0 − 1 and y = ǫ1 − 1. We arrived
at the formulas using Magma; it is difficult to do these calculations by hand.

Example 3.7. Let p = 3. Then Q = 〈τ0, τ1〉 = (Z/3)2.

If q = τ0, then c0 = 1, c1 = 0, and c2 = 1; hence c = 1. Let F be a solution of
F 3 − F + 1 = 0, so f0 = 1, f1 = 1− F , and f2 = 1 + F . Then

γτ0 = 1 + (1− F )ǫ+ (1 + F )ǫ2 = Fy + (1 + F )y2.

After a calculation, one obtains that

Bτ0 = 1 + xy + 2xy(x+ y).

If q = τ1, then c0 = 0 and c1 = c2 = 1; hence c = −1. Let F be a solution to
F 3 − F − 1 = 0, so that f0 = 0, f1 = −F , and f2 = F . Then

γτ1 = F (ǫ2 − ǫ) = F (y + y2),

and

Bτ1 = 1 + 2xy(x+ y) + x2y2.
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Example 3.8. Let p = 5; then Q = 〈τ0, τ1, τ2〉 ≃ (Z/5)3, and we have the following
formulas:

Bτ0 − 1 = 4x4y4 + x4y3 + 3x4y2 + 4x4y + x3y4 + x3y3 + 2x3y2 + 4x3y

+ 3x2y4 + 2x2y3 + 3x2y + 4xy4 + 4xy3 + 3xy2;

Bτ1 − 1 = 2x4y4 + 2x4y3 + 4x4y2 + 4x4y + 2x3y4 + 2x3y3 + 4x3y2 + x3y

+ 4x2y4 + 4x2y3 + x2y2 + 4x2y + 4xy4 + xy3 + 4xy2;

Bτ2 − 1 = 2x4y4 + 3x4y3 + 3x4y2 + 3x3y4 + 4x3y3 + 4x3y2 + 4x3y

+ 3x2y4 + 4x2y3 + 4x2y2 + x2y + 4xy3 + xy2.

Example 3.9. Let p = 7; then Q = 〈τ0, τ1, τ2, τ3〉 ≃ (Z/7)4, and we have:

Bτ0 − 1 = x6y5 + 3x6y4 + 2x6y3 + 2x6y2 + 6x6y

+ x5y6 + 2x5y5 + x5y4 + 4x5y3 + 6x5y

+ 3x4y6 + x4y5 + 5x4y4 + 2x4y2

+ 2x3y6 + 4x3y5 + 4x3y2 + 4x3y

+ 2x2y6 + 2x2y4 + 4x2y3 + 4x2y2 + 3x2y

+ 6xy6 + 6xy5 + 4xy3 + 3xy2;

Bτ1 − 1 = 5x6y6 + 3x6y5 + 2x6y4 + 3x6y3 + 6x6y2 + 6x6y

+ 3x5y6 + 3x5y5 + 4x5y4 + 4x5y3 + 5x5y2 + x5y

+ 2x4y6 + 4x4y5 + x4y4 + 4x4y3 + 5x4y2 + 6x4y

+ 3x3y6 + 4x3y5 + 4x3y4 + 2x3y3 + 6x3y2 + x3y

+ 6x2y6 + 5x2y5 + 5x2y4 + 6x2y3 + x2y2 + 6x2y

+ 6xy6 + xy5 + 6xy4 + xy3 + 6xy2;

Bτ2 − 1 = 2x6y6 + 6x6y5 + 5x6y4 + x6y3

+ 6x5y6 + x5y5 + 5x5y4 + 2x5y3 + 3x5y2 + 6x5y

+ 5x4y6 + 5x4y5 + 4x4y4 + 5x4y2 + 2x4y

+ x3y6 + 2x3y5 + 3x3y3 + x3y2 + 4x3y

+ 3x2y5 + 5x2y4 + x2y3 + 4x2y2 + 3x2y

+ 6xy5 + 2xy4 + 4xy3 + 3xy2;

Bτ3 − 1 = 4x6y5 + 2x6y3 + 4x6y2

+ 4x5y6 + 4x5y5 + x5y4 + 6x5y3 + 3x5y2

+ x4y5 + 4x4y4 + 5x4y3 + 4x4y2 + 6x4y

+ 2x3y6 + 6x3y5 + 5x3y4 + 2x3y3 + 2x3y

+ 4x2y6 + 3x2y5 + 4x2y4 + 2x2y2 + 5x2y

+ 6xy4 + 2xy3 + 5xy2.

4. Norm equalities for general primes

For q ∈ Q, consider the unit Bq in Λ1 = Z/p[ǫ0, ǫ1]/〈ǫpi − 1〉. Note that Bpq = 1
since q has order p. In this section, we strengthen this by proving that the norm

Nq := 1 +Bq + · · ·+Bp−1
q
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is zero, except in the special case that p = 3 and q does not fix ζ9 ∈ L.

Throughout this section, it is again more convenient to work with the nilpotent
basis of Λ1 given by yi = ǫi − 1, so that Λ1 = Z/p[y0, y1]/〈yp0 , yp1〉.
Before studying the norm of B = Bq, we need an auxiliary result. Write

γ̃ = γ0 + γ1 − γ01,

and note that γ̃ ∈ 〈y0, y1〉, since γ ∈ 〈y〉 ⊂ Λ̄0.

Proposition 4.1. If q ∈ Q, then γ̃ is in the ideal 〈y0, y1〉2. If p ≥ 5, or if p = 3
and q fixes ζ9 ∈ L, then γ̃ is in 〈y0, y1〉3. More precisely,

(1) γ̃ = y0y1η for some η ∈ Λ̄1;

(2) and γ̃ ≡ αy0y1(y0 + y1) modulo 〈y0, y1〉4, for some constant α ∈ Fp, unless
p = 3 and q 6∈ 〈τ1〉.

Proof. For part (1), suppose γ =
∑p−1

i=0 aiy
i. Then

γ̃ = γ(ǫ0) + γ(ǫ1)− γ(ǫ0ǫ1) =

p−1
∑

i=0

ai(y
i
0 + yi1)−

p−1
∑

i=0

ai(y0 + y1 + y0y1)
i.

Consider the coefficient of yk0 (equivalently, yk1 ) in

γ(ǫ0ǫ1) =

p−1
∑

i=0

ai(y0 + y1(1 + y0))
i =

p−1
∑

i=0

i
∑

j=0

ai

(

i

j

)

yj0y
i−j
1 (1 + y0)

i−j .

The monomial yk0 appears in this sum only when i = j, hence also j = k, and the
coefficient is thus aj . It follows that the coefficients of yk0 and yk1 in γ̃ are zero, so
γ̃ is divisible by y0y1.

