Math 221 Worksheet: Inverse functions September 3-4, 2014

- 1. Find the domain and range of each function, and draw a rough graph. Then find the function's inverse, find its domain and range, and draw this graph on the same set of axes.
 - (a) $f(x) = x^3 + 5$
 - (b) $g(x) = \sqrt{-1 x}$
 - (c) $h(x) = \sqrt[3]{1-x^3}$ (What is unusual about this function and its inverse?)
- 2. Draw a nice graph of $y = \sin(x)$. Notice that, if we restrict our domain to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, the sine function is one-to-one (explain why). Use this to draw a graph of the inverse of $y = \sin(x)$, when the domain of $\sin(x)$ is restricted to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. This inverse is called arcsin, or \sin^{-1} . What are its domain and range?
- 3. Repeat the previous problem with $y = \tan(x)$ instead of $y = \sin(x)$. This time, you choose the domain restriction by looking at the graph of the tangent function.
- 4. What is...
 - (a) $\arcsin(\sin(\frac{\pi}{4}))$
 - (b) $\arcsin(\sin(\frac{5\pi}{4}))$
 - (c) $\sin(\arcsin(\frac{3}{4}))$
 - (d) $\sin(\arctan(\frac{4}{3}))$
- 5. (a) Let $f(x) = \arcsin(\sin(x))$. What are the domain and range of f? Can you simplify the formula for this function?
 - (b) Repeat part (a) with $f(x) = \sin(\arcsin(x))$.