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a b s t r a c t

We investigate tournaments with a specified score vector having additional structure:
loopy tournaments in which loops are allowed, Hankel tournaments which are tour-
naments symmetric about the Hankel diagonal (the anti-diagonal), and combinatorially
skew-Hankel tournaments which are skew-symmetric about the Hankel diagonal. In each
case, we obtain necessary and sufficient conditions for existence, algorithms for construc-
tion, and switches which allow one to move from any tournament of its type to any other,
always staying within the defined type.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let Kn be the complete graph with vertices {1, 2, . . . , n}. A tournament T of order n is a digraph obtained by orienting
the edges of Kn. Listing the vertices of T in an arbitrary order, we can form the adjacency matrix of T , which is then called a
tournament matrix. This is an n×n(0, 1)-matrix T = [tij] such that tii = 0 for all i and tij = 1− tji for i ≠ j, equivalently, such
that T + T t

= Jn − In where T t is the transpose of T and Jn is the n× n matrix of all 1s. In general, we shall not distinguish
between a tournament and a corresponding tournament matrix. We refer to both as tournaments and label both as T as we
have done above.

We define an n × n(0, 1)-matrix A = [aij] to be combinatorially skew-symmetric about the main diagonal provided that
aij = 1 − aji for i ≠ j. Thus a tournament matrix is combinatorially skew-symmetric about the main diagonal. An n × n
tournament can be considered as the result of a round-robin tournament with players 1, 2, . . . , nwhere each pair of players
compete in a game with player i winning (respectively, losing) the game with player j if and only if tij = 1 (respectively,
tij = 0). The score vector of T is R = (r1, r2, . . . , rn) where ri is the number of wins of player i and so the ith row sum
of T . The score vector of T is also the vector of outdegrees of the vertices of T . The score vector R determines the losing
vector S = (s1, s2, . . . , sn) where si = (n − 1) − ri is the number of losses of player i and so the ith column sum of T . This
is because each player plays n− 1 games and the sum of the outdegree and indegree of each vertex is n− 1. Changing the
order of the vertices replaces T with PTP t for some permutation matrix P whose score vector is RP t .

A tournament matrix has 0s on its main diagonal. This is natural from the competition point of view above. Yet, from
the matrix point of view there is no reason to insist that only 0s occur on the main diagonal. Thus we shall also consider
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n × n tournaments T = [tij] where each tii may be 0 or 1. One possible interpretation of this is the following. Before the
round-robin competition begins, each player i flips a coin after calling heads or tails. If player i calls the coin correctly, the
player gets a point, and we set tii = 1; otherwise, we set tii = 0. A correct call adds 1 to a player’s score. The score vector
R = (r1, r2, . . . , rn) is obtained, as above, by counting the number of 1s in each row of T . The losing vector is still defined in
terms of the score vector as S = (s1, s2, . . . , sn) where si = n− ri for all i. But now S is not in general the vector of column
sums of T . If S ′ = (s′1, s

′

2, . . . , s
′
n) is the column sum vector of T , then ri + s′i = n− 1 or n+ 1 depending on whether tii = 0

or tii = 1. We call a tournament T obtained in this way a loopy tournament, since viewed as a digraph there may be loops at
the vertices. The trace of T counts the number of correct calls of the coin flips. Every tournament is also a loopy tournament.
The set of all tournaments with score vector R is usually denoted by T (R). We denote the set of all loopy tournaments with
score vector R by T ℓ(R).

Example 1. The following is a 5× 5 loopy tournament:

T =


0 1 1 0 0
0 1 1 0 1
0 0 0 1 1
1 1 0 0 1
1 0 0 0 1

 , where T + T t
=


0 1 1 1 1
1 2 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 2

 .

The score vector of T is (2, 3, 2, 3, 2); the losing vector is (3, 2, 3, 2, 3). The column sum vector of T is (2, 3, 2, 1, 4).

We shall also consider tournaments with additional structure. Tournaments and loopy tournaments are n × n(0, 1)-
matrices which are combinatorially skew-symmetric about the main diagonal. The anti-diagonal of an n× nmatrix consists
of the positions {(i, n+ 1− i) : 1 ≤ i ≤ n}. In a Hankel matrix, the entries in these positions are constant, as are the entries
in each of the other 2(n− 1) diagonals parallel to the anti-diagonal. We use this association to refer to the anti-diagonal as
the Hankel diagonal. If A = [aij] is an n× n matrix, then we define its Hankel transpose to be the matrix Ah

= [a′ij] obtained
from A by transposing across the Hankel diagonal and thus for which a′ij = an+1−j,n+1−i for all i and j.1 It is straightforward
to check that, as for ordinary transpose, the Hankel transpose satisfies (XY )h = Y hXh for n × n matrices X and Y , and that
(X t)h = (Xh)t , written as X th

= Xht .
A Hankel tournament is defined to be a tournament T for which T h

= T . Thus a (0, 1)-matrix T = [tij] is a Hankel
tournament if and only if tii = 0 for i = 1, 2, . . . , n, and

tn+1−j,n+1−i = tij = 1− tji = 1− tn+1−i,n+1−j for all i ≠ j.

The entries on the Hankel diagonal of a Hankel tournament can be 0 or 1 but, by the combinatorial skew-symmetry of a
tournament, there must be ⌊ n2⌋ 1s on the Hankel diagonal; if n is odd, then the entry t(n+1)/2,(n+1)/2 on the Hankel diagonal
equals 0, since T is a tournament. Reordering the columns of a Hankel tournament from last to first (and leaving the rows
as is), we obtain a symmetric matrixT which has ⌊ n2⌋ 1s on the main diagonal, and thusT is the adjacency matrix of a loopy
graph of order nwith ⌊ n2⌋ loops. We call this graph the Hankel loopy graph of a Hankel tournament T and denote it by H(T ).
The set of all Hankel tournaments with score vector R is denoted by TH(R).

Example 2. The following is a Hankel tournament T of order 5 and its associated symmetric matrixT :
T =


0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0

 and T =


1 1 0 0 0
1 0 0 0 1
0 0 0 1 1
0 0 1 1 0
0 1 1 0 0

 .

The graph H(T ) is a path 1− 2− 5− 3− 4 with a loop at vertex 1 and at vertex 4.

We also define a combinatorially skew-Hankel tournament to be an n × n(0, 1)-matrix which is combinatorially skew-
symmetric about both the main diagonal and the Hankel diagonal, and which has only 0s on both its main diagonal and its
Hankel diagonal. LetDn be the n×n(0, 1)-matrixwith 1s on themain diagonal and on the Hankel diagonal and 0s elsewhere.
Thus the n × n(0, 1)-matrix T = [tij] is a combinatorially skew-Hankel tournament if and only if T t

= Jn − Dn − T and
T h
= Jn − Dn − T . Thus, if T is a combinatorially skew-Hankel tournament, then T t

= T h or, put another way, T th
= T . In

terms of its entries, T is a combinatorially skew-Hankel tournament if and only if

tii = ti,n+1−i = 0 for all i,
tji = 1− tij for all j ≠ i, n+ 1− i,
tn+1−j,n+1−i = 1− tij for all j ≠ i, n+ 1− i.

1 By analogywith Toeplitzmatrices, it would be natural to call themain diagonal the Toeplitz diagonal and to call ordinary transpose the Toeplitz transpose.
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Thus if T is a combinatorially skew-Hankel tournament, then tij = tn+1−i,n+1−j for all i and j. Strictly speaking, a combina-
torially skew-Hankel tournament is not a tournament because skew-symmetry does not hold for symmetrically opposite
elements on the Hankel diagonal. Viewing T with respect to either itsmain diagonal or its Hankel diagonal, we have a round-
robin tournament in which for each i, players i and n+ 1− i do not play a game. The set of all combinatorially skew-Hankel
tournaments with a prescribed score vector is denoted by TH∗(R).

Example 3. The following matrix is a 5× 5 combinatorially skew-Hankel matrix:
0 1 0 0 0
0 0 1 0 1
1 0 0 0 1
1 0 1 0 0
0 0 0 1 0


where the four shaded entries determine all the other entries off the main and Hankel diagonals. Note that, in general, a
combinatorially skew-Hankel matrix is invariant under a rotation by 180°.

In Section 2 we first extend Landau’s theorem for the existence of a tournament with a prescribed score vector by
weakening the usual monotonicity assumption. We then use this theorem to obtain necessary and sufficient conditions
for the existence of a loopy tournament with a prescribed score vector. We show that this result can also be obtained by
associating with an n × n loopy tournament an (n + 1) × (n + 1) ordinary tournament and then using Landau’s theorem
directly. In Section 3 we consider Hankel tournaments and obtain necessary and sufficient conditions for the existence of a
Hankel tournament with a prescribed score vector. In Section 4 we consider combinatorially skew-Hankel tournaments and
obtain necessary and sufficient conditions for their existence with a prescribed score vector. We also present algorithms for
construction of these three types of tournaments.

Let T1 and T2 be two tournaments in T (R) considered as digraphs. It is a basis fact (see e.g. [1,7]) that one may go from
T1 to T2 by a finite sequence of switches each of which reverses the directions of the edges of a 3-cycle (so resulting in
another tournament in T (R)). We identify elementary moves that enable one to go from T1 to T2 when (i) T1, T2 ∈ T ℓ(R),
(ii) T1, T2 ∈ TH(R), and (iii) T1, T2 ∈ TH∗(R). In each case, the elementary moves always produce another tournament in the
same class.

2. Loopy tournaments

One of the most well-known theorems on tournaments is Landau’s theorem [3] (see also [1,2,4,6–8]) which asserts that
a vector R = (r1, r2, . . . , rn) of nonnegative integers is the score vector of an n× n tournament if and only if

i∈J

ri ≥

|J|
2


, (J ⊆ {1, 2, . . . , n}), with equality if J = {1, 2, . . . , n}. (1)

If T is a tournament with score vector R, then for each permutation matrix P , PTP t is a tournament with score vector RP t .
Thus without loss of generality, one can assume that R is monotone nondecreasing, that is, r1 ≤ r2 ≤ · · · ≤ rn. With this
assumption, (1) is equivalent to

k
i=1

ri ≥

k
2


, (k = 1, 2, . . . , n), with equality if k = n. (2)

It is usually under the assumption that R is nondecreasing that Landau’s theorem is proved. But this monotone
assumption can be weakened to provide a somewhat stronger theorem. Let k be a nonnegative integer. The vector R is
k-nearly nondecreasing provided there is a (0, 1, . . . , k)-vector u = (u1, u2, . . . , un) such that R− u is nondecreasing. Thus
R is k-nearly nondecreasing if and only if rj ≥ ri − k for 1 ≤ i < j ≤ n. If k = 0, then R is nondecreasing. If k = 1,
then we use nearly nondecreasing (as used in [5]) instead of k-nearly nondecreasing. For example, (3, 2, 3, 4, 3, 4) is nearly
nondecreasing.