For part (2), note that γ̃ = y0y1η, for some η ∈ Λ̄1, by part (1). The constant
coefficient w of η equals the coefficient of y0y1 in −γ01. Write

γ =

p−1
∑

i=0

fiǫ
i =

p−1
∑

i=0

fi(y + 1)i;

then

−γ01 = −
p−1
∑

i=0

fi(y0 + 1)i(y1 + 1)i,

so it follows that

w = −
p−1
∑

i=1

fii
2.

Since fi =
ci+c−F

i , this simplifies to

w = −(c− F )

p−1
∑

i=1

i−
p−1
∑

i=1

ici = −
p−1
∑

i=1

ici.

In particular, this proves that the assignment ~c = (c0, c1, . . . , cp−1) → w is linear.

Case 1: If c0 = 0 (equivalently, if q fixes ζp2), then cp−i = ci. In this case,

w = −
∑(p−1)/2
i=1 ci(i+ (p− i)) = 0.
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Case 2: Suppose c0 = 1 and ci = 0 for 1 ≤ i ≤ r = p−1
2 . Then cp−j = j for

1 ≤ j ≤ r. So

w = −
p−1
∑

i=r+1

i(p− i) = −
r
∑

j=1

(p− j)j =

r
∑

j=1

j2,

and w = r(r + 1)(2r + 1)/6. If p ≥ 5, then this gives w = 0.

General case: Since ~c → w is linear, the above two cases prove that w = 0 for all
q when p ≥ 5. Finally, η ≡ α(y0 + y1) modulo 〈y0, y1〉2 since it is symmetric with
respect to the involution switching y0 and y1. �

The following consequence of Proposition 4.1 will be used in Section 5.

Corollary 4.2. Suppose p ≥ 5. Then Bq − 1 is in the ideal 〈y0, y1〉3 for all q ∈ Q.
In fact, for some constant α ∈ Fp, there is a congruence Bq − 1 ≡ αy0y1(y0 + y1)
modulo 〈y0, y1〉4.

Proof. It suffices to show the conclusion for B−1
q − 1. By (3.i),

B−1
q = E1(−γ̃)− E1(−γ0 − γ1)T.

Now T ∈ 〈y0, y1〉p by Remark 3.6 so B−1
q − 1 ≡ E1(−γ̃) − 1 modulo 〈y0, y1〉p.

Furthermore, −γ̃ ≡ αy0y1(y0 + y1) modulo 〈y0, y1〉4 by Proposition 4.1. Thus
E1(−γ̃)−1 = −γ̃+γ̃2/2+· · · ≡ −γ̃ modulo 〈y0, y1〉8. Thus B−1

q −1 ≡ αy0y1(y0+y1)

modulo 〈y0, y1〉4. �

Proposition 4.3. Let Nq−1 be the norm of Bq−1 and γ̃ = γ0 + γ1 − γ01. Then

Nq−1 = NE1(−γ̃) :=

p−1
∑

i=0

E1(−γ̃)i.

Proof. By (3.i), Bq−1 = E1(γ01−γ0−γ1)−E1(−γ0−γ1)T . By Remark 3.6, T 2 = 0.
Therefore, using Lemma 3.3 repeatedly, we have

Nq−1 =

p−1
∑

m=0

(E1(−γ̃)− E1(−γ0 − γ1)T )
m

=

p−1
∑

m=0

m
∑

k=0

(−1)k
(

m

k

)

E1(−(m− k)γ̃)E1(−k(γ0 + γ1))T
k

=

p−1
∑

m=0

E1(−mγ̃)−
p−1
∑

m=1

mE1((1−m)γ̃ − γ0 − γ1)T

= NE1(−γ̃) −
T

E1(γ01)

p−1
∑

m=1

mE1(−mγ̃).

To finish the proof, it suffices to show that the second term in the sum is 0 in Λ1.
By Proposition 4.1, γ̃ ∈ 〈y0, y1〉2. Since T ∈ 〈y0, y1〉p, it suffices to show that

S = S(γ̃) =

p−1
∑

m=1

mE1(−mγ̃)
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is in the ideal I = 〈y0, y1〉p−1. By Lemma 3.3(3),

S =

p−1
∑

m=1

2p−2
∑

t=0

(−1)t
mt+1γ̃t

t!
.

If t ≥ p−1
2 , then γ̃t ∈ I. Thus, modulo I,

S ≡
(p−3)/2
∑

t=0

(−1)t
γ̃t

t!
(

p−1
∑

m=1

mt+1).

However,
∑p−1

m=1m
t+1 = 0 when 0 ≤ t ≤ (p− 3)/2. �

Lemma 4.4. Suppose f ∈ Λ1 is in the ideal 〈y0, y1〉. Then

NE1(f) :=

p−1
∑

i=0

E1(f)
i = fp−1 − f2p−2

(2p− 2)!
.

Remark 4.5. Even though it is not possible to divide by p, the expression f2p−2

(2p−2)!

is well-defined for f ∈ 〈y0, y1〉.

Proof. By Lemma 3.3,

NE1(f) =

p−1
∑

i=0

E1(f)
i =

p−1
∑

i=0

E1(if) = 1 +

p−1
∑

i=1

2p−2
∑

m=0

imfm

m!
.

Thus

Nf = 1 +

2p−2
∑

m=0

fm

m!

(

p−1
∑

i=1

im
)

.

Recall that, modulo p,
∑p−1

i=1 i
m = 0 unless m ≡ 0 mod p − 1 in which case

∑p−1
i=1 i

m = −1. Also (p− 1)! = −1. Thus

NE1(f) = 1−
(

1 +
fp−1

(p− 1)!
+

f2p−2

(2p− 2)!

)

= fp−1 − f2p−2

(2p− 2)!
.

�

Theorem 4.6. For any q ∈ Q, the norm Nq of Bq equals γ̃p−1. In particular,
Nq = 0 for all q ∈ Q if p ≥ 5; when p = 3, then Nq = 0 if q fixes ζ9.

Proof. The norm of Bq equals the norm of B−1
q = Bq−1 , which is Nq−1 . By Propo-

sition 4.3, Nq−1 = NE1(−γ̃), and by Lemma 4.4,

NE1(−γ̃) = (−γ̃)p−1 − (−γ̃)2p−2

(2p− 2)!
.

From Proposition 4.1, γ̃2p−2 is in the ideal 〈y0, y1〉2(2p−2), hence zero. Moreover,
by Proposition 4.1(2) if p ≥ 5, or if q fixes ζp2 , then γ̃

p−1 = 0. �

Example 4.7. Let p = 3, and q = τ1; as seen in Example 3.7, γτ1 = F (ǫ2 − ǫ), so

γ̃τ1 = F (ǫ20 − ǫ0 + ǫ21 − ǫ1 − ǫ20ǫ
2
1 + ǫ0ǫ1) = −y20y21 + y0y1(y0 + y1).

Thus γ̃τ1 ∈ 〈y0, y1〉3 and Nτ1 = γ̃2τ1 = 0.
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Example 4.8. Let p = 3, and q = τ0; as seen in Example 3.7,

γτ0 = 1 + (1− F )ǫ+ (1 + F )ǫ2 = Fy + (1 + F )y2.

