
Computing with MATLAB
R. Turner

UW Math Dept

Madison, WI

Computing with MATLAB – p. 1/39

Matlab

Matlab is a very useful piece of software with extensive
capabilities for numerical computation and graphing.

In MATLAB the basic structure is a matrix.

Computing with MATLAB – p. 2/39

lab login

1) To log on type
student

2) As a password use

b1oh7.

(Note that the ’oh’ are letters)
and wait for it to come up in the Windows mode.

Computing with MATLAB – p. 3/39

calculator

I. It is easy to use MATLAB as a calculator. The symbols +,
−, and / have their usual meaning; * denotes multiplication
and ̂ exponentiation. E.g. type

((5.76̂2) ∗ 3.01)/8.8

and press ENTER; the screen should read

ans = 11.3482

Computing with MATLAB – p. 4/39

variables

II. If you type
x = 2;

and then
y = x ∗ (x + 2)

the screen should read

ans = 8

(If you don’t type the semicolon after the 2, you will get
some additional output on the screen). The computer will
also remember that x = 2 if you use x again unless you
reset the variable. To reset x, type clear x; to reset the
whole workspace, type clear

Computing with MATLAB – p. 5/39

functions

III. MATLAB has a large number of built in functions. E.g.

exp(x) is ex

sin(x) is sin x

log(x) is the natural log of x

Other functions have common abbreviations: cos, acos (for
inverse cosine, tan, atan, tanh, etc. To get help type

help
For help on a particular topic type

help topic

Computing with MATLAB – p. 6/39

graph

IV. MATLAB can graph functions.
. To plot a function over n + 1 equally spaced points of the
interval [a, b], calculate h = (b − a)/n and type:

t = a : h : b; OR t = a : (b − a)/n : b;

MATLAB generates an n + 1 component vector. If you don’t
type the semicolon, the vector will be printed out. Typing

t = 0 : .2 : 1;

gives a 6 component vector while

r = 0 : .3 : 1;

gives the vector with components 0 .3 .6 .9.

Computing with MATLAB – p. 7/39

plot sine

To graph e.g. sin(5t) over [a, b], type

y = sin(5 ∗ t);

plot (t, y)

You get the plotted points connected by straight line
segments. Do this for a = 0, b = 1 and n = 20 (i.e. h = .05)

Computing with MATLAB – p. 8/39

plot

To plot with separated points use
plot (t, y, ” ∗ ”)

Type
help plot

to get much more information about plot.

Computing with MATLAB – p. 9/39

graph labels

V. To add a title or labels to the graph follow the original plot
command above by e.g.

title (′graph 1′)
xlabel (′t = time ′)

ylabel (′y = distance ′)
.
either before or after the ’gset’ commands. Then type replot
to get a postscript file.

Computing with MATLAB – p. 10/39

array multiplication

VI. For the simple example of sin(5t) above, to graph it
involves calculating the function at the points in the given
interval. For a more complicated expression like
z = et sin(5t), you have to calculate et and sin(5t) at each
point and multiply them. This is called ARRAY
MULTIPLICATION. To do this for z on e.g. [−1, 1] and
n = 80, type

t = −1 : 0.025 : 1;

z = exp(t). ∗ sin(5 ∗ t)

The .∗ indicates array multiplication. If you omit the period
before the ∗, you will get an error message when you try to
use the function.
Plot a labelled graph for z on the interval above.

Computing with MATLAB – p. 11/39

plot two functions

VI. To plot 2 functions, say w = tet and u = t3 log(1 + |t|) on
the same graph with e.g. the first a solid curve and the
second with ’stars’, type

t = −1 : 0.1 : 1;
z = t. ∗ exp(t)
u = t.̂3. ∗ log(1 + abs(t))(1)

and then

plot(t, z, t, u, ” ∗ ”).