Lemma 4. Let R = (r1, r2, . . . , rn) be a 2-nearly nondecreasing vector of nonnegative integers. Assume that R satisfies Landau’s
inequalities (2). Then the nondecreasing rearrangement of R also satisfies Landau’s inequalities (2).

Proof. We prove the lemma by induction on the number α of pairs (i, j) such that i < j and ri − 2 ≤ rj ≤ ri − 1. If α = 0,
then R is nondecreasing and there is nothing to prove. Assume that R is not nondecreasing, and suppose that i and j satisfy
i < j and rj ≤ ri − 1. Then for each k with i < k < j, rk ≥ ri − 2. Hence there exists p with i ≤ p < j such that rp+1 = rp − l
where l = 1 or 2. We switch rp and rp+1 thereby decreasing α. Suppose that (

p−1
i=1 ri) + rp+1 <

 p
2


. Since

p
i=1 ri ≥

 p
2


,

we conclude that
p

i=1 ri =
 p
2


+ hwhere 0 ≤ h ≤ l− 1. Since R satisfies Landau’s inequalities (2), we calculate that

rp+1 =


p+1
i=1

ri


−


p

i=1

ri


≥


p+ 1
2


−

p
2


+ h


= p− h
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and

rp =


p

i=1

ri


−


p−1
i=1

ri


≤

p
2


+ h


−


p− 1
2


= p− 1+ h.

Thus p− h+ l ≤ rp+1+ l = rp ≤ p− 1+ h, and so l ≤ 2h− 1. Since h ≤ l− 1, we have l ≥ 3, a contradiction. We conclude
that (

p−1
i=1 ri)+ rp+1 ≥

 p
2


, and thus that switching the order of rp and rp+1 produces a vector R′ that also satisfies Landau’s

inequalities. Since α is decreased, the lemma follows by induction. �

Theorem 5. Let R = (r1, r2, . . . , rn) be a 2-nearly nondecreasing vector of nonnegative integers. Then R is the score vector of a
tournament if and only if (2) holds.

Proof. If R is the score vector of a tournament, then (2) holds. Now assume that (2) holds. By Lemma 4 the nondecreasing
rearrangement R′ of R satisfies (2). Hence by Landau’s theorem, there is a tournament T with score vector R′. There is an
n× n permutation matrix P such that R′ = RP t . Then PTP t is a tournament with score vector R. �

Let T = [tij] be a loopy tournament with score vector R = (r1, r2, . . . , rn). Since simultaneously permuting the rows and
columns of T results in another loopy tournament (with the same number of loops), we assume without loss of generality
that R satisfies r1 ≤ r2 ≤ · · · ≤ rn. The number of 1s on the main diagonal of T is some integer, denoted as n − t , where
0 ≤ t ≤ n. The sum of all the entries of T equals

 n
2


+ (n− t). Landau’s theorem for the existence of a tournament with a

prescribed score vector can be used to determine the existence of a loopy tournament with a prescribed score vector. If a is
an integer, then a+ = max{0, a}.

Theorem 6. Let R = (r1, r2, . . . , rn) be a vector of nonnegative integers with r1 ≤ r2 ≤ · · · ≤ rn. Then there exists a loopy
tournament with score vector R if and only if there is an integer t with 0 ≤ t ≤ n such that

k
i=1

ri ≥

k
2


+ (k− t)+, (k = 1, 2, . . . , n), with equality when k = n. (3)

When these conditions are satisfied, the number of 1 s on the main diagonal of the loopy tournament is n − t and these can be
taken to be in the last (n− t) positions on the main diagonal.

Proof. The condition (3) is clearly necessary for the existence of a loopy tournament with score vector R and n − t loops.
Now suppose that (3) holds. We show that there is a loopy tournament with score vector R for which the (n− t) 1s on the
main diagonal occur in those positions corresponding to the (n − t) largest ri. Let R′ = (r ′1, r

′

2, . . . , r
′
n) be obtained from R

by subtracting 1 from rt+1, rt+2, . . . , rn. Then R′ is nearly nondecreasing and (3) implies that
k

i=1 r
′

i ≥


k
2


for 1 ≤ k ≤ n

with equality for k = n. Hence by Theorem 5 there exists a tournament T ′ with score vector R′. Replacing the 0s with 1s in
the last (n− t) positions on the main diagonal of T ′ gives a loopy tournament with score vector R. �

Let R be a nearly nondecreasing vector of nonnegative integers satisfying (2). By Theorem 5 there exists a tournament T
with score vector R. Simultaneously permuting the rows and columns of T gives a tournament with score vector R′ obtained
by applying the same permutation to R. Thus to find T we can first permute R to get a nondecreasing R′, apply a known
algorithm (for instance, the algorithm of Ryser [7,1]) to obtain a tournament T ′with score vector R′, and then simultaneously
permute the rows and columns of T ′ to obtain T with score vector R.

To construct a loopy tournament with nondecreasing score vector R satisfying (3), we can first subtract 1 from the largest
n − t components of R, and this results in a nearly nondecreasing vector R′ which by Theorem 5 satisfies (2). Then we can
construct a tournament T ′ with score vector R′ as just outlined above. Replacing the 0s in the last (n − t) positions on the
main diagonal with 1s results in a loopy tournament with score vector R.

The proof of Theorem 6 uses the strengthened form of Landau’s theorem given in Theorem 5 in order to show existence
of a loopy tournament with a prescribed nondecreasing score vector. For a given nondecreasing vector R of nonnegative
integers, we now establish a bijection between T ℓ(R) and T (R′) for a certain vector R′. This enables us to identify basic
switches, a sequence of which allows us to go from a T1 ∈ T ℓ(R) to a T2 ∈ T ℓ(R) with all intermediate matrices also in
T ℓ(R).

Theorem 7. Let R = (r1, r2, . . . , rn) be a nondecreasing vector of nonnegative integers such that there is an integer t with
0 ≤ t ≤ n such that

n
i=1

ri =
n
2


+ (n− t).

Let R′ = (t, r1, r2, . . . , rn). Then there is a bijection between T ℓ(R) and T (R′). In particular, T ℓ(R) ≠ ∅ if and only if T (R′) ≠ ∅.
Moreover, these sets are nonempty if and only if (3) holds.
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Proof. Let T = [tij] be an n × n loopy tournament in T ℓ(R), and let an (n + 1) × (n + 1) matrix T ′ = [t ′ij] with rows and
columns indexed by 0, 1, 2, . . . , n be defined by

t ′ij =


tij, if 1 ≤ i, j ≤ n and i ≠ j,
tii, if j = 0 and 1 ≤ i ≤ n,
1− tjj, if i = 0 and 1 ≤ j ≤ n,
0, if 0 ≤ i = j ≤ n.

Thus T ′ is obtained from T by horizontally moving the entries on the main diagonal to column 0, vertically moving 1 minus
the entries on the main diagonal to row 0, and putting 0s everywhere on the main diagonal. Since T has (n − t) 1s on its
main diagonal, T ′ is a tournament in T (R′). This mapping is reversible and hence there is a bijection between T ℓ(R) and
T (R′).

As remarked in the proof of Theorem 6, the inequalities (3) are necessary for T l(R) and hence T (R′) to be nonempty. Now
assume that (3) holds. Let R′′ = (r ′′1 , r ′′2 , . . . , r ′′n , r ′′n+1) be obtained from R′ by reordering its entries to be nondecreasing. Then
R′′ = (r1, . . . , rp, t, rp+1, . . . , rn) where rp ≤ t ≤ rp+1. We have

k
i=1

r ′′i =



k
i=1

ri ≥

k
2


+ (k− t)+ ≥


k
2


, if k ≤ p,

k
i=1

ri


+ t ≥


k
2


+ t + (k− t)+, if p+ 1 ≤ k ≤ n+ 1.

Since t + (k− t)+ ≥ k, we have that
k
2


+ t + (k− t)+ ≥


k
2


+ k =


k+ 1
2


.

Thus by Landau’s theorem, T (R′′) is nonempty, and hence T (R′) and T ℓ(R) are nonempty. �

To construct a loopy tournament in T ℓ(R), we can use any algorithm to construct a tournament in T (R′), and then use
the bijection in Theorem 7.

As remarked in the introduction, given any two tournaments T ′1 and T ′2 with the same score vector R′, then by reversing
3-cycles we can get from T ′1 to T ′2 where all intermediate matrices are tournaments with score vector R′. The operation of
reversing a 3-cycle i→ j→ k→ i in terms of matrices is that of switching the 3× 3 matrix T ′[i, j, k] determined by rows
and columns i, j, and k of T ′ as shown below:

i j k
i x 1 0
j 0 y 1
k 1 0 z

→

i j k
i x 0 1
j 1 y 0
k 0 1 z

. (4)

We call this a 3-cycle switch and denote it by△i,j,k. A 3-cycle switch is reversible and its inverse is△k,j,i.
We now take R′ and R as given in the proof of Theorem 7, and using the bijection between T ℓ(R) and T (R′) given there,

we identify the switches in T ℓ(R) corresponding to the 3-cycle switches in T (R′). There are two possibilities: the switch in
T (R′) is in rows and columns (a) {i, j, k} ⊆ {1, 2, . . . , n} or (b) {0, i, j}where {i, j} ⊂ {1, 2, . . . , n}.

If (a), then the switches for T (R′) and T ℓ(R) are the same and hence△i,j,k is an operation that maintains the tournament
in the class T ℓ(R).

If (b), then the switch△0,i,j for T (R′) is

0 i j
0 0 1 0
i 0 0 1
j 1 0 0

→

0 i j
0 0 0 1
i 1 0 0
j 0 1 0

,

which, bymoving the 1 in column 0 of the left matrix to column j andmoving the 1 in column 0 of the rightmatrix to column
i, becomes

i j
i 0 1
j 0 1

→

i j
i 1 0
j 1 0

.

In terms of the digraph, the operation (b) reverses the direction of an edge from a non-loop vertex i to a loop-vertex j and
moves the loop from j to i. We call this operation an edge-loop switch and denote it by→◦ij. This operation is also reversible
and the inverse of→◦ij is→◦ji. Thus we have the following theorem.
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Theorem 8. Let T1 and T2 be two loopy tournaments in T ℓ(R). Then T1 can be brought to T2 by a sequence of 3-cycle switches
and edge-loop switches where each switch produces a loopy tournament in T ℓ(R).

To conclude this section, we remark that, any n× n tournament can always be collapsed to an (n− 1)× (n− 1) loopy
tournament using any row and column i with the 1s in column i moved horizontally to the positions on the main diagonal,
and then deleting row and column i.

3. Hankel tournaments

We first characterize the score vectors of Hankel tournaments. Let T be a Hankel tournament, and let i be an integer with
1 ≤ i ≤ n. Since T is a tournament, row i of T determines column i, and since T is a Hankel tournament, it also determines
row and column n+ 1− i. We illustrate this important property in the next example.