This implies that

γ̃τ0 = y0y1 + (1 + F )y0y1(y0 + y1 − y0y1),

showing that Nτ0 = γ̃2τ0 = y20y
2
1, which is not zero.

Example 4.9. Let p = 5. Then modulo 〈y0, y1〉4:
γ̃τ0 ≡ 3y0y1(y0 + y1), γ̃τ1 ≡ 4y0y1(y0 + y1), γ̃τ2 ≡ y0y1(y0 + y1).

5. The Q-invariants

Let M denote the homology group H1(U, Y ;Z/p), which can be identified with Λ1.
Under this identification, the homology group H1(U ;Z/p) corresponds to the ideal
〈(1− ǫ0)(1 − ǫ1)〉 [DPSW16, Lemma 6.1]. Recall that yi = ei − 1.

The Q-invariants of M are

MQ = {m ∈M | Bqm = m for all q ∈ Q}.
In Section 5.1, we construct a subspace of MQ of dimension 2p + 1 for p ≥ 5. In
Section 5.2, we compare the Bq-invariant subspaces of M for various q ∈ Q.

5.1. A subspace of MQ. For 0 ≤ k ≤ p − 1, define ηk = ǫk1
∑p−1

i=0 ǫ
i
0 and γk =

ǫk0
∑p−1

i=0 ǫ
i
1. Note that (1− ǫ0)ηk = (1− ǫ1)γk = 0.

Lemma 5.1. Let L = 〈ηk, γk〉p−1
k=0, viewed as a Z/p-subspace of M . Then:

(1) dim(L) = 2p− 1;

(2) codim(L ∩H1(U), L) = 2;

(3) and a basis for L is {yi00 yi11 | at least one of i0, i1 equals p− 1}.

Proof. (1) The elements ηk for 0 ≤ k ≤ p − 1 generate a Z/p-vector space of
dimension p. Similarly, γk for 0 ≤ k ≤ p − 1 generate a Z/p-vector space
of dimension p. The intersection 〈ηk〉 ∩ 〈γk〉 has dimension 1 with basis
∑p−1

k=0 γk =
∑p−1

k=0 ηk. Thus dim(L) = 2p− 1.

(2) A basis for L is given by ηk for 0 ≤ k ≤ p − 1 and γk for 0 ≤ k ≤ p − 2.

Write an element ξ ∈ L in the form ξ = A+B where A =
∑p−1

k=0 akηk and

B =
∑p−2

k=0 bkγk.

Since A ∈ 〈1− ǫ0〉, then ξ ∈ 〈1− ǫ0〉 if and only if B ∈ 〈1− ǫ0〉. Since B =

(
∑p−1

i=0 ǫ
i
1)
∑p−2

k=0 bkǫ
k
0 , this condition is satisfied if and only if (i)

∑p−2
k=0 bk =

0. Similarly, B ∈ 〈1 − ǫ1〉, so ξ ∈ 〈1− ǫ1〉 if and only if A ∈ 〈1− ǫ1〉. This

condition is satisfied if and only if (ii)
∑p−1
k=0 ak = 0. Since conditions (i)

and (ii) are linearly independent, codim(L ∩H1(U), L) = 2.

(3) This follows from the fact that ηk = ǫk1
∑p−1
i=0 ǫ

i
0 = (y1 + 1)kyp−1

0 and γk =

ǫk0
∑p−1
i=0 ǫ

i
1 = (y0 + 1)kyp−1

1 .

�
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For p ≥ 5, let s1 = yp−2
0 yp−2

1 and a1 = yp−3
0 yp−3

1 (y0 − y1).

Lemma 5.2. The subspace L from Lemma 5.1 is contained in MQ. If p = 3,
then MQ = L. If p ≥ 5, then s1, a1 ∈ MQ ∩ H1(U), so dim(MQ) ≥ 2p + 1 and
dim(MQ ∩H1(U)) ≥ 2p− 1.

Proof. To show L ⊂ MQ, it suffices to show that (Bq − 1)m = 0 for each m ∈ L.

By Lemma 5.1(3) and symmetry, it suffices to show that (Bq− 1)yi00 y
p−1
1 = 0. This

is true since Bq − 1 ∈ H1(U) = 〈y0y1〉 for all q ∈ Q.

By Corollary 4.2, if p ≥ 5, then Bq − 1 ≡ αy0y1(y0 + y1) mod 〈y0, y1〉4, for some
constant α ∈ Fp. The given elements s1 and a1 annihilate the ideal 〈y0, y1〉4;
moreover,

s1y0y1(y0 + y1) = yp−1
0 yp−1

1 (y0 + y1) = 0,

and likewise

a1y0y1(y0 + y1) = yp−2
0 yp−2

1 (y20 + y21) = 0.

�

Remark 5.3. We would be able to say more about MQ for p ≥ 11 if the following
question has a positive answer.

Question 5.4. Is it true that Ker(Bτi) = Ker(Bτj ) for all 1 ≤ i, j ≤ r? If yes, this

would imply that MQ = Ker(Bτ0 − 1) ∩Ker(Bτ1 − 1). Experimentally, the answer
is yes when p = 3, 5, 7.

Example 5.5. (1) When p = 3, then L =MQ = Ker(Bτ0 −1) ⊂ Ker(Bτ1 −1).

(2) When p = 5, then MQ = Span(L, s1, a1) As an ideal, MQ is generated by
η0 = y40, γ0 = y41, and a1. Also, Ker(Bτi − 1) is the same 13-dimensional
subspace for 1 ≤ i ≤ 4.

(3) When p = 7, then the set {s1, a1, s2, a2} extends a basis of L to a basis of
MQ, where

s2 = y30y
3
1(y

2
0 − y0y1 + y21) + y40y

5
1 ,

a2 = y20y
2
1(y

3
0 − y20y1 + y0y

2
1 − y31) + y30y

4
1(y0 − 2y1)− y40y

5
1 .

Again, Ker(Bτi − 1) is the same 19-dimensional subspace for 1 ≤ i ≤ 6.

The following summary of data shows that MQ = Span(L, a1, s1) when p = 3, 5
but not when p = 7.

Example 5.6.

p dim(MQ) dim(MQ ∩H1(U))
3 5 3
5 11 9
7 17 15
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5.2. A comparison of invariant subspaces for different automorphisms.

Let Bi = Bτi where τ1, . . . , τr are the chosen generators of Q. Note that (Bia)
a =

Bτa
ia
. Let ρa ∈ Aut(M) be given by the permutation action ǫi0ǫ

j
1 7→ ǫia0 ǫ

ja
1 .

The following result does not answer the first part of Question 5.4, but still gives a
relation between the kernels of various (Bi − 1).

Lemma 5.7. Let a ∈ (Z/p)∗. Then (Bia)
a = ρa(Bi) for i 6= 0 and B0 = ρa(B0).

