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Matlab

Matlab is a very useful piece of software with extensive
capabilities for numerical computation and graphing.

In MATLAB the basic structure is a matrix.
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lab login

1) To log on type
student

2) As a password use

b1oh7.

(Note that the ’oh’ are letters)
and wait for it to come up in the Windows mode.
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calculator

I. It is easy to use MATLAB as a calculator. The symbols +,
−, and / have their usual meaning; * denotes multiplication
and ̂ exponentiation. E.g. type

((5.76̂2) ∗ 3.01)/8.8

and press ENTER; the screen should read

ans = 11.3482
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variables

II. If you type
x = 2;

and then
y = x ∗ (x + 2)

the screen should read

ans = 8

(If you don’t type the semicolon after the 2, you will get
some additional output on the screen). The computer will
also remember that x = 2 if you use x again unless you
reset the variable. To reset x, type clear x; to reset the
whole workspace, type clear

Computing with MATLAB – p. 5/39



functions

III. MATLAB has a large number of built in functions. E.g.

exp(x) is ex

sin(x) is sin x

log(x) is the natural log of x

Other functions have common abbreviations: cos, acos (for
inverse cosine, tan, atan, tanh, etc. To get help type

help
For help on a particular topic type

help topic
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graph

IV. MATLAB can graph functions.
. To plot a function over n + 1 equally spaced points of the
interval [a, b], calculate h = (b − a)/n and type:

t = a : h : b; OR t = a : (b − a)/n : b;

MATLAB generates an n + 1 component vector. If you don’t
type the semicolon, the vector will be printed out. Typing

t = 0 : .2 : 1;

gives a 6 component vector while

r = 0 : .3 : 1;

gives the vector with components 0 .3 .6 .9.
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plot sine

To graph e.g. sin(5t) over [a, b], type

y = sin(5 ∗ t);

plot (t, y)

You get the plotted points connected by straight line
segments. Do this for a = 0, b = 1 and n = 20 (i.e. h = .05)
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plot

To plot with separated points use
plot (t, y, ” ∗ ”)

Type
help plot

to get much more information about plot.
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graph labels

V. To add a title or labels to the graph follow the original plot
command above by e.g.

title (′graph 1′)
xlabel (′t = time ′)

ylabel (′y = distance ′)
.
either before or after the ’gset’ commands. Then type replot
to get a postscript file.
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array multiplication

VI. For the simple example of sin(5t) above, to graph it
involves calculating the function at the points in the given
interval. For a more complicated expression like
z = et sin(5t), you have to calculate et and sin(5t) at each
point and multiply them. This is called ARRAY
MULTIPLICATION. To do this for z on e.g. [−1, 1] and
n = 80, type

t = −1 : 0.025 : 1;

z = exp(t). ∗ sin(5 ∗ t)

The .∗ indicates array multiplication. If you omit the period
before the ∗, you will get an error message when you try to
use the function.
Plot a labelled graph for z on the interval above.
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plot two functions

VI. To plot 2 functions, say w = tet and u = t3 log(1 + |t|) on
the same graph with e.g. the first a solid curve and the
second with ’stars’, type

t = −1 : 0.1 : 1;
z = t. ∗ exp(t)
u = t.̂3. ∗ log(1 + abs(t))(1)

and then

plot(t, z, t, u, ” ∗ ”).
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M-files and Solving IVP’s

1. The goal of this section is to introduce you to M-files
and allow you to try out some Runge-Kutta solvers.
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M-files and Solving IVP’s

1. The goal of this section is to introduce you to M-files
and allow you to try out some Runge-Kutta solvers.

2. When a function is used repeatedly, instead of
retyping it each time, it is convenient to create a file,
called an M-file for the function
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New function

Suppose one wants to make a file containing the function
5t3e−t and to call it fun.m. The name of an M-file must
begin with a letter and consist entirely of letters, numbers,
and underscores; it must end with ’ .m ’ (e.g. file.m)
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Edit

To edit a new M-file in the Matlab workspace, click on FILE,
down to NEW, right to M-file to get a blank page. On this
type:

function y=fun(t)
% my function
y = 5.∗(t.∧3).∗exp(-t);

click on FILE, Save-As, give it the name ’fun.m’, and exit the
editor
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Plot ’fun’

Let’s plot the function ’fun’ from t = 0 to t = 5, type
t= 0:.1:5;
To get a string of t values, spaced at intervals of .1. Now
type

plot(t,fun(t));
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Plot
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IVP

consider the Initial Value Problem
x′ = 1-x
x(0) = 0.1

Since the equation is linear and first order, it can be solved
explicitly:

x(t) = 1-.9e−t
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Numerics

Usually an explicit solution is inaccessible and a numerical
’integration’ is needed. For that reason we next introduce a
numerical solver to be used to find an approximate solution.
Again, one can type commands in the workspace
(command window) at the MATLAB prompt, but it is
convenient to have M-files which can be used repeatedly.
For solving an initial value problem we create TWO files:
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FIRST file

Create an M -file as in (2) for the right-hand side of the
differential equation. Create a file called dy.m containing:

function y = dy(t,x)

y = 1-x;
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What is in FIRST file?

