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Abstract

In this paper we elucidate a connection between linear preservers on coordinate
subspaces that permute the elements of a matrix and diagonal hypergraph isomor-
phisms. Under certain circumstances, the only permutation linear preservers are
the special ones which permute rows and columns, and possibly interchange rows
with columns as well.

1 Introduction

Let V be a linear space over the complex number field C, and let ¢ : V' — V be a linear
operator on V. Consider either

(a) a function f:V —C,
(b) a subset S of V, or
(c) arelation Ron V (asubset R of V x V).
The linear operator ¢ is called a linear preserver provided, respectively,
(@) f(o(v)) = f(v),
(b’) w € S implies ¢(u) € S, or
(¢)) (u,w) € R implies (¢(u), p(w)) € R.

*This paper is based on the author’s talk given at the Conference on Combinatorial Matrix Theory, 14-
17 January 2002, Combinatorial and Computational Mathematics Center, Pohang University of Science
and Technology, Pohang, S. Korea.




We refer to [7, 11] for recent surveys on linear preservers.

We shall primarily be interested in certain linear spaces of matrices. We denote by
M 5 (C) the linear space of m by n matrices X = [z;;] over C; if m = n we shorten this to
M, (C). Let A = [a;;] be an m by n matrix of 0’s and 1’s. Then M 4(C) is the coordinate
subspace of M,,,,(C) consisting of all those m by n matrices Y = [y;;] for which y;; =0
for all (4, j) for which a;; = 0. We can describe M 4(C) by using the Hadamard product
as follows:

MA(C) = {A oX = [aijxij] X € Mm,n(C)}

For example, if

1 01
A=|11 0],
1 11
then
a 0 b
Mu(C) = ¢ d 0|:abcde f,geC
e [ g

If J,, denotes the m by n matrix of all 1’s, then M (C) = M., ,(C).

We review here just a few classical results on linear preservers and refer the reader to
[7, 11] for more complete information.

In 1897 Frobenius [6], in what is probably the first paper on linear preservers, charac-
terized linear determinant preservers: A linear operator ¢ on M, (C) satisfies

det p(X) =det X (X € M,(C))

if and only if there exist matrices P,Q € M,(C), with det PQ = 1, such that ¢ is one of
the two linear operators

6(X) = PXQ (X € My(0)), and 6(X) = PX'Q (X € M,(C). (1)

We say that linear operators on M,(C) having one of the forms given in (1) are of
classical type. Let Ei1,...,E1,, Eo1y..., Eopn, ..., Ep1, ..., E,, be the standard ordered
basis of M,,(C). Here E;; is the unit matrix of order n with a 1 in position (¢,j) and
0’s elsewhere. Then the matrices, with respect to this standard ordered basis, of a linear
transformation ¢ on M, (C) satisfying (1) equal the tensor products

P® Q" and P ® Q, respectively.

A consequence of Frobenius’ theorem is that the only linear transformations on M, (C)
that can used to help compute the determinant are those obtained by applying elementary
row and column operations.

The second theorem we wish to mention is due to Marcus and Moyls [8]. It character-
izes linear operators that preserve the property of having rank 1. Here we now consider
rectangular matrices and classical type becomes

$(X)=PXQ (X € Muu(C)), and ¢(X) = PX'Q (X € Mpuu(C)), (2)
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where P and () are nonsingular matrices of appropriate sizes. A linear operator ¢ on

M n(C) satisfies
rank X =1 implies rank ¢(X) =1, (X € My, ,(C))

if and only if ¢ is of classical type. Note that if ¢ preserves rank 1, then this result implies
that ¢ preserves all ranks; hence ¢ is a strong linear preserver in the sense that, for each
X € M, ,(C), ¢(X) has rank 1 if and only if X has rank 1. Minc [10] has given an
elementary proof of the theorem of Marcus and Moyls, and derived from it an elementary
proof of Frobenius’ theorem.

In order for the reader to gain some insight into linear preserver problems (and because
we think this is the best way to prove Frobenius’ theorem), we outline Minc’s deduction
of Frobenius’ theorem from the theorem of Marcus and Moyls. Let ¢ be a linear operator
on M, (C) preserving determinant. There are two main steps.