Proof. By Lemma 2.2, we may identify a with an element of Gal(L/Q). Then

a · (Biβ) = a · (τi · β) = (aτi) · β.

Consider a · (Biβ); recall that Bi is an element of Λ1 = Z/p[µp × µp], and the
definition of the action of Λ1 on H1(U, Y ;Z/p) is via the map µp × µp → Aut(X)

given ǫi0 × ǫj1 : (x, y) 7→ (ǫi0x, ǫ
j
1y). It follows that a · (Biβ) = ρa(Bi)(a · β).

On the other hand, note that aτi = (aτia
−1)a. By Lemma 2.2, we may identify

(aτia
−1) with (τia)

a when i 6= 0, and with τ0 when i = 0. Therefore,

ρa(Bi)(a · β) =
{

(τia)
a · (a · β) = Baia(a · β) if i 6= 0

τ0 · (a · β) = B0(a · β) if i = 0
.

Because H1(U, Y ;Z/p) is identified with the Λ1-orbit of β, there exists an invertible
B′
a ∈ Λ1 such that a · β = B′

aβ. In the above identification, we can cancel this
element and obtain

ρa(Bi) =

{

(Bia)
a if i 6= 0

B0 if i = 0
.

�

Proposition 5.8. If 1 ≤ i ≤ r and a ∈ (Z/p)∗, then Ker(τai − 1) = ρaKer(τi − 1)
is an equality of subsets of H1(U, Y ;Z/p).

Proof. Since ((Bia)
a − 1) = (Ba−1

ai . . .+B2
ai +Bai + 1)(Bai − 1), it follows that

Ker(Bai − 1) ⊆ Ker(Baai − 1).

By Lemma 5.7, Ker(Baai − 1) = ρaKer(Bi − 1). Thus

Ker(Bai − 1) ⊆ ρaKer(Bi − 1),

and it follows that

Ker(Bi − 1) ⊆ ρaKer(Ba−1i − 1).

Applying this equality repeatedly, we conclude

Ker(Bi − 1) ⊆ ρaKer(Ba−1i − 1) ⊆ ρ2aKer(Ba−2i − 1) ⊆ . . . ⊆ (ρa)
jKer(Ba−ji − 1)

for any j = 1, 2, . . .. Since ap−1 = 1 mod p, taking j = p− 1 allows one to conclude
that all of the inclusions are equalities. Thus

Ker(Bai − 1) = ρaKer(Bi − 1).

�
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6. Galois cohomology calculations

The goal of this section is to give a method for the efficient computation of the first
cohomology group H1(G,M), where M is the homology group H1(U, Y ;Z/p), and
G is the Galois group of a suitable extension of L over the cyclotomic fieldK = Q(ζ).
In future applications, the extension of L will be its maximal extension ramified
only over p, or various subextensions of it. As it is difficult to know explicitly the
structure of such a group G in general, the direct description of H1(G,M) in terms
of crossed homomorphisms will not give an effective method for computation.

More generally, consider an extension of finite∗ groups

1 → N → G→ Q→ 1,

and a G-module M . We are interested in determining the first cohomology group
H1(G,M). The Lyndon-Hochschild-Serre spectral sequence gives rise to a long
exact sequence

0 → H1(Q,MN)
inf−−→ H1(G,M)

res−−→ H1(N,M)Q
d2−→ H2(Q,MN ) → . . .

in which the differential d2 can be identified with the transgression map [NSW08,
2.4.3], and explicitly constructed as such. Thus the computation of H1(G,M)
reduces to a computation of H1(Q,MN), the kernel of the transgression differential
d2, and the extension formed from those two.

We restrict our attention to the case when the normal subgroup N acts trivially on
the module M , since our intended application satisfies that assumption.

6.1. The transgression. To begin, note that the extension G is determined by its
factor set ω : Q ×Q → N [Wei94, 6.6.5]. Explicitly, let s : Q → G be an arbitrary
set-theoretic section of the projection G→ Q, such that s(1) = 1. Then the map

ω(q1, q2) = s(q1)s(q2)s(q1q2)
−1,(6.j)

is a cocycle, which is independent of the choice of section s when viewed as an
element of H2(Q,N) [Wei94, 6.6.3] or [Bro82, IV.3].

The next proposition is similar to some material in [Sha99, Section 1].

Proposition 6.1. Let G be an extension of Q by N determined by the factor set
ω, and let M be a G-module on which N acts trivially. Then the transgression

d2 : H1(N,M)Q → H2(Q,M)

is given by
d2(φ) = −φ ◦ ω.

Proof. By [NSW08, 2.4.3], the transgression in the Hochschild-Serre spectral se-
quence is given by [NSW08, 1.6.6]. By [Koc02, 3.7 (3.9) and (3.10)], the map
defined to be the transgression given in [Koc02, 3.7] coincides with the map given
by [NSW08, 1.6.6].

We may thus use the description of the transgression given in [Koc02, 3.7]. Given
φ : N →M which represents an element in H1(N,M)Q, we construct an extension

∗everything in this section works for profinite groups and continuous cohomology as well



GALOIS ACTION AND COHOMOLOGY OF FERMAT CURVES 19

φ̃ : G → M as prescribed by [Koc02, 3.7]. Fix the same section s : Q → G as
in the definition of the factor set ω. Since N acts trivially on M , we can choose
φ̃(s(q)) = 0, for any q ∈ Q. Any element g ∈ G can be written as g = ns(q), with

n ∈ N, q ∈ Q; for this g we define φ̃(g) = φ(n). The transgression d2φ : Q×Q→M
is then given by

d2φ(q1, q2) = φ̃(s(q1)) + s(q1)φ̃(s(q2))− φ̃(s(q1)s(q2)) = −φ̃(s(q1)s(q2)).
Now note that

s(q1)s(q2) = s(q1)s(q2)s(q1q2)
−1s(q1q2) = ω(q1, q2)s(q1q2);

since ω(q1, q2) is in N , the definition of φ̃ yields that

d2φ(q1, q2) = −φ̃(ω(q1, q2)s(q1q2)) = −φ(ω(q1, q2)).
�

6.2. H∗(Q,M), when Q is elementary abelian. It is well known that the co-
homology group H1(Q,M) consists of crossed homomorphisms Q → M modulo
the principal ones. This description can be seen as coming from the canonical bar
resolution of the trivial module Z. For our applications, however, it is also con-
venient to use the fact that Q is assumed to be elementary abelian of rank r + 1
(where r = p−1

2 ), i.e., Q ∼= Cr+1
p , and use the resolution coming from tensoring

(r + 1) minimal Cp-resolutions. We will use the resulting chain complex not only
for computing H1(Q,M). More importantly, in the next subsections we will use a
comparison between cocycles of these different resolutions in order to obtain a more
direct criterion equivalent to Proposition 6.1 in Theorem 6.11 and Corollary 6.12.
As we will delve pretty deeply into the inner workings of these resolutions, we start
by recalling their constructions.