Example 9. Let T be an 8 × 8 Hankel tournament with row 3 given. Then the entries in column 3, and row and column
8+ 1− 3 = 6 are determined as shown in

0 1− a g
0 1− b f

a b 0 c d e f g
1− c 0 d
1− d 0 c

1− g 1− f 1− e 1− d 1− c 0 1− b 1− a
1− f b 0
1− g a 0


,

where the 0s on the main diagonal have been inserted and the Hankel diagonal has been shaded.

Let R = (r1, r2, . . . , rn) be the score vector of T , and let S = (s1, s2, . . . , sn) be the column sum vector of T . We
have

n
i=1 ri =

 n
2


. Since T is symmetric about the Hankel diagonal, ri = sn+1−i. Since T is a tournament, rn+1−i =

(n− 1)− sn+1−i = (n− 1)− ri and thus the score vector R satisfies the Hankel property

ri + rn+1−i = n− 1 for all i = 1, 2, . . . , n. (5)

Thus, if n is odd,

r(n+1)/2 =
n− 1
2

.

We next show that there is no loss of generality in assuming that R is nondecreasing.

Lemma 10. Let R = (r1, r2, . . . , rn) be a vector of nonnegative integers, and let R′ = (r ′1, r
′

2, . . . , r
′
n) be obtained from R by

rearranging its entries so that r ′1 ≤ r ′2 ≤ · · · ≤ r ′n. Then there exists a Hankel tournament T with score vector R if and only if
there exists a Hankel tournament T ′ with score vector R′. Moreover, T ′ is obtained by simultaneously permuting the rows and
columns of T .

Proof. Let T be aHankel tournamentwith score vector R.We first note that if for some i, we interchange rows i and (n+1−i)
and simultaneously interchange columns i and (n+ 1− i) of T , then the resulting matrix is a Hankel tournament with score
vector obtained from R by interchanging ri and rn+1−i. Thus using a sequence of pairwise interchanges of this sort, we may
assume that ri ≤ rn+1−i for 1 ≤ i ≤ ⌊n/2⌋. Since ri + rn+1−i = n− 1, we have

ri ≤
n− 1
2
≤ rn+1−i, where, if n is odd, r(n+1)/2 =

n− 1
2

.

If for some i and j with 1 ≤ i < j ≤ ⌊n/2⌋, we have ri > rj, then we also have that ⌈n/2⌉ ≤ n + 1 − j < n + 1 − i ≤ n
and rn+1−j > rn+1−i. Thus we may interchange rows i and j and columns i and j, and also interchange rows (n+ 1− i) and
(n+ 1− j) and columns (n+ 1− i) and (n+ 1− j), and obtain a Hankel tournament with row sum vector obtained from
R by interchanging ri and rj and by interchanging rn+1−i and rn+1−j. Thus by a sequence of double pairwise interchanges of
this sort, we are able to get a Hankel tournament whose row sum vector is a monotone rearrangement of R. The converse
follows in a similar way. �

Because of Lemma 10, for the existence of Hankel tournaments with score vector R, it suffices to assume that R is
nondecreasing. We show that the only condition needed in addition to Landau’s inequalities is that R satisfy the Hankel
property.
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Theorem 11. Let R = (r1, r2, . . . , rn) be a vector of nonnegative integers with r1 ≤ r2 ≤ · · · ≤ rn. Then there exists a Hankel
tournament with score vector R if and only if

ri + rn+1−i = n− 1, (i = 1, 2, . . . , n) (6)

and

k
i=1

ri ≥

k
2


, (k = 1, 2, . . . , n), with equality if k = n. (7)

Proof. We know that (6) and (7) are necessary for the existence of a Hankel tournament with score vector R. Suppose, to
the contrary, that the converse is false. Then clearly n ≥ 3. We then choose an R = (r1, r2, . . . , rn) satisfying (6) and (7)
for which a Hankel tournament with score vector R does not exist, where n is minimum and for this n, r1 is minimum. We
consider two cases.

Case 1: For each kwith 1 ≤ k ≤ n− 1, we have strict inequality in (7).
In this case we have r1 ≥ 1 and we consider R′ = (r ′1, r

′

2, . . . , r
′
n) = (r1 − 1, r2, . . . , rn−1, rn + 1). Then with r ′i

replacing ri, R′ satisfies the corresponding conditions (6) and (7). Thus by the minimality condition on r1, there exists a
Hankel tournament T = [tij] with score vector R′. Since r ′n − r ′1 = (rn + 1)− (r1 − 1) = (rn − r1)+ 2 ≥ 2, there exists an
integer p with 2 ≤ p ≤ n− 1, such that t1p = 0 and tnp = 1. Since T is a tournament, we have tp1 = 1 and tpn = 0. Since T
is a Hankel tournament, we also have tn+1−p,n = 0, tn+1−p,1 = 1, tn,n+1−p = 1, and t1,n+1−p = 0. Thus with q = n+ 1− p,
we have the structure:

1 · · · p · · · q · · · n
1 0 0
...

p 1 0 a 0
...

q 1 1− a 0 0
...

n 1 1

where a, on the Hankel diagonal, is 0 or 1. If a = 1, then replacing as shown below:

1 · · · p · · · q · · · n
1 0 0
...

p 1 0 1 0
...

q 1 0 0 0
...

n 1 1

−→

1 · · · p · · · q · · · n
1 0 1
...

p 1 0 0 1
...

q 0 1 0 0
...

n 0 1

,

we obtain a Hankel tournament with score vector R. If a = 0, then replacing as shown below:

1 · · · p · · · q · · · n
1 0 0
...

p 1 0 0 0
...

q 1 1 0 0
...

n 1 1

−→

1 · · · p · · · q · · · n
1 1 0
...

p 0 0 1 0
...

q 1 0 0 1
...

n 1 0

,

we obtain a Hankel tournament with score vector R. Both possibilities give a contradiction. Note that if p = q, then their
common value is (n+ 1)/2 and the number of replacements above is only four.



44 R.A. Brualdi, E. Fritscher / Discrete Applied Mathematics 194 (2015) 37–59

Case 2: There is a k with 1 ≤ k ≤ n− 1 such that we have equality in (7), that is,
k

i=1 ri =


k
2


.

We calculate that
n−k
i=1

ri =
n
2


−

n
i=n−k+1

ri =
n
2


−

k
i=1

(n− 1− ri)

=

n
2


− k(n− 1)+


k
2


=


n− k
2


.

Hence we may assume that k ≤ n/2, and we also have that
n−k

i=1 ri =


n−k
2


.

We now calculate that

rk+1 =
k+1
i=1

ri −
k

i=1

ri =
k+1
i=1

ri −

k
2


≥


k+ 1
2


−


k
2


= k.

Thus by the monotonicity assumption, ri ≥ k for k+ 1 ≤ i ≤ n. Similarly, rk ≤ k− 1.
It follows from Landau’s theorem that there exists a tournament T1 with score vector R1 = (r1, r2, . . . , rk). Since

ri+ rn+1−i = n− 1 for all i and rk ≤ k− 1, we have rn−k+1 ≥ (n− 1)− (k− 1) = n− k. The monotonicity assumption on R
now implies that R2 = (rn−k+1 − (n− k), rn−k+2 − (n− k), . . . , rn − (n− k)) is a vector of nonnegative integers. Since for
1 ≤ i ≤ k, we have

ri + (rn+1−i − (n− k)) = ri + rn+1−i − (n− k) = (n− 1)− (n− k) = k− 1,

then si = rn+1−i − (n− k) is the ith column sum of T1. Hence the row sum vector of T h
1 equals R2.

To summarize thus far, the matrix

T =

 T1 Ok,n−2k Ok,k
Jn−2k,k X On−2k,k

Jk,k Jk,n−2k T h
1


will be a Hankel tournament with score vector R, provided we can choose X as an (n− 2k)× (n− 2k) Hankel tournament
with score vector (rk+1 − k, rk+2 − k, . . . , rn−k − k), rk+1 − k ≤ rk+2 − k ≤ . . . ≤ rn−k − k which we know is nonnegative.
We calculate that for 1 ≤ l ≤ n− 2k,

l
j=1

(rk+j − k) =


k+l
i=1

ri −
k

i=1

ri


− lk =

k+l
i=1

ri −

k
2


− lk

≥


k+ l
2


−


k
2


− lk =


l
2


.

Since by assumption rk+j + rn+1−(k+j) = n− 1, we have

(rk+j − k)+ (rn+1−(k+j) − k) = (n− 2k)− 1.

The minimality assumption now implies that the Hankel tournament X exists, and hence we have a Hankel tournament
with score vector R. This contradiction completes this case, and thus the proof of the theorem is complete. �

As a corollary we show that the nondecreasing assumption in Theorem 11 can be weakened to 2-nearly nondecreasing.

Corollary 12. Let R = (r1, r2, . . . , rn) be a 2-nearly nondecreasing vector of nonnegative integers. Then there exists a Hankel
tournament with score vector R if and only if

ri + rn+1−i = n− 1, (i = 1, 2, . . . , n) (8)

and

k
i=1

ri ≥

k
2


, (k = 1, 2, . . . , n), with equality if k = n. (9)

Proof. As before the conditions (8) and (9) are necessary for a Hankel tournament with score vector R. Now assume that
(8) and (9) hold. By Lemma 4 the nondecreasing arrangement of R also satisfies (9). Thus we need only check that the
nondecreasing rearrangement of R also satisfies (8). Then the corollary follows from Theorem 11.
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Let (x1, x2, . . . , xn) be the nondecreasing rearrangement of R. Then for each k, xk is the kth smallest of r1, r2, . . . , rn and
xn+1−k is the kth largest. Suppose that xk = rj. It follows from (8) that rn+1−j is the kth largest of r1, r2, . . . , rn and hence
xn+1−k = n+ 1− rj. Therefore xk + xn+1−k = rj + rn+1−j = n− 1. �

Wenow provide an algorithm to construct a Hankel tournamentwith score vector R. This algorithm is a variant of Ryser’s
algorithm [7] to determine a tournament with a prescribed score vector (see also pages 220–222 of [1]). The last column of
such a tournament determines the last row by the combinatorial skew symmetry property of a tournament and thus, by the
symmetry property of a Hankel tournament, determines the first row and first column.

Hankel Algorithm for a T = [tij] ∈ TH(R) with R nondecreasing
Let R = (r1, r2, . . . , rn) be a nondecreasing vector of nonnegative integers satisfying the Hankel property ri + rn+1−i =

n − 1 for i = 1, 2, . . . , n and the inequalities
k

i=1 ri ≥


k
2


with equality for k = n of (7). We let Sn = (s1, s2, . . . , sn)

where si = n− 1− ri for i = 1, 2, . . . , n.

Remarks: Sn is the column sum vector of a Hankel tournament with score vector R. If n is odd, then we know that
r(n+1)/2 = (n− 1)/2, rn ≥ (n− 1)/2, and sn ≤ (n− 1)/2. If n is even, rn ≥ n/2 and sn ≤ (n− 2)/2.