I. ¢ is invertible: Suppose that ¢(A) = O. There exists a matrix B such that A+ B
is invertible and the rank of B equals n — rank A. Then

det B = det ¢(B) = det(¢(A) + ¢(B)) = det ¢(A + B) = det(A + B) # 0.
So B is nonsingular, and A = O.

II. ¢ is a rank 1 preserver: Let A be a matrix of rank 1. Then A = GFE;1H where
G and H are nonsingular. Let rank ¢(A) = k. By part 1., £ > 1. Then ¢(A) =
U(E;1 + -+ Ex)V. Let B = U(Egi1441 + -+ + Enn)V for some nonsingular
matrices U and V. Then det(z¢(A) + B) = 2¥ det UV, a monomial of degree k. On
the other hand,

det(2¢(A) + B) = det ¢(xA + ¢ *(B)) det(zA + ¢ '(B))
det(G(zEn + G ¢~ (B)H )H))

CI.

Hence k = 1, that is, the rank of ¢(A) equals 1. Therefore ¢ preserves rank 1 and
has classical type. Since ¢ preserves the determinant, det PQ) = 1.

Beasley [1] generalized the theorem of Marcus and Moyls by showing that if k is a
fized positive integer with k < min{m,n} and a linear operator ¢ on M., ,(C) preserves
matrices of rank k, then ¢ is of classical type. There are three corollaries of Beasley’s
theorem worth noting here:

(a) If for a fived positive integer k < min{m,n}, a linear operator ¢ on M.y, ,(C)
satisfies rank ¢(A) = k whenever rank A = k, then rank ¢(A) = rank A for all A.

(b) A linear operator ¢ on M,,(C) preserves nonsingularity if and only if ¢ is of classical
type.



(¢) (Extension of the theorem of Frobenius) A linear operator ¢ on My(C) satisfies
|det ¢(X)| = | det X| for all X if and only if it is of classical type ¢(X) = PXQ or
#(X) = PX'Q where | det(PQ)| = 1.

Assertion (c) follows from (b) since if ¢ preserves the absolute value of the determinant,
then it preserves nonsingularity. Finally, we mention that Marcus and Purves [9] proved
that a linear operator ¢ on My (C) preserves the spectrum if and only if it is of classical
type where the matriz Q = P71,

In the next section we consider the special linear operators that rearrange the elements
of a matrix.

2 Permutation (linear) operators

There are special combinatorial linear operators ¢ whose action is to permute the entries
in the positions of a matrix. Such operators have the property that they determine a
bijection on the set of m by n unit matrices and are determined by this bijection: for each
unit matrix Ej; there is a unique unit matrix Ej; such that ¢(E;;) = Ej. Such linear
operators, called permutation linear operators, were first considered in connection with
linear preserver problems by Zhan [12]. For example, the linear operator ¢ on M,(C)
described by

a b ¢ d [ g
de f|l|—|i a h (3)
g h i b ¢ e

is a permutation operator where, for instance, ¢(Fi3) = Esp (the element in the (1,3)
position moves to the (3,2) position). The linear operators of classical type that are
permutation operators are those of the form ¢(X) = PXQ or ¢(X) = PX'Q where P
and @) are permutation matrices of appropriate orders. Such permutation operators are
called special permutation operators. Zhan [12] used classical results in linear preservers to
show that certain permutation linear preservers are special permutation operators. These
include determinant preservers, spectrum preservers, and rank preservers.

Our goal is to develop a combinatorial approach that leads to generalizations and
some connections with previous studies of a certain hypergraph associated with a square
matrix.

3 Combinatorial approach to permutation linear pre-
servers

Let A = [a;;] be a matrix of 0’s and 1’s of order n, and let
V(A)={Ej:a;=11<ij<n}

be the set of unit matrices in M4(C). We identify such unit matrices E;; with the
corresponding positions (7,j) of A, and thus with the positions occupied by 1’s in A.
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Let ¢ be a permutation operator on M 4(C) which preserves the absolute value of the

determinant:
|det (V)| = [det Y| (Y € M4(C)).