6.2.1. The canonical or bar resolution. For i ≥ 0, let Bi = Z[Qi+1] ∼= Z[Q]⊗(i+1).
Then Bi ≃ Z[Q] ⊗ Bi−1 for i ≥ 1. Thus, Bi is a free Z[Q]-module generated by
elements of the form [q1 ⊗ · · · ⊗ qi], with each qi ∈ Q. There is a free resolution

B• = {· · · → B2 → B1 → B0} → Z,(6.k)

where the differential d : Bn → Bn−1 is given by d =
∑n

i=0(−1)idi, and each di is
the Z[Q]-equivariant map determined by

d0([g1 ⊗ · · · ⊗ gn]) = g1 · [g2 ⊗ · · · ⊗ gn],

di([g1 ⊗ · · · ⊗ gn]) = [g1 ⊗ · · · gigi+1 · · · ⊗ gn], for 1 ≤ i ≤ n− 1,

dn([g1 ⊗ · · · ⊗ gn]) = [g1 ⊗ · · · ⊗ gn−1].

In particular, d : B1 → B0 is given by d([g1]) = g1 · [1] − [1] and d : B2 → B1 is
given by d([g1 ⊗ g2]) = g1 · [g2]− [g1g2] + [g1].

6.2.2. The tensor complex of minimal Cp-resolutions. Let τ be a generator of Cp;
then the complex

C• = {· · ·Z[Cp] 1−τ−−→ Z[Cp]
Nτ−−→ Z[Cp]

1−τ−−→ Z[Cp]} → Z
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is a free resolution of the trivial Z[Cp]-module Z. Now Z[Q] ∼= ⊗rj=0Z[Cp]. Thus

a free resolution of the trivial Z[Q]-module Z is given by the (totalization of the)
tensor complex ⊗rj=0C•.

To make this brutally explicit, for 0 ≤ j ≤ r, let C•,j denote the same complex
as C• but with the generator of Cp denoted as τj . For i ≥ 0, the ith entry of the
complex C•,j is Ci,j ∼= Z[Cp], and the map di,j : Ci,j → Ci−1,j is multiplication by
(1− τj) if i is odd and multiplication by Nτj if i is even.

Therefore, A• = Tot(⊗ri=0C•) has

An =
⊕

i0+···+ir=n

Ci0,0 ⊗ · · · ⊗ Cir ,r
∼=

⊕

i0+···+ir=n

Z[Q].

In particular, A0
∼= Z[Q], A1

∼= Z[Q]r+1, and A2
∼= Z[Q]ρ, where the exponent

ρ := r + 1 +
(

r+1
2

)

= (p+1)(p+3)
8 is the number of ways to partition 2 into r + 1

non-negative integers.

We need to define A1 and A2 more explicitly in order to describe the differential
maps d : A1 → A0 and d : A2 → A1. Since the notation is elaborate, first consider
an example when p = 3 and r = 1. Let σ = τ0 and τ = τ1, then the complex is:

A0 A1 A2

C0 ⊗ C2Nτ

rr❡❡❡❡❡❡
❡❡
❡

C0 ⊗ C1

1−τ
rr❡❡❡❡❡

❡❡
❡

⊕
C0 ⊗ C0 ⊕ C1 ⊗ C1

−(1−σ)ll❨❨❨❨❨❨❨❨❨

1−τ
rr❡❡❡❡❡❡

❡❡
❡

C1 ⊗ C01−σ

ll❨❨❨❨❨❨❨❨ ⊕
C2 ⊗ C0.Nσ

ll❨❨❨❨❨❨❨❨

Remark 6.2. Recall that negative signs must be introduced in the totalization of
a double complex in order to make the differentials square to zero; see for example
[Wei94, p.8].

More generally, recall that An is a direct sum of submodules of the form

S(~v) = Ci0,0 ⊗ · · · ⊗ Cir ,r
∼= Z[Q],

where the entries of ~v = (i0, . . . , ir) are non-negative numbers adding up to n. For
n = 1, define ~vj to have jth entry 1 and all other entries 0. Then

A1 =
⊕

0≤j≤r

S(~vj).

For n = 2, define ~uj to have jth entry 1 and all other entries 0; and, for 0 ≤ j <

k ≤ r, define ~tj,k to have jth entry 1 and kth entry 1 and all other entries 0. Then

A2 =





⊕

0≤j≤r

S(~uj)



⊕





⊕

0≤j<k≤r

S(~tj,k)



 .

The following results are now straightforward.
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Lemma 6.3. The differential d : A1 → A0 is given by

d(g0, . . . , gr) =

r
∑

j=0

(1− τj)gj .

Lemma 6.4. The differential d : A2 → A1 is defined using the following maps on
the given components (and the zero map everywhere else)

d2 = Nτj : S(~uj) → S(~vj),

−d1 = −(1− τj) : S(~tj,k) → S(~vj),

d1 = (1− τk) : S(~tj,k) → S(~vk).

In other words, writing α ∈ A2 as

α = (⊕0≤j≤rgj,⊕0≤j<k≤rhj,k),

then d(α) = ⊕0≤j≤rβj where

βj = Nτjgj −
∑

k<j

(1− τk)hk,j +
∑

k>j

(1− τk)hj,k.

Again, the negative signs in front of some of the d1’s are because of Remark 6.2.

Remark 6.5. A direct consequence of Lemmas 6.3 and 6.4 is a method for deter-
mining H1(Q,M). Knowing more about the relationships between the kernels and
images of Bi−1 as i varies, as in Question 5.4, is likely to give a general result along
these lines. Whether or not such questions have useful answers, we used Magma to
explicitly calculate H1(Q,M) when p is small. The dimensions are in this table.

p dim(H1(Q,M))
3 9
5 33
7 68

6.2.3. Comparison of resolutions. The resolutions A• and B• constructed above
are both injective resolutions of the trivial Q-module Z. Therefore, by abstract
nonsense, there is a map f• : A• → B•, with each fi : Ai → Bi being Q-equivariant.
The goal of this subsection is to construct f0, f1, f2. In fact, we will take f0 to be
the identity map on A0

∼= B0 = Z[Q]. The next two results determine f1 and f2
explicitly.

Lemma 6.6. Define f1 : A1 → B1 by

f1(g0, . . . , gr) = −
r
∑

j=0

gj [τj ].

Then the following diagram commutes

A1
dA //

f1

��

A0

id

��
B1

dB // B0.
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Proof. Let ej be the jth standard basis vector. By Lemma 6.3, id(dA(ej)) = 1− τj.
By definition f1(ej) = −[τj ], which equals dB(f1(ej)) = −(τj − 1). Since {ej}
generate A1 as a Z[Q]-module and all the maps are Q-equivariant, the diagram
commutes in general. �

Lemma 6.7. Define f2 : A2 → B2 as follows: for

α = (⊕0≤j≤rgj ,⊕0≤j<k≤rhj,k) ∈ A2,

define

f2(α) = −
r
∑

j=0

gi[Nτi ⊗ τi] +
∑

0≤j<k≤r

hj,k(τk ⊗ τj − τj ⊗ τk).