Computing with MATLAB – p. 12/39

M-files and Solving IVP’s

1. The goal of this section is to introduce you to M-files
and allow you to try out some Runge-Kutta solvers.

Computing with MATLAB – p. 13/39

M-files and Solving IVP’s

1. The goal of this section is to introduce you to M-files
and allow you to try out some Runge-Kutta solvers.

2. When a function is used repeatedly, instead of
retyping it each time, it is convenient to create a file,
called an M-file for the function

Computing with MATLAB – p. 13/39

New function

Suppose one wants to make a file containing the function
5t3e−t and to call it fun.m. The name of an M-file must
begin with a letter and consist entirely of letters, numbers,
and underscores; it must end with ’ .m ’ (e.g. file.m)

Computing with MATLAB – p. 14/39

Edit

To edit a new M-file in the Matlab workspace, click on FILE,
down to NEW, right to M-file to get a blank page. On this
type:

function y=fun(t)
% my function
y = 5.∗(t.∧3).∗exp(-t);

click on FILE, Save-As, give it the name ’fun.m’, and exit the
editor

Computing with MATLAB – p. 15/39

Plot ’fun’

Let’s plot the function ’fun’ from t = 0 to t = 5, type
t= 0:.1:5;
To get a string of t values, spaced at intervals of .1. Now
type

plot(t,fun(t));

Computing with MATLAB – p. 16/39

Plot

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

t

fu
n(

t)

Computing with MATLAB – p. 17/39

IVP

consider the Initial Value Problem
x′ = 1-x
x(0) = 0.1

Since the equation is linear and first order, it can be solved
explicitly:

x(t) = 1-.9e−t

Computing with MATLAB – p. 18/39

Numerics

Usually an explicit solution is inaccessible and a numerical
’integration’ is needed. For that reason we next introduce a
numerical solver to be used to find an approximate solution.
Again, one can type commands in the workspace
(command window) at the MATLAB prompt, but it is
convenient to have M-files which can be used repeatedly.
For solving an initial value problem we create TWO files:

Computing with MATLAB – p. 19/39

FIRST file

Create an M -file as in (2) for the right-hand side of the
differential equation. Create a file called dy.m containing:

function y = dy(t,x)

y = 1-x;

Computing with MATLAB – p. 20/39

What is in FIRST file?

The file dy.m gives the ’dynamics’ for the differential
equation; that is, gives the RIGHT HAND SIDE of the
differential equation. It is important that the same symbol
be used just after the word ’function’ and at the beginning of
the second line, defining the function explicitly. Remember
that if you do not type a semi-colon at the end of a line, all
the output of that line will be printed to the screen. The
inclusion of both t and x in dy(t,x) is not necessary if there
is no t in the right hand side of the differential equation.
However, it is probably a good habit to write the two variable
for an eventual case of the occurrence of t. The order (t, x)
is also important

Computing with MATLAB – p. 21/39

SECOND file

Open a second M-file called
dyr.m containing:

tspan= [0 15];
x0 =[0.1];
[t,x]=ode45(’dy’,tspan,x0);
plot(t,x)

Computing with MATLAB – p. 22/39

What is in SECOND file?

Exit the file dyr.m (this file is used to ’run’ the ode solver and
could be call dyrun.m or other name, but we have kept the
names short).
The first line gives the set of values for the independent
variable at which the solution will be given; the second
gives the initial data; and the third ’calls’ the solver, which
looks in the file dy.m to see what the right hand side of the
differential equation is. The last line is the command to plot
the output.

Computing with MATLAB – p. 23/39

Run programs

To run the program, at the MATLAB prompt, type
dyr

(one can also type dyr.m).

Computing with MATLAB – p. 24/39

Graphics

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Computing with MATLAB – p. 25/39

Flexible

The syntax is quite flexible in terms of the choice of letters
used. One can, for example, use the letter x in dy.m and let
the dependent variable be z in dyr.m. However, one MUST
have corresponding names in the file call in the first slot of
’ode45’ and the name of the .m file which describes the
right hand side of the differential equation. Note that the
lines in the file dyr.m could be typed one at a time in the
MATLAB workspace, but then for a rerun with a slight
change in the initial value, e.g., one would have to retype it
all as opposed to changing one number in the file dyr.m.