(1) If n is even:
(a) Let v = (v1, v2, . . . , vn) be the vector (0, . . . , 0  

n−r1−1

, 1, . . . , 1  
r1

, 0), and let R′n−2 = (r ′1, r
′

2, . . . , r
′

n−2) be the 2-nearly

nondecreasing vector with the Hankel property defined by

r ′i = ri+1 − vi+1 − (1− vn−i) for 1 ≤ i ≤ n− 2.

(b) Let Qn−2 be the permutationmatrix of the type used in the proof of Lemma 10 such that R′n−2Q
t
n−2 is a nondecreasing

sequence Rn−2 with the Hankel property.
(c) Let Tn−2 be the (n− 2)× (n− 2) Hankel tournament obtained by this algorithm applied to the score vector Rn−2.
(d) Let Tn be the Hankel tournament with score vector R defined by

Tn =


0 vn−1 · · · v2 v1

1− vn−1 v2
... Q t

n−2Tn−2Qn−2
...

1− v2 vn−1
1− v1 1− v2 · · · 1− vn−1 0

 .

(2) If n is odd:
(a) Let R′n−1 = (r ′1, r

′

2, . . . , r
′

n−1) be the nearly nondecreasing vector defined by

r ′i =


ri, if 1 ≤ i ≤

n− 1
2

,

ri+1 − 1, if
n+ 1
2
≤ i ≤ n− 1.

(b) LetQn−1 be the permutationmatrix of the type used in Lemma 10 such that R′n−1Q
t
n−1 is a nondecreasing vector Rn−1.

(c) Let Tn−1 be the (n − 1) × (n − 1) Hankel tournament obtained by this algorithm applied to the score vector Rn−1,
and let T ′n−1 be the Hankel tournament with score vector R′n−1 obtained by applying the permutation matrix Qn−1:

T ′n−1 = Q t
n−1Tn−1Qn−1 =


A B

J(n−1)/2 − Bt Ah


.

(d) Let Tn be the Hankel tournament with score vector R defined by

Tn =



0

A
... B
0

1 · · · 1 0 0 · · · 0
1

J(n−1)/2 − Bt
... Ah

1


.

(3) Output Tn.
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Example 13. Let n = 7 and let R = (1, 2, 2, 3, 4, 4, 5). Applying the Hankel algorithm, we obtain the following Hankel
tournament in TH(R):

0 1 0 0 0 0 0
0 0 1 0 0 1 0
1 0 0 0 1 0 0
1 1 1 0 0 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1
1 1 1 1 1 0 0


.

In carrying out the algorithm, the resulting score vectors are illustrated below where→π means a permutation is used and
→a means the resulting score vector after a step of the algorithm:

(1, 2, 2, 3, 4, 4, 5) →a (1, 2, 2, 3, 3, 4) →a (2, 1, 2, 1) →π (1, 1, 2, 2) →a (1, 0) →π (0, 1).

Theorem 14. The Hankel algorithm constructs a Hankel tournament in TH(R) when R satisfies the given conditions.

Proof. We first assume that n is even. The entries of R′ satisfy:

r ′i =

ri+1, if 1 ≤ i ≤ r1,
ri+1 − 1, if r1 + 1 ≤ i ≤ n− r1 − 2,
ri+1 − 2, if n− r1 − 1 ≤ i ≤ n− 2.

Since R satisfies the Hankel property, so does R′. Thus to verify that the algorithm gives a Hankel tournament with score
vector R, by Corollary 12we need only verify that R′n−2 is 2-nearly nondecreasing and satisfies the corresponding inequalities
of (7). Since r ′i ≤ ri+1 and r ′j ≥ rj − 2, we have r ′i ≤ ri+1 ≤ rj ≤ r ′j + 2 for i < j, and hence R′n−2 is 2-nearly nondecreasing.

We now verify that R′n−2 satisfies the corresponding inequalities of (7). Again we consider three cases,
Case 1 ≤ k ≤ r1: We have

k
i=1

r ′i =
k

i=1

ri+1 ≥
k

i=1

ri ≥

k
2


.

Case r1 + 1 ≤ k ≤ n− r1 − 2: We calculate that

k
i=1

r ′i =
r1
i=1

ri+1 +
k

i=r1+1

(ri+1 − 1)

=


k

i=1

ri+1


− (k− r1) =


k+1
i=1

ri


− k

≥


k+ 1
2


− k =


k
2


.

Case n− r1 − 1 ≤ k ≤ n− 2: We first observe that for n− r1 ≤ l ≤ n− 1, we have the stronger inequality

l
i=1

ri ≥


l
2


+ (l− n+ r1 + 1)

by considering the minimum number of 1s in the l × (l + 1) submatrix determined by rows 1, 2, . . . , l and columns
1, 2, . . . , l, n. Using this inequality we calculate that

k
i=1

r ′i =
r1
i=1

ri+1 +
n−r1−2
i=r1+1

(ri+1 − 1)+
k

i=n−r1−1

(ri+1 − 2)

=


k

i=1

ri+1


− (n− 2r1 − 2)− 2(k− n+ r1 + 2)

=


k+1
i=1

ri


− (2k+ 2+ r1 − n)
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≥


k+ 1
2


+ (k− n+ r1 + 2)− (2k+ 2+ r1 − n)

=


k+ 1
2


− k =


k
2


.

Now we assume that n is odd.
The entries of the vector R′n−1 are given by

r ′i =


ri, if 1 ≤ i ≤

n− 1
2

,

ri+1 − 1, if
n+ 1
2
≤ i ≤ n− 1.

It follows by inspection that the vector R′n−1 is nearly nondecreasing, and we have r ′i + r ′n−i = (n − 1) − 1 for each i. Now

we verify that Landau’s inequalities
k

i=1 r
′

i ≥


k
2


hold for 1 ≤ k ≤ n− 1 with equality if k = n− 1. If 1 ≤ k ≤ (n− 1)/2,

then this is clear. Suppose that (n− 1)/2 ≤ k ≤ n− 1. Then

k
i=1

r ′i =


(n−1)/2

i=1

ri


+


k+1

i=(n+3)/2

ri


−


k+ 1−

n+ 3
2
+ 1



=


k+1
i=1

ri


− k+

n− 1
2
− r(n+1)/2

=


k+1
i=1

ri


− k ≥


k+ 1
2


− k =


k
2


,

with equality if k = n− 1. Since R′ is nearly nondecreasing, after rearranging its terms to form a nondecreasing vector, we
can apply the algorithm for the even case of n − 1 and as indicated in the algorithm construct a Hankel tournament with
score vector R. �

Let T ∗ be the Hankel tournament in TH(R) constructed by the Hankel algorithm. We next identify certain switches and
pairs of switches that allow one to move from any Hankel tournament T ∈ TH(R) to T ∗ where each switch and pairs
of switches produces another Hankel tournament in TH(R). Since these switches are reversible, this allows one to move
from any T1 ∈ TH(R) to any other T2 ∈ TH(R) where each switch produces a Hankel tournament in TH(R). We collect all
these switches, including the switches used for loopy tournament and a switch to be used for combinatorially skew-Hankel
tournaments, in Table 1.

Let i, j, k, l be four distinct indices and consider the 4 × 4 submatrix T [i, j, k, l] of T whose row and column indices are
{i, j, k, l}. If we have a directed cycle i→ j→ k→ l→ i in a tournament T , then T [i, j, k, l] has the form on the left in (10),
and we define �i,j,k,l to be the switch that replaces T [i, j, k, l]with the matrix on the right:

i j k l
i 1 a 0
j 0 1 b
k 1− a 0 1
l 1 1− b 0

→

i j k l
i 0 a 1
j 1 0 b
k 1− a 1 0
l 0 1− b 1

. (10)

The switch �i,j,k,l reverses a 4-cycle of T :

(i→ j→ k→ l→ i)→ (i← j← k← l← i)

and we call it a 4-cycle switch. It is easy to see that this reversal of a 4-cycle can also be accomplished by the reversal of
two 3-cycles: if, for instance, we have a = b = 0, we reverse two 3-cycles using the 3-cycle switches △i,j,k and then △i,k,l.
We define △c

i,j,k to be the switch △n+1−i,n+1−j,n+1−k and we refer to it as the complementary switch of △i,j,k (the indices
are complementary to i, j, k). In the same way, we define �c

i,j,k,l to be the switch �n+1−i,n+1−j,n+1−k,n+1−l and call it the
complementary switch of �i,j,k,l.

For Hankel tournaments, we have that

T [i, j, k, l] = T [n+ 1− l, n+ 1− k, n+ 1− j, n+ 1− i]h.

We will consider two possibilities for the indices i, j, k, l:
(i) j ≠ n+ 1− i, n+ 1− k and l ≠ n+ 1− i, n+ 1− kwith at most one of the equalities k = n+ 1− i and l = n+ 1− j;
(ii) k = n+ 1− j and l = n+ 1− i.
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Table 1
Summary of switches.

In case (i), for n even, there is no overlap on the entries of T [i, j, k, l] and T [n + 1 − l, n + 1 − k, n + 1 − j, n + 1 − i] in
the positions we are changing when applying �i,j,k,l and �c

l,k,j,i. We say that �i,j,k,l is a pure 4-cycle switch. Applying the pure
4-cycle switch �i,j,k,l and the complementary switch in the reverse order �c

l,k,j,i = �n+1−l,n+1−k,n+1−j,n+1−i to a T ∈ TH(R)
results in another Hankel tournament in TH(R).

In case (ii), the matrix T [i, j, n+ 1− j, n+ 1− i] has the form

i j n+ 1− j n+ 1− i
i 0 1 a 0
j 0 0 1 a

n+ 1− j 1− a 0 0 1
n+ 1− i 1 1− a 0 0

.

If we apply �i,j,n+1−j,n+1−i to a T ∈ TH(R) we obtain another Hankel tournament in TH(R). In this case �i,j,n+1−j,n+1−i =

�c
n+1−i,n+1−j,j,i and we just need to apply one 4-cycle switch.

If n is odd and j = n+1
2 , then T [i, j, n+ 1− j, n+ 1− i] collapses to the 3× 3 matrix T [i, n+1

2 , n+ 1− i], and if there is
a 3-cycle we can apply the 3-cycle switch△i, n+12 ,n+1−i, which reverses the orientation of the 3-cycle. We call such a switch
a 3-cycle Hankel switch, when we have these special indices. Applying a 3-cycle Hankel switch △i, n+12 ,n+1−i to a T ∈ TH(R)
results in another Hankel tournament in TH(R).

When R is nondecreasing, we now show how to use these switches to move from any tournament T ∈ TH(R) to
T ∗ ∈ TH(R) never leaving the class TH(R). We consider two cases according to whether n is even or odd.