Then the following diagram commutes

A2
dA //

f2

��

A1

f1

��

B2
dB // B1.

Proof. By Lemma 6.4, dA(α) = ⊕0≤j≤rβj where

βj = Nτjgj −
∑

k<j

(1− τk)hk,j +
∑

k>j

(1− τk)hj,k.

Setting 1j ∈ A2 to be the element such that gj = 1 and all other coordinates
are zero, then f1(d

A(1j)) = −Nτj [τj ]. By definition, f2(1j) = −[Nτj ⊗ τj ]. Since
Nτjτj = Nτj , it follows that

dB(f2(1j)) = −(Nτj [τj ]− [Nτjτj ] + [Nτj ]) = −Nτj [τj ].

Finally, setting 1j,k ∈ A2 to be the element such that hj,k = 1 and all other
coordinates are zero, then

dA(1j,k) = (1 − τk)ej − (1− τj)ek,

and

f1(d
A(1j,k)) = f1((1− τk)ej − (1− τj)ek) = −(1− τk)[τj ] + (1 − τj)[τk].

By definition, f2(1j,k) = τk ⊗ τj − τj ⊗ τk. Then

dB([τk ⊗ τj ]− [τj ⊗ τk]) = (τk[τj ]− [τkτj ] + [τk])− (τj [τk]− [τjτk] + [τj ])

= (τk − 1)[τj ]− (τj − 1)[τk].

Since {1j, 1j,k} generate A2 as a Z[Q]-module and all the maps are Q-equivariant,
the diagram commutes in general. �
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6.3. Comparison of cocycles. In the above, we constructed two resolutions of
the trivial Q-module Z, and explicitly constructed a map between them in low
degrees. Now we investigate what this tells us in cohomology. Namely, we know
that

H∗(Q,M) = Ext∗Z[Q](Z,M),

and the latter can be computed as eitherH∗ HomZ[Q](A•,M) orH∗ HomZ[Q](B•,M).
The map f• gives us a way to compare these two approaches.

Consider a 1-cocycle a ∈ H1(Q,M). Let φ : Q → M be a bar resolution repre-
sentative of a, so that the class of φ in H1(Q,M) is a. Then φ can be uniquely

extended to (and encodes the information of) a Z[Q]-module map φ̃ : Z[Q]⊗2 →M .

A representative of a in the A• resolution is the composition ψ = φ̃ ◦ f1, namely

ψ : A1
∼= Z[Q]r+1 f1−→ B1

∼= Z[Q]⊗2 φ̃−→M.

Now ψ is a Z[Q]-equivariant map determined by its values on the generators ej of
A1. By Lemma 6.6,

mj := ψ(ej) = φ̃(−[τj ]) = −φ(τj),

giving the following result.

Lemma 6.8. In the resolution HomZ[Q](A•,M), which starts as

M →M r+1 →Mρ → · · · ,

the tuple (m0, . . . ,mr) = (−φ(τ0), . . . ,−φ(τr)) ∈ M r+1 represents the class a ∈
H1(Q,M) of the map φ : Q→M .

Next, consider a 2-cocycle b ∈ H2(Q,M). Let ϕ : Q × Q → M represent b. The
map ϕ uniquely determines a Z[Q]-equivariant map ϕ̃ : B2

∼= Z[Q]⊗3 → M . A
representative of b in the A• resolution is the composition

θ : A2
∼= Z[Q]ρ

f2−→ B2
ϕ̃−→ M.

The map θ is determined by its values on the Z[Q]-generators 1j and 1j,k of A2.
By Lemma 6.7,

nj := θ(1j) = ϕ̃([−Nτj ⊗ τj ]) = −ϕ̃(Nτj , τj) = −
p−1
∑

i=0

ϕ(τ ij , τj),

nj,k := θ(1j,k) = ϕ̃([τk ⊗ τj ]− [τj ⊗ τk]) = ϕ(τk, τj)− ϕ(τj , τk),

proving the following result.

Lemma 6.9. In the resolution HomZ[Q](A•,M), which starts as

M →M r+1 →Mρ → · · · ,

the tuple (nj , nj,k) ∈ Mρ defined above represents the class b ∈ H2(Q,M) of the
map ϕ : Q×Q→M .
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6.4. The kernel of d2, revisited. Using the comparison of cocycles from the
previous section, we give a more direct description of the kernel of the transgression
d2 : H1(N,M)Q → H2(Q,MN) (compared to what Proposition 6.1 implies), when
N acts trivially on M and Q is elementary abelian.

We set up some notation associated to the extension

(6.l) 1 → N → G→ Q→ 1.

We assume that Q is elementary abelian of rank (r+1); choose generators of Q and
denote them by τi, with 0 ≤ i ≤ r. To define the factor set ω, we used a section
s : Q → G (and noted that as a cohomology element, ω does not depend on s).
Without loss of generality, we can assume not only that s(1) = 1, but also

s(τ t00 · · · τ trr ) = s(τ0)
t0 · · · s(τr)tr , for 0 ≤ ti ≤ p− 1.

For 0 ≤ j ≤ r, define elements aj ∈ N by

aj = s(τj)
p,

and for 0 ≤ j < k ≤ r, define cj,k ∈ N by

cj,k = [s(τk), s(τj)] = s(τk)s(τj)s(τk)
−1s(τj)

−1.

Recall that ω : Q×Q→ N was defined as

ω(q1, q2) = s(q1)s(q2)s(q1q2)
−1.

Elementary calculation then yields the following result.

Lemma 6.10. If 0 ≤ j ≤ r and 0 ≤ t < p − 1, then ω(τ tj , τj) = 0 and aj =

ω(τp−1
j , τj). If 0 ≤ j < k ≤ r, then cj,k = ω(τk, τj)ω(τj , τk)

−1.

Theorem 6.11. The class of φ : N → M is in the kernel of d2 if and only if the
tuple (−φ(aj), φ(cj,k)) ∈Mρ is in the image of the differential in HomZ[Q](A•,M),

dM :M r+1 →Mρ

which is explicitly given by

dM (m0, . . . ,mr) = (Nτjmj ,−(1− τj)mk + (1 − τk)mj).

Proof. Consider a class in H1(N,M)Q represented by a map φ : N → M . By
Proposition 6.1, φ ∈ Ker(d2) if and only if φ ◦ ω : Q ×Q → M represents the zero
class in H2(Q,M). (Note that this is the same as requiring that −φ ◦ ω represents
zero.) This representative is given in the bar resolution, and we now translate the
condition on φ ◦ ω to the A•-resolution as above.