Computing with MATLAB – p. 26/39

global- change FIRST file

It is useful to be able to have a parameter in a differential
equation that one can allow to take different values. To do
this edit the program dy.m, inserting a line and altering the
file so that it reads:

function y = dy(t,x)
global a
y = a-x;

Computing with MATLAB – p. 27/39

new SECOND file

After exiting dy.m open dyr.m and change it to read:
hold on
global a
t= 0:.1:15;
x0 =[0.1];
for a = 1:4
[t,x]=ode45(’dy’,tspan,x0);
plot(t,x)
end
hold off

Computing with MATLAB – p. 28/39

loop

In this case we have included a loop
for a = 1:4
COMMANDS
end

Computing with MATLAB – p. 29/39

hold and off

The ’for’ statement begins a loop in which a takes the
values 1,2,3,4, in turn, the solution is recomputed and
plotted (that is the intervening commands are executed).
The ’hold on’ prevents erasure of the the solution plot for
a = 1 when the a = 2 case is done, etc. When the loop is
complete the ’hold off’ allows erasure (for the next use of
the plot command). The ’global’ statement tells the two
program dy.m and dyr.m to SHARE the values of a.

Computing with MATLAB – p. 30/39

clear

Note: if one is using two windows and the one with the
MATLAB workspace has not been closed, then to run the
new version of dyr.m one must type

clear
and then type

dyr
to see the output of the new file. The ’global’ statement is
extremely useful in that it allows one to vary a parameter in
a differential equation and see the quantitative and
qualitative changes in the output.

Computing with MATLAB – p. 31/39

system

Minor changes in the files dy.m and dyr.m allow one to solve
systems of first order differential equations. For example,
suppose one wants to solve the (Initial Value Problem)

dx1

dt
= −0.2x1 + 2x2

dx2

dt
= −3x1 − 0.5x2 (S)

with initial data:

x1(0) = 5, x2(0) = 6.

Computing with MATLAB – p. 32/39

dynamics for two

Create a file two.m containing:
function y= two(t,x)

r1 = -.2*x(1) + 2*x(2);
r2 = -3*x(1) -0.5*x(2);
y = [r1;r2];

where r1 and r2, respectively, are the first line and second
line of the right hand side of the system S. The syntax with
the square brackets is important here in that MATLAB must
read the right side of the differential equation as a ONE by
TWO matrix.

Computing with MATLAB – p. 33/39

second file

Corresponding to the original dyr.m we create a file ’rtwo.m’
to run the solver:

tspan = [0 10];
x0 =[5.0 6.0];
x=ode45(’two’,tspan,x0);
plot(x(:,1),x(:,2))

Note the agreement of the first argument of ode45 and the
name of the first file.

Computing with MATLAB – p. 34/39

run

After running, the programs plots the TWO arguments in
the same plane.

Computing with MATLAB – p. 35/39

graph

−6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

Computing with MATLAB – p. 36/39

plot

If one wants to plot t versus the second component, one
can replace the plot command by plot(t,x(:,2)) The
extension to systems containing three variables
x(1), x(2), x(3) follows a similar pattern.

Computing with MATLAB – p. 37/39

clear

To run the altered program one must again type
clear

Computing with MATLAB – p. 38/39

hint

Use the up arrow on the keyboard to go back to the line
where one previously typed ’clear’ and then press ’enter’.

Computing with MATLAB – p. 39/39

	Matlab
	lab login
	calculator
	variables
	functions
	graph
	plot sine
	plot
	graph labels
	array multiplication
	plot two functions
	 M-files and Solving IVP's
	 M-files and Solving IVP's

	New function
	Edit
	Plot 'fun'
	Plot
	IVP
	Numerics
	FIRST file
	What is in FIRST file?
	SECOND file
	What is in SECOND file?
	Run programs
	Graphics
	Flexible
	global- change FIRST file
	new SECOND file
	loop
	hold and off
	clear
	system
	dynamics for two
	second file
	run
	graph
	plot
	clear
	hint