Let ™ be a permutation of {1,2,...,n} such that ajrs #0 (¢ =1,2,...,n), and consider
a matrix Y = [y;;] of order n such that y;; # 0 if and only if m(¢) = j. Thus Y is
in M4(C), the nonzero elements of Y occupy a permutation set of places in Y, and
|det ¢(Y)| = |det Y| = | ITiL; Yirs)|- Since ¢ is a permutation operator on M4(C), the
matrix ¢(V) = [y;;] satisfies: there is a permutation p of {1,2,...,n} such that (i)
rp(1) = Gap(a) = =+ = Gnp() = 1, (1) Y1500, Yopa)s - -+ Ynp(n) L€ Y1p(1)s Y20(2); - < - Ynp(m) 1D
some order, and (iii) y;; = 0 if p(i) # j. We can identify ¢ as a bijection from V(A)
to itself, and then ¢ sends each permutation set of positions (unit matrices) in V(A) to
another permutation set of places.

In [2] the diagonal hypergraph H(A) of the matrix A of 0’s and 1’s is defined to be the
hypergraph with vertex set V(A) whose hyperedges are those sets of n vertices of the form

Jr =00, 7m(7)) : Giny = 1,1 <0 <} (4)

for some permutation 7. A set f, of positions of A satisfying (4) is called a diagonal of
A. The hyperedges of H(A) (the diagonals of A) are in one-to-one correspondence with
the perfect matchings of the bipartite graph BG(A) associated with A in the usual way.!

Let Ao X = [a;;x;;] be a matrix in M 4(C) where the z;; are complex variables. We
sometimes abuse the terminology and refer to the set

X7r = {xmr(z) 1 S [ S n, f7T € H<A)}

as a diagonal of X. Recall that an automorphism of a hypergraph is a bijection between
its vertices that takes hyperedges to hyperedges. The following lemma is a consequence
of our discussion above.

Lemma 3.1 Let A be a matriz of 0’s and 1°s and let ¢ be a permutation operator on
M4(C). If |det Ao X| = |det p(Ao X)| for all X, then ¢ induces an automorphism (also
denoted by ¢) of the diagonal hypergraph H(A) of A.

We can think of

det Ao X = Z EZ12(1)T2r(2) * ** Tnr(n)
m: frEH(A)

as a generating function (for the hyperedges) of the hypergraph #H(A). The nonzero terms
in det A o X correspond bijectively to the hyperedges of H(A) with each term weighted
with 1 or —1 depending on the evenness or oddness of the corresponding permutation. If
in place of the determinant we use the permanent, then

per Ao X = ) Tix)T2r(2) " * * Tnn(n)
m: fr EH(A)
! This bipartite graph has 2n vertices, corresponding to the rows and columns of A, and there is an
edge between vertices corresponding to row ¢ and column j provided a;; # 0.
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also is a generating function of H(A).

Again let A be a (0,1)-matrix of order n. A linear set of the hypergraph H(A) is the
set, of positions of V(A) lying in the same row or column; there are two kinds of linear
sets, row-linear sets and column-linear sets.

First consider the case where A is the matrix J, of all 1’s. Since each pair of po-
sitions in V(J,,) lying in different rows and columns is contained in a hyperedge of H,
an automorphism of #(J,) takes linear sets to linear sets. Since each row-linear set
has a nonempty intersection with each column-linear set (and no two row-linear sets nor
two column-linear sets intersect), it follows that if an automorphism of H(.J,) sends one
row-linear set to a column linear set then each row-linear set is sent to a column linear
set. Thus an automorphism of H(J,) either sends row-linear sets to row-linear sets and
column-linear sets to column-linear sets, or sends row-linear sets to column-linear sets
and column linear sets to row-linear sets. Applying Lemma 3.1 we obtain the following
strengthening of the theorem of Zhan [12] already mentioned.

Theorem 3.2 Let ¢ be a permutation operator on My (C) that preserves the absolute
value of the determinant. Then ¢ is a special permutation operator.

We remark that Theorem 3.2 also follows from corollary (c¢) of Beasley’s theorem and
Lemma 1 of [12].

Since the determinant of a matrix is the product of the elements in its spectrum, and
since the absolute value of the determinant is the product of its singular values, we obtain
the following corollaries.

Corollary 3.3 Let ¢ be a permutation operator on M,(C) that preserves magnitudes of
the spectrum. Then ¢ is a special permutation operator of the form ¢(X) = PAP™!.