To find a representative for φ ◦ ω in the A•-resolution, we first extend ω to a
Q-equivariant map ω̃ : Z[Q]3 → N and then take the composition ω̃ ◦ f2. By

Lemmas 6.7 and 6.9, φ ◦ ω is represented by the tuple (nφj , n
φ
j,k) ∈Mρ, where

nφj = φ(ω̃(f2(1j))) = φ(ω̃(−Nτj ⊗ τj)) = −
p−1
∑

i=0

φ(ω(τ ij , τj)).

By Lemma 6.10,

nφj = −φ(ω(τp−1
j , τj)) = −φ(aj)

and
nφj,k = φ(ω̃(f2(1j,k))) = φ(ω̃([τk ⊗ τj ]− [τj ⊗ τk])) = φ(cj,k).



GALOIS ACTION AND COHOMOLOGY OF FERMAT CURVES 25

Applying Lemma 6.8 now completes the proof. �

We return now to the situation of the Fermat curve.

Corollary 6.12. Suppose that E/K is a finite Galois extension dominating L/K.
In the extension (6.l), let Q = Gal(L/K) and G = Gal(E/K) and N = Gal(E/L).
Recall that N acts trivially on the relative homology M = H1(U, Y ;A).

Assume p ≥ 5. Then φ : N → M represents an element in the kernel of d2 if and
only if for all 0 ≤ j ≤ r,

φ(aj) = 0,

and there is an (r+1)-tuple (m0, . . .mr) ∈M r+1, such that

φ(cj,k) = −(1− τj)mk + (1− τk)mj .

Proof. This is an immediate application of Theorem 6.11, since Nτi acts as zero on
M by Theorem 4.6. �

Remark 6.13. We have a second more direct proof of Theorem 6.11 as well. The
converse direction is long, but we sketch the forward direction here. Note that
−φ ∈ Ker(d2) if and only if the map φ ◦ ω : Q × Q → M represents the zero
cohomology class in H2(Q,M); equivalently, φ ◦ ω is of the form

(6.m) dm : (q1, q2) 7→ q1m(q2)−m(q1q2) +m(q1),

for some map m : Q→M . Let mi = m(τi).

If dm = φ◦ω, then the valuesmj = m(τj) ∈M determinem(q) for all q ∈ Q because

of the Q-action. Specifically, by induction, one can show m(τ t+1
j ) = (

∑t
ℓ=0 τ

ℓ
j ) ·mj

for 1 ≤ t ≤ p − 2. Then φ ◦ ω(τj , τp−1
j ) = φ(aj). If φ ◦ ω = dm, then φ(aj) =

τj ·m(τp−1
j ) +m(τj). Thus −φ(aj) = −Nτj ·mj .

Next, if j < k, then m(τjτk) = τj ·mk +mj , because dm(τj , τk) = ω(τj , τk) = 0.
Recall that φ◦ω(τk, τj) = φ(cj,k). If φ◦ω = dm, then φ(cj,k) = τk ·mj−m(τjτk)+
mk, which simplifies to −φ(cj,k) = (1− τk) ·mj − (1− τj) ·mk by substitution.

7. Compatibility with points over finite fields

In this final section, we study the action of Frobenius on schemes defined over
a finite field of cardinality ℓ. In Section 7.1, we use motivic homotopy theory
to provide congruence conditions on the characteristic polynomials of Frobenius
on mod p cohomology. In Section 7.2, we use this and information about Bq to
compute the L-polynomial of the degree p Fermat curve modulo p. The results in
this section are not new, but they highlight important concepts emerging in the
interaction between topology and number theory.
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7.1. Number of points modulo p. Let X be a smooth, proper scheme over Fℓ.
Let F denote the Frobenius morphism. Let p be a prime number not dividing ℓ.

Let Nm denote the number of points of X defined over Fℓm for m ∈ N, and let
Nm denote the reduction of Nm mod p. By the Lefschetz trace formula, the values
Nm are determined by the action of F on H∗(X

Fℓ
,Qp) and the values Nm are

determined by the action of F on H∗(X
Fℓ
,Fp). This section contains a new proof

of this fact for Nm using realization functors which is made possible by the work
of Hoyois [Hoy14].

Define Pi(t) in Qp[t] and P i(t) in Fp[t] by

Pi(t) = det(1− Ft|Hi(XFℓ
,Qp)), P i(t) = det(1− Ft|Hi(XFℓ

,Fp)).

Define Z(t) in Qp[[t]] and Z(t) in Fp[[t]] by

Z(t) =

∞
∏

i=0

Pi(t)
(−1)i+1

, Z(t) =

∞
∏

i=0

P i(t)
(−1)i+1

.

If Q ∈ Fp[[t]] is invertible (e.g., if Q(0) = 1), let d
dt logQ = d

dtQ/Q.

In this section, we prove the following result using motivic homotopy theory.

Proposition 7.1. The mod p number of points Nm of X over Fℓm is determined
by Σ∞

m=1Nmt
m−1 = d

dt logZ(t).

Proposition 7.1 follows from [Del77, Section 3 Fonctions L Modulo ℓn et Modulo p,
Theorem 2.2 (b)]. Here is a proof using motivic homotopy theory.

Proof. Let Tr denote the trace of an endomorphism of a strongly dualizable object in
a symmetric monoidal category. The Frobenius F is an endomorphism of X viewed
as an object the stable A1-homotopy category of P1-Spectra over Fℓ. X is strongly
dualizable, whence we have Tr(Fm) in the Grothendieck-Witt ring GW(Fℓ). By
Hoyois’s generalized Lefschetz trace formula [Hoy14, Example 1.6, Theorem 1.3],
Tr(Fm) = Nm. Applying the symmetric monoidal functor H∗((−)Fℓ

,Fp), the trace

Tr(Fm) becomes the trace in the symmetric monoidal category of graded Fp vector
spaces, which is Σi(−1)iTrFm|Hi(X

Fℓ
,Fp). Applying the same functor to the

endomorphism Nm of the sphere yields Nm regarded as an endomorphism of Fp
viewed as a graded vector space concentrated in degree 0. It follows that

(7.n) Nm = Σi(−1)iTrFm|Hi(XFℓ
,Fp).

The claimed equality then follows from a formal algebraic manipulation. One could
apply [Del77, Rapport sur la formula des traces 3.3.1], or to be explicit, proceed as
follows.

Since P i(0) = 1, it follows that P i(t) =
∏

(1 − ai,jt) for some ai,j in Fp. Since
the matrix corresponding to the action of F on Hi(X

Fℓ
,Fp) can be put in upper

triangular form over Fp, it follows that the diagonal entries are the ai,j . Thus
TrFm = Σami,j for all m.
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Furthermore, P i is invertible in Fp[[t]] since P i(0) = 1. Thus

d

dt
logP (t) =

d
dtP (t)

P (t)
= −

∑

j

ai,j
1− ai,jt

= −
∑

j

∑

m

ami,jt
m−1.

Also,

d

dt
logZ(t) =

d
dtZ(t)

Z(t)
.