Case n even: If the first column of T equals the first column of T ∗, then their last columns, first rows, and last rows are equal,
respectively. Thus the borders of T and T ∗ agree; deleting their borders, we proceed by induction on n. Now suppose that
the borders of T and T ∗ are not equal. The first column of T ∗ consists of n− s1 = r1 + 1 0s followed by s1 1s. Since t11 = 0,
there is a first i ≠ 1 such that ti1 = 1 and tj1 = 0 for some j > i.

First suppose that we may take j = n, that is, tn1 = 0. Since r1 is the smallest score, and r1 + s1 = n − 1, we have that
s1 ≥ (n/2). Since tn1 = 0, it follows that there exists an 1 < i ≤ (n/2) such that ti1 = tn+1−i,1 = 1. Since T is a Hankel
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tournament, we have

T [1, i, n+ 1− i, n] =

 0 0 0 1
1 0 a 0
1 1− a 0 0
0 1 1 0

 ,

that is,

(a = 0)

 0 0 0 1
1 0 0 0
1 1 0 0
0 1 1 0

 or (a = 1)

 0 0 0 1
1 0 1 0
1 0 0 0
0 1 1 0

 ,

In the case that a = 0, we apply the 4-cycle Hankel switch �1,n,n+1−i,i and the result is a tournament in TH(R) in which
ti1 has been replaced with 0 and tn1 has been replaced with 1. In the case that a = 1, we apply the 4-cycle Hankel switch
�1,n,i,n+1−i and the result is a tournament in TH(R) in which tn+1−i,1 has been replaced with 0 and tn1 has been replaced
with 1.

Now assume that tn1 = 1 so that there exists a j with i < j < n such that tj1 = 0. First suppose that we may take
j = n + 1 − i. Since ri < rn+1−i there exists a k with k ≠ 1, n + 1 − i, such that tik = 0 and tn+1−i,k = 1. Since ti1 = 1 and
T is a Hankel tournament, tn,n+1−i = 1 and hence tn+1−i,n = 0. Therefore k ≠ n. In addition, because ri < rn+1−i, we may
choose k ≠ i. We now have

T [1, i, n+ 1− i, k] =

 0 0 1 a
1 0 b 0
0 1− b 0 1

1− a 1 0 0

 .

The switch �1,n+1−i,k,i is a pure 4-cycle switch, and �1,n+1−i,k,i followed by �c
i,k,n+1−i,1 produces a tournament in TH(R) in

which ti1 has been replaced with 0 and tn+1−i,1 has been replaced with 1.
The remaining possibility in the n even case is that ti1 = 1 implies that tn+1−i,1 = 1, so we cannot take j = n+ 1− i. If

tji = 1, then

T [1, i, j] =

 0 0 1
1 0 0
0 1 0

 .

The switch△1,j,i is a pure 3-cycle switch, and△1,j,i followed by△c
i,j,1 produces a tournament in TH(R) in which ti1 has been

replaced with 0 and tj1 has been replaced with 1. Now suppose that tji = 0 so that tij = 1. Since ri ≤ rj, there exists at least
two values of k such that k ≠ 1, i, j, and tik = 0 and tjk = 1. If tj,n+1−i = 0, then there exists such a k ≠ n+ 1− i, n+ 1− j.
If tj,n+1−i = 1, then since T is a Hankel tournament, ti,n+1−j = 1 and hence k ≠ n+ 1− j, and since there are two possible
values of k, we may choose k ≠ n+ 1− i. Thus we have

T [1, i, j, k] =

 0 0 1 a
1 0 1 0
0 0 0 1

1− a 1 0 0

 .

The switch �1,j,k,i is a pure 4-cycle switch, and �1,j,k,i followed by �c
i,k,j,1 produces a tournament in TH(R) in which ti1 has

been replaced with 0 and tj1 has been replaced with 1.
Hence by induction, if n is even, we can move from T to T ∗ by a sequence of 4-cycle Hankel switches, pairs of switches

consisting of a pure 4-cycle switch �i,j,k,l and its complementary switch in the reverse order �c
l,k,j,i, and pairs of switches

consisting of a pure 3-cycle switch and its complementary switch in the reverse order.

Case n odd: Then row (n+ 1)/2 of the matrix T ∗ constructed by the Hankel algorithm contains (n− 1)/2 1s and they occur
in its first (n− 1)/2 columns, thus determining both row and column (n+ 1)/2. We show that by 3-cycle Hankel switches
and pairs of switches consisting of a pure 4-cycle switch and the complementary switch in the reverse order, we can bring
any tournament T ∈ TH(R) into a tournament T ′ ∈ TH(R) which agrees with T ∗ on row (n + 1)/2, that is, has all its 1s in
columns 1, 2, . . . , (n−1)/2.Wemay then delete row and column (n+1)/2 of T ′ and T ∗ leaving two (n−1)×(n−1)Hankel
tournaments T ′′ and T ∗∗ with the same score vector R′. By what we have proved, T ′′ can be brought to T ∗∗ by a sequence of
4-cycle Hankel switches, pairs of switches consisting of a pure 4-cycle switch and its complementary switch in the reverse
order, and pairs of switches consisting of a pure 3-cycle switch and its complementary switch in the reverse order. It then
follows that T can be brought to T ∗ by a sequence of 3-cycle Hankel switches, 4-cycle Hankel switches, and pairs of switches
consisting of a pure 4-cycle switch and its complementary switch in the reverse order.
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Fig. 1. Part of the digraph D.

So suppose that t(n+1)/2,i = 0 for some i ≤ (n − 1)/2. We consider the digraph D with vertex set {1, 2, . . . , n} with an
edge from i to j if and only if tij = 1 and t∗ij = 0. Since T and T ∗ have the same score vector, the outdegree of a vertex equals
its indegree and hence the edges of D can be partitioned into cycles. One of these cycles C uses the vertex (n+ 1)/2:

n+ 1
2
→ i1 → i2 → · · · → ik →

n+ 1
2

.

Since we are dealing with Hankel tournaments, D also contains the edge (n + 1 − i1) → n+1
2 . If T also contains the edge

i1 → (n + 1 − i1), then we can apply the 3-cycle Hankel switch △n+1−i1,
n+1
2 ,i1

and move T closer to T ∗. If T contains the
edge (n + 1 − i1) → i1 (and so does not contain the edge i1 → (n + 1 − i1)), then we consider the edge i1 → i2. Then
n + 1 − i2 → n + 1 − i1 is also an edge of D. If i2 → (n + 1 − i2) in T , then the 4-cycle Hankel switch �n+1−i1,i1,i2,n+1−i2
reverses (n+ 1− i1)→ i1, and then we can apply△n+1−i1,

n+1
2 ,i1

as above. If, on the other hand, (n+ 1− i2)→ i2 is an edge
of T , we consider the pair of vertices (n+ 1− i1) and i2 (see Fig. 1), and proceed as follows.

If i2 → (n+1− i1) is an edge of T , thenwe apply the 4-cycle Hankel switch�i2,n+1−i1,i1,n+1−i2 to reverse (n+1− i1)→ i1
and then△n+1−i1,

n+1
2 ,i1

as above.
If (n+ 1− i1)→ i2 is an edge of T , then we consider the edge i2 → i3 where now i3 ≠ (n+ 1− i1), (n+ 1− i2).

We continue like this until we are able to find an ij ≠ n+ 1− i1, . . . , n+ 1− ij−1 such that ij → (n+ 1− ih) for some h ≤ j.
There are two possibilities to consider. If we also have the edge (n+ 1− ij)→ ij (only if h < j), then we apply the 4-cycle
Hankel switch �ih,n+1−ij,ij,n+1−ih to reverse (n+ 1− ih)→ ih, followed by the 4-cycle Hankel switches �il−1,il,n+1−il,n+1−il−1
with l = h, h−1, . . . , 2 to finally reverse (n+1−i1)→ i1, and then△n+1−i1,

n+1
2 ,i1

. If for all jwith 2 ≤ j ≤ k, ij → (n+1−ih)
is not an edge of T for a hwith 1 ≤ h ≤ j, then since ik → (n+ 1)/2 is an edge of cycle C , the cycle C does not contain both
a vertex p and a vertex n+ 1− p. Thus using a sequence of pairs of pure 3-cycle switches and their complementary 3-cycle
switches in the reverse order, we can reverse C and its complementary cycle of opposite orientation. By these operations
we have obtained from T a Hankel tournament in TH(R) which agrees with T ∗ in row and column (n+ 1)/2.

Putting the preceding arguments together and having in mind that a pure 4-cycle switch can be accomplished by two
3-cycle switches, we have proved the following theorem.

Theorem 15. Let T1 and T2 be two tournaments in TH(R). Then there exists a sequence of moves consisting of 4-cycle Hankel
switches, pairs consisting of a pure 3-cycle switch and its complementary 3-cycle switch in the reverse order, and 3-cycle Hankel
switches, which brings T1 to T2 with all intermediary tournaments in TH(R).

Example 16. Let n = 7 and R = (1, 2, 2, 3, 4, 4, 5), and consider the two Hankel tournaments T1 and T2 in TH(R) given by

T1 =



0 0 0 0 0 0 1
1 0 0 0 0 1 0
1 1 0 0 0 0 0
1 1 1 0 0 0 0
1 1 1 1 0 0 0
1 0 1 1 1 0 0
0 1 1 1 1 1 0

 and T2 =



0 1 0 0 0 0 0
0 0 1 1 0 0 0
1 0 0 0 1 0 0
1 0 1 0 0 1 0
1 1 0 1 0 1 0
1 1 1 0 0 0 1
1 1 1 1 1 0 0

 .

We can move from T1 to T2 by the 4-cycle Hankel switch �7,5,3,1, followed by the pair of pure 3-cycle switches △3,2,1 and
△

c
1,2,3 = △7,6,5, followed by the 3-cycle Hankel switch△6,4,2.

For completeness we mention the following. It is natural as well to consider n × n Hankel loopy tournaments T = [tij],
that is, Hankel tournaments with possible 1s on the main diagonal. By the Hankel property, we now have that for all i,
tii = tn+1−i,n+1−i where the commonvalue is either 0 or 1. The score vector R = (r1, r2, . . . , rn) of aHankel loopy tournament
satisfies ri + rn+1−i = n+ 1 or n− 1 depending on whether or not tii = tn+1−i,n+1−i = 1. Thus the score vector of a Hankel
loopy tournament determines which elements on the main diagonal equal 1 and which equal 0. Thus if R′ is obtained from
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R by subtracting 1 from those i and n+ 1− i for which ri + rn+1−i = n+ 1, then there is a Hankel loopy tournament with
score vector R if and only if there is a Hankel tournament with score vector R′.

Example 17. The Hankel loopy tournament

T =


0 0 0 1 1
1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 0


with score vector R = (2, 3, 3, 3, 2) corresponds to the Hankel tournament

T ′ =


0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0


with score vector R′ = (2, 2, 2, 2, 2).