Proof. From the discussion above, there are permutation matrices P and () such that
#(X) = PXQ, respectively, ¢(X) = PX'Q, for all X € M, (C). Let D be a diagonal
matrix whose diagonal elements have distinct magnitudes. If ¢(D) = PDQ is not a
diagonal matrix then ¢(D) has at least two eigenvalues with the same magnitude. Hence
¢(D) is a diagonal matrix, and this implies that ¢ permutes the diagonal elements of each
matrix in M, (C). We must have ¢(I,,) = I,,, and therefore Q = P~ 1. &

Corollary 3.4 Let ¢ be a permutation operator on M, (C) that preserves singular values.
Then ¢ 1s a special permutation operator.

We also remark that if a permutation operator on M,,(C) preserves rank 1, then it
must take linear sets to linear sets. Hence such an operator is a special permutation
operator.



4 Linear preservers on coordinate subspaces

Let A = [a;j] be a (0,1)-matrix of order n, with M 4(C) equal to the coordinate subspace
of M,,(C) determined by A. Suppose there is a position (k, ) such that ax = 1 and there
is no diagonal containing the position (k,1). Then for each Y = [y;;] in M 4(C) and each
matrix Y’ obtained from Y by replacing y;; with 0, we have det Y’ = det Y. Also if B is
the matrix obtained from A by replacing ay, with 0, then H(B) = H(A). It is for these
reasons that we now assume that for each (k,l) such that ay = 1, there is a diagonal
of A containing (k,!); equivalently each vertex of H(A) belongs to some hyperedge. In
standard matrix terminology this is equivalent to saying that A has total support. The
matrix A is fully indecomposable provided it has no r by s zero submatrix with r and s
positive integers and r + s = n. A fully indecomposable matrix has total support. A
matrix with total support is, after applying a special permutation operator, the direct
sum of fully indecomposable matrices.

In Theorem 2.4 of [4] it is proved that if two (0,1)-matrices A and B of order n
have isomorphic diagonal hypergraphs, then they have the same number of fully inde-
composable components; in addition, the fully indecomposable components of A can be
paired up with those of B so that corresponding components have isomorphic diagonal
hypergraphs. Thus without loss of generality we shall be assuming that A is fully in-
decomposable. (More information about fully indecomposable matrices and matrices of
total support can be found in [5].)

We now extend Theorem 2.4 of [4]. It is more convenient in formulating our theorem
(and does not reduce the generality) to assume that the vertices of H(A) and H(B) have
been labeled in such a way that the isomorphism on the set of labels is the identity. We
write H(A) C H(B) whenever the vertices of H(A) and of H(B) are assigned labels from
the same set in such a way that each hyperedge of 7 (A) is a hyperedge of H(B).

Theorem 4.1 Let A = [a;;] and B = [b;;] be fully indecomposable (0, 1)-matrices of order
n with the same number of 1’s. Assume that H(A) C H(B). Then H(A) = H(B).

Proof. The result is trivial for n = 1, and we argue by induction on n. Assume to
the contrary that 7(A) is a proper subset of H(B). There is a vertex x such that the set
of hyperedges of H(A) containing x is a proper subset of the set of hyperedges of H(B)
containing x. Without loss of generality we may assume that A and B have the forms:

X T

A= n and B = B

The assumptions imply that H(A’) is a proper subset of H(B'). If A" and B’ are both
fully indecomposable, then we contradict the inductive assumption. So at least one of A’
and B’ is not fully indecomposable. It follows as in the proof of Theorem 2.4 of [4] that
B’ must have more fully indecomposable components than A’. We only argue the case
where A’ is fully indecomposable and B’ is not. We consider two cases:
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Case 1: A’ is fully indecomposable and B’ has total support.
Without loss of generality we may assume that

x| a| p
B=|~y|Bj| O
0|0 | B,

Let S be the union of the sets of elements S,, Sg, Sy, and Ss in «, 5,7, and 9, respectively.
Since B is fully indecomposable, each of these sets is nonempty. There is no hyperedge
of H(B) containing = which contains exactly one element from S. Since A’ is fully
indecomposable, the elements in S cannot belong to A’ and hence belong to the first row
or first column of A. There is also no hyperedge of H(B) that contains an element from
both S, and from S5, and no hyperedge that contains an element from both Sz and S,.
It follows that the elements in S, U Ss are all contained in either the first row of A or
all in the first column of A. Similarly, the elements in Sg U S, are all contained in either
the first row of A or all in the first column of A. Since there is a hyperedge of H(B)
containing both an element of S, and of S, and one containing both an element of Sz
and of S5, the elements of S, U Ss are in the first row of A, and the elements of Sg U S,
are in the first column of A (or the other way around). Hence H(A) has a hyperedge
containing elements from both S, and S;, contradicting the facts that #(B) doesn’t and
H(A) C H(B).