Since d/dt log is a homomorphism,

d

dt
logZ(t) = −

∑

i

(−1)i+1
∑

j

∑

m

ami,jt
m−1 =

∑

i

(−1)i
∑

m

(

∑

j

ami,j

)

tm−1

=
∑

i

∑

m

(−1)i
(

TrFm|Hi(XF ℓ
,Fp)

)

tm−1

=
∑

m

Nmt
m−1,

where the last equality follows from (7.n). �

7.2. Application to the Fermat curve. Let X be the Fermat curve of exponent
p over a prime ℓ of Z[ζp]. Let F be the residue field of ℓ, and Fℓm denote the unique
degree m extension. Knowledge of Bσ for σ ∈ Q = Gal(L/K) and Proposition 7.1
determine the zeta function of X modulo p as follows.

Proposition 7.2. Let X and F be as above, and let JacX denote the Jacobian of
X.

(1) Z(X/F, T ) ≡ (1 − T )2g−2 mod p. If Nm := #X(Fℓm), then Nm ≡ 0 mod p
for all m ≥ 1.

(2) Z(JacX/F, T ) ≡ 1 mod p. If Nm := #JacX(Fℓm), then Nm ≡ 0 mod p
for all m ≥ 1.

Proof. Note that Z(Y/F, T ) ≡ Z(Y/F, T ) mod p for Y = X or JacX .

(1) The action of the Frobenius F on M = H1(U, Y ;Fp) is given by multi-
plication by Bσ, where σ ∈ Q is the Frobenius for ℓ. Now H1(X,Fp) is a
sub-quotient ofM , andM has a basis (namely the nilpotent basis) in which
the action of Bσ is lower-triangular with diagonal entries equal to 1. Since
H1(X,Fp) is the linear dual of H1(X,Fp), so it follows that the action of
F on H1(X,Fp) satisfies det(1 − FT |H1(X,Fp)) = (1 − T )2g, proving the
first claim. For the second claim, note that

Z(X/Fq, T ) ≡
(1− T )2g

(1 − T )(1− |F|T ) ≡ (1− T )2g−2 mod p,

where the last equivalence follows because F has a pth root of unity, imply-
ing |F| − 1 ≡ 0 mod p. By Proposition 7.1,

Σ∞
m=1NmT

m−1 = d/dT logZ(T ) = −(2g − 2)(1− T )2g−3/Z(T ).

But g = (p− 1)(p− 2)/2, so 2g − 2 = p2 − 3p ≡ 0 mod p.



28 RACHEL DAVIS, RACHEL PRIES, VESNA STOJANOSKA, AND KIRSTEN WICKELGREN

(2) We have seen that the action of F on H1(X,Fp) is such that 1 − F is
nilpotent. Thus the same is true for the action of F on the ith wedge
power ∧iH1(X,Fp). Since Hi(JacX,Fp) ∼= ∧iH1(X,Fp), it follows that

det(1 − FT |Hi(JacX,Fp)) = (1 − T )di, where di =
(

2g
i

)

is the dimension

of ∧iH1(X,Fp). Thus

Z(JacX/Fq, T ) ≡ (1− T )
∑

i(−1)i+1di ≡ 1 mod p.

�

Remark 7.3. The facts in Proposition 7.2 can also be proven directly. The fact
that Nm ≡ 0 mod p is a direct consequence of the fact that the Cp × Cp action on
X has 3 orbits of size p and all other orbits of size p2.

For the fact about the L-polynomial, let χ be a character of F of order p. Let J(i,j) =

J(χi, χj)
∑

a+b=1 χ
i(a)χj(b). By [IR90, page 98], #X(F) = Lf + 1 +

∑

S J(i,j)
where S = {(i, j) | 1 ≤ i, j ≤ p − 1, i + j 6≡ 0 mod p}. Note that there are
2g = (p − 1)(p − 2) such pairs. In fact, by [Kat81, page 61], the eigenvalue of
Frobenius on the eigenspace of H1(X) corresponding to (χi, χj) is −Ji,j . Lemma
7.2 can also be proven using congruence properties of Jacobi sums and the fact that

L(X/F, T ) =
∏

S

(1 − J(i,j)T ).
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Automorphic forms, representation theory and arithmetic (Bombay, 1979), Tata
Inst. Fund. Res. Studies in Math., vol. 10, Tata Inst. Fundamental Res., Bombay,
1981, pp. 165–246. MR 633662 28

[Kim05] Minhyong Kim, The motivic fundamental group of P1 ⊂ {0, 1,∞} and the theorem

of Siegel, Invent. Math. 161 (2005), no. 3, 629–656. MR 2181717 4
[Koc02] Helmut Koch, Galois theory of p-extensions, Springer Monographs in Mathematics,

Springer-Verlag, Berlin, 2002, With a foreword by I. R. Shafarevich, Translated from
the 1970 German original by Franz Lemmermeyer, With a postscript by the author
and Lemmermeyer. MR 1930372 18, 19

[NSW08] Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number

fields, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamen-
tal Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2008.
MR 2392026 18

[Sha99] Romyar Thomas Sharifi, Twisted Heisenberg representations and local conductors,
ProQuest LLC, Ann Arbor, MI, 1999, Thesis (Ph.D.)–The University of Chicago.
MR 2716836 18

[Sti13] Jakob Stix, Rational points and arithmetic of fundamental groups, Lecture Notes
in Mathematics, vol. 2054, Springer, Heidelberg, 2013, Evidence for the section
conjecture. MR 2977471 4

[SW92] Alexander Schmidt and Kay Wingberg, On the fundamental group of a smooth

arithmetic surface, Math. Nachr. 159 (1992), 19–36. MR 1237099 (94k:14026) 4
[Wei94] Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in

Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994.
MR 1269324 18, 20

[Zar74] Ju. G. Zarhin, Noncommutative cohomology and Mumford groups, Mat. Zametki
15 (1974), 415–419. MR 0354612 (50 #7090) 4

University of Wisconsin-Madison

E-mail address: rachel.davis@wisc.edu

Colorado State University

E-mail address: pries@math.colostate.edu

University of Illinois at Urbana-Champaign

E-mail address: vesna@illinois.edu

Georgia Institute of Technology

E-mail address: kwickelgren3@math.gatech.edu


	1. Introduction
	2. Review and extension of previous results
	2.1. The Galois groups Gal(L/K) and Gal(L/Q)
	2.2. Determining the action of Q on H1(U,Y; Z/p)

	3. Explicit formula for the action of the Galois group
	3.1. Truncated exponential maps
	3.2. q from q
	3.3. Bq from q

	4. Norm equalities for general primes
	5. The Q-invariants
	5.1. A subspace of MQ
	5.2. A comparison of invariant subspaces for different automorphisms

	6. Galois cohomology calculations
	6.1. The transgression
	6.2. H*(Q,M), when Q is elementary abelian
	6.3. Comparison of cocycles
	6.4. The kernel of d2, revisited

	7. Compatibility with points over finite fields
	7.1. Number of points modulo p
	7.2. Application to the Fermat curve

	References