4. Combinatorially skew-Hankel tournaments

Let T = [tij] be an n× n combinatorially skew-Hankel tournament, and let the score vector of T be R = (r1, r2, . . . , rn).
Since T is invariant under a rotation by 180°, we have that for each i, row n+ 1− i is obtained by reversing row i, and thus
the score vector of T is palindromic, that is,

R = (r1, r2, r3, . . . , r3, r2, r1).

Since T is combinatorially skew with respect to the main diagonal, row i of T not only determines row n+ 1− i but it also
determines columns i and n+ 1− i. We illustrate this important property in the next example.

Example 18. Let T be an 8 × 8 combinatorially skew-Hankel tournament with row 3 given. Then the entries in column 3,
and row and column 8+ 1− 3 = 6 are as shown in

0 1− a 1− f 0
0 1− b 1− e 0

a b 0 c d 0 e f
1− c 0 0 1− d
1− d 0 0 1− c

f e 0 d c 0 b a
0 1− e 1− b 0

0 1− f 1− a 0


,

where the 0s on the main and Hankel diagonals have been inserted.

The score vector of a combinatorially skew-Hankel tournament is determined by n/2 integers if n is even, and by (n+1)/2
integers if n is odd. For n even, if we reorder the rows 1, 2, . . . , n/2 and then the rows n/2+ 1, n/2+ 2, . . . , n in the same
way, and similarly reorder columns 1, 2, . . . , n/2 and columns n/2+1, n/2+2, . . . , n in the corresponding way, the result
is another combinatorially skew-Hankel tournament. For n odd, if we do a reordering for the indices 1, 2, . . . , (n − 1)/2
and (n + 1)/2, (n + 1)/2 + 1, . . . , n, the result is also another combinatorially skew-Hankel tournament. Hence there is
no loss of generality in assuming that the first half (r1, r2, . . . , r⌊n/2⌋) of R is nondecreasing and thus that the second half
(r⌈(n+2)/2⌉, . . . , r2, r1) is nonincreasing. If n is odd, R has a middle term r(n+1)/2 which is even since t(n+1)/2,(n+1)/2 = 0, and
both row (n+ 1)/2 and column (n+ 1)/2 of T are palindromic.

Example 19. A 7 × 7 combinatorially skew-Hankel tournament with palindromic score vector R = (1, 3, 4, 2, 4, 3, 1) is
given by

0 0 1 0 0 0 0
1 0 0 1 0 0 1
0 1 0 1 0 1 1
1 0 0 0 0 0 1
1 1 0 1 0 1 0
1 0 0 1 0 0 1
0 0 0 0 1 0 0

 .
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We first treat the case where n is even. In this case a combinatorially skew-Hankel tournament is of the form
T1 T2
T th
2 T ht

1


where T1 is an n

2 ×
n
2 tournament and T2, when its columns are taken from last to first, is an n

2 ×
n
2 tournament.

Let R = (r1, r2, . . . , rn/2, rn/2, . . . , r2, r1) satisfy r1 ≤ r2 ≤ · · · ≤ rn/2. The nondecreasing rearrangement of R is
R∗ = (r∗1 , r∗2 , . . . , r∗n ) = (r1, r1, r2, r2, . . . , rn/2, rn/2) where therefore r∗2k−1 = r∗2k = rk for k = 1, 2, . . . , n/2. Since in
an n× n combinatorially skew-Hankel tournament T = [tij], tkk = tk,n+1−k = tn+1−k,n+1−k = tn+1−k,k = 0, the sum of the l

smallest elements of R, that is, the first l elements of R∗, must be at least the number


l
2


−
 l

2


of games played amongst

themselves, and thus
l

i=1

r∗i ≥


l
2


−


l
2


, (l = 1, 2, . . . , n), with equality if l = n. (11)

Lemma 20. Let h, with 1 ≤ h ≤ n/2, be such that equality holds in (11) for l = 2h − 1. Then equality also holds in (11) for
l = 2h and l = 2h− 2.

Proof. We have
2h−1

i=1 r∗i =


2h−1
2


− (h − 1). If h = 1, then r∗1 = 0 and hence r∗2 = 0, and so equality holds for l = 2.

Now let h ≥ 2. Then

r∗2h =
2h
i=1

r∗i −
2h−1
i=1

r∗i ≥

2h
2


− h−


2h− 1

2


− (h− 1)


= 2h− 2,

and

r∗2h−1 =
2h−1
i=1

r∗i −
2h−2
i=1

r∗i ≤


2h− 1
2


− (h− 1)


−


2h− 2

2


− (h− 1)


= 2h− 2. (12)

Thus 2h− 2 ≤ r∗2h = rh = r∗2h−1 ≤ 2h− 2, and we conclude that r∗2h = 2h− 2. With this value for r∗2h, we get

2h
i=1

r∗i =


2h−1
i=1

r∗i


+ r∗2h =


2h− 1

2


− (h− 1)+ (2h− 2) =


2h
2


− h,

and thus equality holds in (11). Because we have obtained r∗2h−1 = r∗2h = 2h− 2, we have equality in (12), which yields

2h−2
i=1

r∗i =

2h− 2

2


− (h− 1)

as was claimed. �

By taking l = 2k in (11), we see that the inequalities (11) for l even are equivalent to
k

i=1

ri ≥ k(k− 1), (k = 1, 2, . . . ,
n
2
), with equality for k =

n
2
. (13)

In the next lemma we show that (11) is equivalent to (13) even if l is odd.

Lemma 21. The vector R∗ satisfies (11) if and only if R satisfies (13).

Proof. The inequalities (11) for l even are equivalent to the inequalities (13) for k = 1, 2, . . . , n/2. Thus we need only show
that if the inequalities (13) hold, then the inequalities (11) hold for odd l. Let l = 2k + 1 and suppose to the contrary that2k+1

i=1 r∗i <


2k+1
2


− k. Then

r∗2k+1 =
2k+1
i=1

r∗i −
2k
i=1

r∗i <


2k+ 1

2


− k


−


2k
2


− k


= 2k.

Since r∗2k+2 = r∗2k+1, we obtain

2k+2
i=1

r∗i =


2k+1
i=1

r∗i


+ r∗2k+2 <


2k+ 1

2


− k


+ 2k =


2k+ 2

2


− (k+ 1),

and this contradicts (11) and (13). �
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We now verify that it is enough for us to assume that (r1, r2, . . . , r(n+1)/2) is 3-nearly nondecreasing.

Lemma 22. Let R = (r1, r2, . . . , rm) be a sequence of nonnegative integers that satisfies (13) such that R is 3-nearly nondecreas-
ing. Then its nondecreasing rearrangement also satisfies (13).

Proof. It is enough to show that if for some k, rk = a and rk+1 = a − p where 1 ≤ p ≤ 3, then interchanging rk and rk+1
results in a vector also satisfying (13). If this was false, then we have that

k
i=1 ri = k(k−1)+hwhere 0 ≤ h ≤ p−1. Then

rk+1 =
k+1
i=1

ri −
k

i=1

ri ≥ (k+ 1)k− k(k− 1)− h = 2k− h.

But we also have

rk =
k

i=1

ri −
k−1
i=1

ri ≤ k(k− 1)+ h− (k− 1)(k− 2) = 2k− 2+ h.

Therefore

(2k− h)+ p ≤ rk+1 + p = rk ≤ 2k− 2+ h,

implying that h ≥ (p/2)+ 1, a contradiction since p ≤ 3. �

Theorem 23. Let n be an even integer, and let R = (r1, r2, . . . , rn/2, rn/2, . . . , r2, r1) be a vector of nonnegative integers such
that (r1, r2, . . . , rn/2) is nondecreasing. Then there exists a combinatorially skew-Hankel tournament with score vector R if and
only if (13) holds.

Proof. We have already verified that (13) holds for a combinatorially skew-Hankel tournament with score vector R. For the
converse, assume that (13) holds but there does not exist a combinatorially skew-Hankel tournament with score vector R.
We let R be a counterexample with nminimum and for this nwith r1 minimum.

As above, we let R∗ be the nondecreasing vector (r1, r1, r2, r2, . . . , rn/2, rn/2). By Lemma 21, R∗ satisfies (11). By Lemma 20
if equality holds in (11) for an odd integer, it also holds for the next even integer. We consider two cases depending on
whether or not equality holds in (11) for some even integer l = 2h < n.
Case 1: There exists an integer l = 2h < n such that equality holds in (11).

Let R′ = (r1, . . . , rh, rh, . . . , r1). Since rh+1 ≥ 2h, the vector

R′′ = (r ′′1 , . . . , r ′′(n/2)−h, r
′′

(n/2)−h, . . . , r
′′

1 ) = (rh+1 − 2h, . . . , rn/2 − 2h, rn/2 − 2h, . . . , rh+1 − 2h)

is nonnegative. Then R′ satisfies the inequality in (13) for 1 ≤ k ≤ h with equality if k = h. Also
k

i=1

(r ′′i + 2h) =
h+k
i=1

ri −
h

i=1

ri ≥ (h+ k)(h+ k− 1)− h(h− 1) = k(k− 1)+ 2hk,

with equality when k = (n/2)− h. Thus
k

i=1

r ′′i ≥ k(k− 1) with equality if k = (n/2)− h,

and R′′ satisfies the corresponding condition (13). By our minimality assumption on n, there exist combinatorially skew-
Hankel tournaments T ′ and T ′′ with score vectors R′ and R′′, respectively. We can write

T ′ =


T ′1 T ′2
(T ′2)

th (T ′1)
th


,

where T ′1 and T ′2 are h× h. Then

T =

 T ′1 Oh,n−2h T ′2
Jn−2h,h T ′′ Jn−2h,h
(T ′2)

th Oh,n−2h (T ′1)
th


is a combinatorially skew-Hankel tournament with score vector R, a contradiction.
Case 2: There does not exists an integer l < n such that equality holds in (11).

We first claim that the difference between the left hand side of (11) and its right hand side is at least 2 for l < n. If l is
even both sides are even so this holds. Now suppose that l = 2k+ 1 and, to the contrary, that

2k+1
i=1

r∗i =


2k+ 1
2


− k


+ 1.
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We calculate that

r∗2k+1 =
2k+1
i=1

r∗i −
2k
i=1

r∗i ≤


2k+ 1
2


− k


+ 1−


2k
2


− k+ 2


= 2k− 1,

and

r∗2k+2 =
2k+2
i=1

r∗i −
2k+1
i=1

r∗i ≥


2k+ 2
2


− (k+ 1)+ 2


−


2k+ 1

2


− k+ 1


= 2k+ 1.