The file dy.m gives the ’dynamics’ for the differential
equation; that is, gives the RIGHT HAND SIDE of the
differential equation. It is important that the same symbol
be used just after the word ’function’ and at the beginning of
the second line, defining the function explicitly. Remember
that if you do not type a semi-colon at the end of a line, all
the output of that line will be printed to the screen. The
inclusion of both t and x in dy(t,x) is not necessary if there
is no t in the right hand side of the differential equation.
However, it is probably a good habit to write the two variable
for an eventual case of the occurrence of t. The order (t, x)
is also important
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SECOND file

Open a second M-file called
dyr.m containing:

tspan= [0 15];
x0 =[0.1];
[t,x]=ode45(’dy’,tspan,x0);
plot(t,x)
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What is in SECOND file?

Exit the file dyr.m (this file is used to ’run’ the ode solver and
could be call dyrun.m or other name, but we have kept the
names short).
The first line gives the set of values for the independent
variable at which the solution will be given; the second
gives the initial data; and the third ’calls’ the solver, which
looks in the file dy.m to see what the right hand side of the
differential equation is. The last line is the command to plot
the output.
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Run programs

To run the program, at the MATLAB prompt, type
dyr

(one can also type dyr.m).
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Flexible

The syntax is quite flexible in terms of the choice of letters
used. One can, for example, use the letter x in dy.m and let
the dependent variable be z in dyr.m. However, one MUST
have corresponding names in the file call in the first slot of
’ode45’ and the name of the .m file which describes the
right hand side of the differential equation. Note that the
lines in the file dyr.m could be typed one at a time in the
MATLAB workspace, but then for a rerun with a slight
change in the initial value, e.g., one would have to retype it
all as opposed to changing one number in the file dyr.m.
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global- change FIRST file

It is useful to be able to have a parameter in a differential
equation that one can allow to take different values. To do
this edit the program dy.m, inserting a line and altering the
file so that it reads:

function y = dy(t,x)
global a
y = a-x;
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new SECOND file

After exiting dy.m open dyr.m and change it to read:
hold on
global a
t= 0:.1:15;
x0 =[0.1];
for a = 1:4
[t,x]=ode45(’dy’,tspan,x0);
plot(t,x)
end
hold off
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loop

In this case we have included a loop
for a = 1:4
COMMANDS
end
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hold and off

The ’for’ statement begins a loop in which a takes the
values 1,2,3,4, in turn, the solution is recomputed and
plotted (that is the intervening commands are executed).
The ’hold on’ prevents erasure of the the solution plot for
a = 1 when the a = 2 case is done, etc. When the loop is
complete the ’hold off’ allows erasure (for the next use of
the plot command). The ’global’ statement tells the two
program dy.m and dyr.m to SHARE the values of a.
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clear

Note: if one is using two windows and the one with the
MATLAB workspace has not been closed, then to run the
new version of dyr.m one must type

clear
and then type

dyr
to see the output of the new file. The ’global’ statement is
extremely useful in that it allows one to vary a parameter in
a differential equation and see the quantitative and
qualitative changes in the output.
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system

Minor changes in the files dy.m and dyr.m allow one to solve
systems of first order differential equations. For example,
suppose one wants to solve the (Initial Value Problem)

dx1

dt
= −0.2x1 + 2x2

dx2

dt
= −3x1 − 0.5x2 (S)

with initial data:

x1(0) = 5, x2(0) = 6.
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dynamics for two

Create a file two.m containing:
function y= two(t,x)

r1 = -.2*x(1) + 2*x(2);
r2 = -3*x(1) -0.5*x(2);
y = [r1;r2];

where r1 and r2, respectively, are the first line and second
line of the right hand side of the system S. The syntax with
the square brackets is important here in that MATLAB must
read the right side of the differential equation as a ONE by
TWO matrix.
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second file

Corresponding to the original dyr.m we create a file ’rtwo.m’
to run the solver:

tspan = [0 10];
x0 =[5.0 6.0];
x=ode45(’two’,tspan,x0);
plot(x(:,1),x(:,2))

Note the agreement of the first argument of ode45 and the
name of the first file.
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run

After running, the programs plots the TWO arguments in
the same plane.
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graph
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plot

If one wants to plot t versus the second component, one
can replace the plot command by plot(t,x(:,2)) The
extension to systems containing three variables
x(1), x(2), x(3) follows a similar pattern.
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clear

To run the altered program one must again type
clear
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hint

Use the up arrow on the keyboard to go back to the line
where one previously typed ’clear’ and then press ’enter’.
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