Thus

2k+ 1 ≤ r∗2k+2 = rk+1 = r∗2k+1 ≤ 2k− 1,

a contradiction. This verifies our claim. Nowwe consider the palindromic R′ = (r ′1, . . . , r
′

n/2, r
′

n/2, . . . , r
′

1)where r ′1 = r1−1,
r ′n/2 = rn/2 + 1, and r ′i = ri for 2 ≤ i ≤ (n/2) − 1. Then the first half of R′ is nondecreasing. Since equality does not
occur in (11) for l < n, we have r1 ≥ 1, and so r ′1 ≥ 0, and for l ≥ 2, the conditions corresponding to (11) hold for R′.
By the minimality assumption on r1, there is a combinatorially skew-Hankel tournament T ′ = [t ′ij] with score vector R′.
Since r ′n/2 − r ′1 ≥ 2, there is a column p ≠ 1 such that t ′1p = 0 and t ′n/2,p = 1. Since T ′ is a combinatorially skew-Hankel
tournament, we have p ≠ n/2, (n/2)+ 1. If p ≠ n, then without loss of generality we may assume that p < n/2. Then the
6× 6 principal submatrix T ′[1, p, n/2, n/2+ 1, n+ 1− p, n] has the form

1 p n/2 n/2+ 1 n+ 1− p n
1 0 0 0
p 1 0 0 0

n/2 1 0 0
n/2+ 1 0 0 1
n+ 1− p 0 0 0 1

n 0 0 0

.

If we now change 0s to 1s and 1s to 0s in the shaded cells in the positions of T ′, we obtain a combinatorially skew-Hankel
tournament with score vector R, a contradiction.

If there is no such p strictly between 1 and n, and the only p ≠ 1 with t ′1p = 0 and tn/2,p = 1 is p = n, then we have the
4× 4 principal submatrix

T [1, n/2, n/2+ 1, n] =

 0 a 0 0
a′ 0 0 1
1 0 0 a′

0 0 a 0


where a′ = 1 − a. If a = 1, then r ′1 ≥ r ′n/2 which is impossible. Thus a = 0 and a′ = 1. Interchanging the 0’s and 1’s given
by a and a′ gives a combinatorially skew-Hankel tournament with score vector R, a contradiction again. �

In case n is odd we have the following characterization of score vectors of n × n combinatorially skew-Hankel
tournaments.

Theorem 24. Let n be an odd integer, and let R = (r1, . . . , r(n−1)/2, r(n+1)/2, r(n−1)/2, . . . , r1) be a vector of nonnegative integers
such that (r1, r2, . . . , r(n−1)/2) is nondecreasing. Then there exists a combinatorially skew-Hankel tournament with score vector
R if and only if

r(n+1)/2 ≤ n− 1 (14)

and

k
i=1

ri ≥ k(k− 1)+

k−

r(n+1)/2
2

+
,


k = 1, 2, . . . ,

n− 1
2


, with equality if k =

n− 1
2

. (15)

Proof. The inequality (14) is certainly necessary for the existence of a T ∈ TH∗(R). The inequalities (15) are also necessary
because in the 2k rows of T with the smallest row sums, the minimum number of 1s that could be in column (n + 1)/2 is
(2k− r(n+1)/2)+.

Now assume that (14) and (15) hold. If we take an n× n combinatorially skew-Hankel tournament T with score vector R
and delete themiddle row andmiddle column,we are leftwith an (n−1)×(n−1) combinatorially skew-Hankel tournament
with a nearly nondecreasing score vector. The conditions (15) imply that if we choose themiddle column to have its 1s in the
rows with the largest row sums (thereby determining the middle column) and delete the middle row and middle column,
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the row sum vector of the resulting matrix is a nearly nondecreasing vector R′ satisfying the conditions corresponding to
(13); by Lemma 22, the nondecreasing rearrangement R′′ of R′ also satisfies the same conditions. Hence by Theorem 23 there
exists a combinatorially skew-Hankel tournament with score vector R′′ and thus one with score vector R′. Hence there is a
combinatorially skew-Hankel tournament with score vector R. �

We now describe an algorithm to produce a combinatorially skew-Hankel tournament with a prescribed score vector R
when the conditions of Theorems 23 and 24 hold.

Skew-Hankel Algorithm for a T = [tij] ∈ TH∗(R)
Let Rn = (r1, r2, . . . , rn) be a vector of nonnegative integers such that ri = rn+1−i for all i and r1 ≤ r2 ≤ · · · ≤ r⌊ n2 ⌋. If n is

even, assume that (13) holds. If n is odd, assume that (15) holds.

1. If n is odd:
(a) Let v = (v1, v2, . . . , vn) be a (0, 1)-vector with vi = vn+1−i = 1 if r(n+1)/2

2 + 1 ≤ i ≤ n−1
2 and vi = vn+1−i = 0

otherwise, and let the nearly nondecreasing vector R′n−1 = (r ′1, r
′

2, . . . , r
′

n−1) be defined by r ′i = r ′(n−1)+1−i = ri − vi

for 1 ≤ i ≤ (n− 1)/2.
(b) Let Qn−1 be an (n− 1)× (n− 1) permutation matrix of the form

P O(n−1)/2,(n−1)/2

O(n−1)/2,(n−1)/2 P th


such that the first half of Rn−1 = R′n−1Q

t
n−1 is nondecreasing.

(c) Let Tn−1 be a combinatorially skew-Hankel tournament with score vector Rn−1 obtained by applying this algorithm,
and let T ′n−1 be the combinatorially skew-Hankel tournament with score vector R′n−1 written in the form

T ′n−1 = Q t
n−1Tn−1Qn−1 =


A B
Bth Ath


.

(d) Let the combinatorially skew-Hankel matrix Tn be defined by

Tn =



v1

A
... B

v(n−1)/2
(1− v1) · · · (1− v(n−1)/2) 0 (1− v(n+3)/2) · · · (1− vn)

v(n+3)/2

Bth
... Ath

vn


.

2. If n is even:
(a) Let v = (v1, v2, . . . , vn) be a (0, 1)-vector with vi = 1 if and only if 2 + ⌈ r12 ⌉ ≤ i ≤ n − 1 − ⌊ r12 ⌋, and let the

vector R′n−2 = (r ′1, r
′

2, . . . , r
′

n−2), the first half of which is 2-nearly nondecreasing, be defined by r ′i = r ′(n−2)+1−i =
ri+1 − vi+1 − vn−i for 1 ≤ i ≤ n− 2.

(b) Let Qn−2 be an (n − 2) × (n − 2) permutation matrix such that the first half of Rn−2 = R′n−2Q
t
n−2 is nondecreasing

and satisfies the skew-Hankel property.
(c) Let Tn−2 be a combinatorially skew-Hankel tournament with score vector Rn−2 obtained by applying this algorithm,

and let Tn be the combinatorially skew-Hankel tournament with score vector Rn defined by

Tn =


0 (1− vn−1) · · · (1− v2) 0

vn−1 v2
... Q t

n−2Tn−2Qn−2
...

v2 vn−1
0 (1− v2) · · · (1− vn−1) 0

 .

(3) Output Tn.

Example 25. Let n = 7 and let R = (2, 2, 4, 2, 4, 2, 2). Applying the skew-Hankel algorithm, we obtain the following
combinatorially skew-Hankel tournament in TH(R):

0 1 0 0 1 0 0
0 0 0 1 0 0 1
1 1 0 1 0 1 0
1 0 0 0 0 0 1
0 1 0 1 0 1 1
1 0 0 1 0 0 0
0 0 1 0 0 1 0


.
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In carrying out the algorithm, the resulting score vectors are illustrated below where→π means a permutation is used and
→a means the result of a step of the algorithm:

(2, 2, 4, 2, 4, 2, 2) →a (2, 1, 3, 3, 1, 2) →π (1, 2, 3, 3, 2, 1) →a (1, 1, 1, 1) →a (0, 0).

Theorem 26. The skew-Hankel algorithm constructs a combinatorially skew-Hankel tournament when R satisfies the given
conditions.

Proof. First assume that n is even. It then suffices to verify that the first half of R′n−2 is 2-nearly nondecreasing and thatk
i=1 r

′

i ≥ k(k− 1) for 1 ≤ k ≤ (n/2)− 1 (we have equality for k = (n/2)− 1 by construction). By construction

r ′i = r ′(n−2)+1−i =

ri+1, if 1 ≤ i ≤ ⌊r1/2⌋,
ri+1 − 1, if ⌊r1/2⌋ + 1 ≤ i ≤ ⌈r1/2⌉,
ri+1 − 2, if ⌈r1/2⌉ + 1 ≤ i ≤ (n/2)− 1.

The entries of R′n−2 are nonnegative: If r1 = 0, then t2,1 = t2,n = 1 and so r2 ≥ 2 and therefore r ′1 ≥ 0. If r1 ≥ 1, then v2 = 0
and thus r ′1 ≥ 0.

We calculate that
Case 1 ≤ k ≤ ⌊r1/2⌋:

k
i=1

r ′i =
k+1
i=2

ri ≥
k

i=1

ri ≥ k(k− 1).

Case k = (r1 + 1)/2 and r1 odd, implying that rk+1 ≥ r1 = 2k− 1:

k
i=1

r ′i =
k−1
i=1

ri+1 + (rk+1 − 1) ≥ (k− 1)(k− 2)+ (2k− 1)− 1 = k(k− 1).

Case ⌈r1/2⌉ + 1 ≤ k ≤ n/2− 1 with r1 even:

k
i=1

r ′i =


r1/2+1
i=2

ri


+


k+1

i=r1/2+2

ri


− 2 ((k+ 1)− ((r1/2)+ 2)+ 1)

=


k+1
i=2

ri


− 2k+ r1 =


k+1
i=1

ri


− 2k ≥ (k+ 1)k− 2k = k(k− 1).

Case ⌈r1/2⌉ + 1 ≤ k ≤ n/2− 1 with r1 odd:

k
i=1

r ′i =


k+1
i=2

ri


− 1− 2 ((k+ 1)− ((r1 + 1)/2+ 2)+ 1)

=


k+1
i=1

ri


− 1− 2k+ 1 ≥ (k+ 1)k− 2k = k(k− 1).

Since the first half of R is nondecreasing, it follows that the first half of R′n−2 is 2-nearly nondecreasing. By Lemma 22 the
vector Rn−2 satisfies the corresponding inequalities. Therefore there is a combinatorially skew-Hankel tournament with
score vector Rn−2 and also one with score vector R′n−2.

Now assume that n is odd. The entries of R′n−1 are

r ′i = r ′n−i =

ri, if 1 ≤ i ≤ (r(n+1)/2)/2,
ri − 1, if (r(n+1)/2)/2+ 1 ≤ i ≤ (n− 1)/2,

and thus the first half of R′n−1 is nearly nondecreasing. If 1 ≤ k ≤ (r(n+1)/2)/2, then
k

i=1 r
′

i ≥ k(k− 1). If (r(n+1)/2)/2+ 1 ≤
k ≤ (n− 1)/2, then

k
i=1

r ′i =
k

i=1

ri − (k− (r(n+1)/2)/2) ≥ k(k− 1).

Therefore, there exists a combinatorially skew-Hankel tournament with score vector Rn−1 and also one with score vector
R′n−1. �
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We next identify certain moves that allow one to move from any combinatorially skew-Hankel tournament T ∈ TH∗(R)
to any other where each move produces another combinatorially skew-Hankel tournament in TH∗(R). The switches used
in the moves are the 4-cycle switches and 3-cycle switches used in the case of Hankel tournaments, but their types are
different. We consider 4-cycle switches �i,j,n+1−i,n+1−j that reverse the 4-cycle i → j → n + 1 − i → n + 1 − j → i,
called 4-cycle skew-Hankel switches, and pure 3-cycle switches △i,j,k that reverse i → j → k → i, that is, where
{i, j, k} ∩ {n+ 1− i, n+ 1− j, n+ 1− k} = ∅ or {n/2}. A 4-cycle skew-Hankel switch �i,j,n+1−i,n+1−j is illustrated by

i j n+ 1− i n+ 1− j
i 0 1 0
j 0 0 1

n+ 1− i 0 0 1
n+ 1− j 1 0 0

→

i j n+ 1− i n+ 1− j
i 0 0 1
j 1 0 0

n+ 1− i 1 0 0
n+ 1− j 0 1 0

.

First assume that n is even. Let T1, T2 ∈ TH∗(R) and consider T1 and T2 as digraphs. For an n × n combinatorially skew-
Hankel tournament, if there is an edge i → j, then there is also an edge n + 1 − i → n + 1 − j. Consider the digraph
D with vertex set {1, 2, . . . , n} whose edges are the edges of T1 that are not edges of T2 (corresponding to the 1s in the
difference matrix T1 − T2). If a vertex has positive outdegree then it has positive indegree, and vice versa. Starting at any
vertex, determine a longest path γ : i→ j→ · · · → k that does not contain both a vertex p and a vertex n+ 1− p. There is
an arc leaving vertex k and it must then go either to an earlier vertex on γ or else to a vertex n+ 1− p where p is a vertex
on γ . Thus we either get a cycle

(a) i1 → i2 → · · · → iq → i1 where ij ≠ n+ 1− il for any ij and il,

or a cycle

(b) i1 → i2 → · · · → iq → n+ 1− i1 → n+ 1− i2 → · · · → n+ 1− iq → i1.

In case (a) we also have the cycle

(a′) n+ 1− i1 → n+ 1− i2 → · · · → n+ 1− iq → n+ 1− i1.

Case (a): We show how to reverse the cycle of (a) and of (a′) by a sequence of 3-cycle switches and their complementary
switches. There is a sequence of pairs of switches, each consisting of a 3-cycle switch and its complementary switch, which
reverses the cycles (a) and (a′) resulting in a combinatorially skew-Hankel tournament in TH∗(R). We can find the first
3-cycle by considering all the edges of T1 between i1 and the other vertices of the cycle (a). Reversing this 3-cycle and its
complementary 3-cycle, we obtain one or two shorter cycles. Repeating on these shorter cycles we eventually will reverse
cycles (a) and (a′).
Case (b): Consider, for instance, the edges i1 → i2 and n+ 1− i1 → n+ 1− i2. If the edge n+ 1− i2 → i1 is in T1, and thus
so is the edge i2 → n+ 1− i1, then a 4-cycle skew-Hankel switch �i1,i2,n+1−i1,n+1−i2 yields a tournament in TH∗ where our
cycle has become two cycles of the forms (a) and (a′), and we proceed inductively. If the edge i1 → n+ 1− i2 is in T1, and
thus so is the edge n+ 1− i1 → i2, then we have two cycles of the forms (a) and (a′), which inductively by pairs of 3-cycle
switches we can reverse, resulting in the reversal of i1 → n+1− i2 and n+1− i1 → i2. Now a 4-cycle skew-Hankel switch
completes the reversal of the cycle of (b) and gives a tournament in TH∗(R) which is closer to T2.

For n odd, we have the following lemma.

Lemma 27. Let T1 and T2 be two combinatorially skew-Hankel tournament matrices with the same score vector R. Then there
exists a sequence of moves, where each move is a pair consisting of a pure 3-cycle switch △i,j,k and its complementary switch
△

c
i,j,k, which transforms row (respectively, column) (n+ 1)/2 of T1 into row (respectively, column) (n+ 1)/2 of T2.

Proof. As above we consider the digraph D. If row (n+1)/2 of T1 agrees with row (n+1)/2 of T2, there is nothing to prove.
Otherwise there is a cycle C containing vertex (n+ 1)/2. We claim there is such a cycle for which if i is a vertex of the cycle,
then (n+ 1− i) is not a vertex of the cycle.

Let C be the cycle (n+ 1)/2→ i1 → i2 → · · · → ik → (n+ 1)/2. Let V = {j : ij, (n+ 1− ij) ∈ C, 1 ≤ j ≤ k}. If V ≠ ∅,
let a be the minimum and c be the maximum of the integers in V . Let b and d be the indices such that ib = n + 1 − ia and
id = n+ 1− ic . We consider two cases (see Fig. 2).
Case b < d: We consider the cycle C ′ given by

n+ 1
2
→ i1 → · · · → ia → (n+ 1− ib+1)→ · · · → (n+ 1− id−1)→ ic → · · · → ik →

n+ 1
2

.

It follows from the skew-Hankel property that the edges of C ′ are in D, and for the corresponding V ′, we have |V ′| < |V |.
Case b > d: We then consider the cycle C ′ given by

n+ 1
2
→ i1 → · · · → ia → · · · → id → (n+ 1− ic+1)→ · · · → (n+ 1− ik)→

n+ 1
2

.
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Fig. 2. Two possibilities in Lemma 27 (b < d and b > d).

(If d = a and thus c = b, ia → · · · → id reduces to just the vertex ia.) As in the above case, we have |V ′| < |V |. Repeating
this process, we eventually produce a cycle C∗ such that V ∗ = ∅. This verifies our claim.

Now if row and column (n+ 1)/2 of T1 do not agree with row and column (n+ 1)/2 of T2, we have a cycle C

(n+ 1)/2→ i1 → i2 → · · · → ik → (n+ 1)/2

in D (and so its reverse is in T2) such that for each vertex i of C , (n+ 1− i) is not a vertex of C . By the skew-Hankel property,
the cycle C∗ given by

(n+ 1)/2→ (n+ 1− i1)→ (n+ 1− i2)→ · · · → (n+ 1− ik)→ (n+ 1)/2

is also in D (and so its reverse is in T2). Thus we can apply a sequence of moves, each of which is a pair consisting of a 3-cycle
switch △i,j,k and its complementary switch △c

i,j,k, to T1 and produce a T ′1 ∈ TH∗(R) such that row and column (n + 1)/2 of
T ′ are closer to row and column (n+ 1)/2 of T2. We continue like this until we get row and column (n+ 1)/2 of T2. �

Thus we have proved the following theorem.

Theorem 28. Let T1 and T2 be two combinatorially skew-Hankel tournaments in TH∗(R). Then there exists a sequence of 4-cycle
skew-Hankel switches �i,j,n+1−i,n+1−j and pairs consisting of a pure 3-cycle switch △i,j,k and its complementary switch △c

i,j,k
which brings T1 to T2, such that each of the moves produces a combinatorially skew-Hankel tournament in TH∗(R).

Example 29. Let n = 5 and R = (1, 2, 2, 2, 1), and consider the two combinatorially skew-Hankel tournaments T1 and T2
in TH∗(R) given by

T1 =


0 0 1 0 0
1 0 0 0 1
0 1 0 1 0
1 0 0 0 1
0 0 1 0 0

 and T2 =


0 0 0 1 0
1 0 1 0 0
1 0 0 0 1
0 0 1 0 1
0 1 0 0 0

 .

We can move from T1 to T2 by the pair of pure 3-cycle switches△1,3,4 and△5,3,2.

Again for completeness we mention the following. It is natural to also consider n× n combinatorially skew-Hankel loopy
tournaments T = [tij], that is, combinatorially skew-Hankel tournamentswith possible 1s on themain diagonal. By the skew-
Hankel property, we now have that tii = 1− tn+1−i,n+1−i for all i. The score vector R = (r1, r2, . . . , rn) of a combinatorially
skew-Hankel loopy tournament satisfies ri = rn+1−i + 1 if tii = 1 and tn+1−i,n+1−i = 0. Thus the score vector of a
combinatorially skew-Hankel loopy tournament determines which elements on the main diagonal equal 1 and which equal
0. If R′ is obtained from R by subtracting 1 from those i for which ri = rn+1−i+1, then there is a combinatorially skew-Hankel
loopy tournament with score vector R if and only if there is a combinatorially skew-Hankel tournament with score vector R′.

By taking the columns of a combinatorially skew-Hankel loopy tournament in the reverse order, we obtain a
combinatorially skew-Hankel H-loopy tournament, that is, a combinatorially skew-Hankel tournamentwith possible 1s on the
Hankel diagonal. Thus combinatorially skew-Hankel H-loopy tournaments are equivalent to combinatorially skew-Hankel
loopy tournaments. Butwemay also consider combinatorially skew-Hankel doubly-loopy tournaments, that is, combinatorially
skew-Hankel tournaments T = [tij] with possible 1s on both the main diagonal and the Hankel diagonal. Thus tii =
1 − tn+1−i,n+1−i for all i and ti,n+1−i = 1 − tn+1−i,i for all i. The score vector R = (r1, r2, . . . , rn) of a combinatorially
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skew-Hankel doubly-loopy tournament satisfies

ri =

rn+1−i, if (tii = 1 and ti,n+1−i = 0), or (tii = 0 and ti,n+1−i = 1)
rn+1−i + 2, if tii = ti,n+1−i = 1 and so tn+1−i,i = tn+1−i,n+1−i = 0.

Let R′ be obtained from R by subtracting 1 from ri and rn+1−i if ri = rn+1−i and subtracting 2 from ri if ri = rn+1−i + 2.
Then R is the score vector of a combinatorially skew-Hankel doubly-loopy tournament if and only if R′ is the score vector
of a combinatorially skew-Hankel tournament. Notice that when ri = rn+1−i we can either put 1s in positions (i, i) and
(n+ 1− i, i) or in positions (i, n+ 1− i) and (n+ 1− i, n+ 1− i).

5. Summary

In this paper we have obtained necessary and sufficient conditions for the existence of loopy tournaments, Hankel
tournaments, and combinatorially skew-Hankel tournaments with a prescribed score vector.We have also given algorithms
for their construction when these conditions are satisfied. In addition, we have shown how to move from one tournament
to another tournament in the same class by moves given by switches and pairs of switches. The moves used in each case
are:

(a) loopy tournaments:→◦ij;△i,j,k
(b) Hankel tournaments:△i,j,k followed by△c

k,j,i;△i,(n+1)/2,n+1−i; �i,j,n+1−j,n+1−i

(c) combinatorially skew-Hankel tournaments:△i,j,k followed by△c
i,j,k; �i,j,n+1−i,n+1−j.
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