Case 2 : A’ is fully indecomposable and B’ does not have total support.
Without loss of generality we may now assume that

| al| f
B=|~y|B| O
o | W | B

where W # O. Now we can only assert that the sets Sz and S, are nonempty. Let Sy be
the nonempty set of elements in W. As in Case 1, the elements in S belong to the first
row and first column of A, and arguing as in that case, we may assume that the elements
of S, USs are in the first row of A and those in SgU.S, are in the first column of A. Since
there is no hyperedge of H(B) containing an element of both S, and 5,, it now follows
that S, = 0, and similarly that Ss = (). But then, since A is fully indecomposable, an
element of Sy must be in the first column of A. Thus H(A) has a hyperedge containing
an element of Sy and an element of exactly one of Sz and S,. Since H(B) contains no
such hyperedge, we have a contradiction in this case as well.

It follows that H(A) = H(B) and the proof is complete. &

We remark that the Theorem 4.1 is not true if we do not assume that both A and B
are fully indecomposable. For example, if

a uv 0 0 a u 0 O

0 b v v b 0 0
A= 0 0 ¢ w and B = 00 ¢c wl’

z 0 0 d 0 0 2 d



then H(A) is a proper subset of H(B) and A, but not B, is fully indecomposable.
Unlike the case where A = J, (see Theorem 3.2), the hypergraph #(A) in general can

have automorphisms that do not result from special permutation operators. Consider the
matrix ([5]) defined by

a b 0
A=|c d f (5)
0 e g
where the letters a, b, ..., g denote 1’s and at the same time are labels for the positions of

the I’sin A (the vertices of #(A)). The hyperedges of H(A) are: {a,d, g},{a,e, f},{b,c, g}
The bijection that interchanges b and ¢ and fixes all other vertices of H(A) is an automor-

phism of #(A) which does not result from a special permutation operator. Now let X be

the matrix (5) where we think of a, b, ..., g as arbitrary complex numbers. Applying this

permutation operator to X we get

¢(X) =

S o Q
D QU O
Q - O

Obviously, det X = det ¢(X ). Thus there are non-special permutation operators on coor-
dinate subspaces that preserve the (absolute value of) determinant.

More generally, let A and B be two (0,1)-matrices of order n with the same number
of 1’s. We now consider permutation operators ¢ : M4(C) — Mp(C) that preserve that
absolute value of the determinant. An obvious generalization of Lemma 3.1 shows that
¢ induces an isomorphism of the diagonal hypergraph of A onto the diagonal hypergraph
of B. We state this formally in the next lemma.

Lemma 4.2 Let A and B be matrices of 0’s and 1’s and let ¢ be a permutation operator
from M4(C) to Mpg(C). If |det X| = | det ¢(X)| for all X in Ma(C), then ¢ induces an
isomorphism of the diagonal hypergraph H(A) of A onto the diagonal hypergraph H(B)
of B.

Proof. The only additional observation needed is to ensure that the hypotheses imply
that every hyperedge of #(B) is the image under ¢ of a hyperedge of H(A).? But if there
are n vertices in H(A) which do not form a hyperedge but are mapped by ¢ to a hyperedge
of H(B), then there is a matrix X in My4(C) such that 0 = det(X) = det ¢(X) # 0, a
contradiction. &

If a permutation operator preserves the absolute value of the determinant on a coor-
dinate subspace M 4(C), then it follows from Lemma 4.2 that it preserves the permanent.
We now show that the converse holds as well.

2This is automatically satisfied in proving Lemma 3.1 since the number of diagonals cannot change as
A is fixed.



Lemma 4.3 Let A and B be matrices of 0’s and 1’s and let ¢ be a permutation operator
from Ma(C) to Mg(C). If per Ao X = per ¢(A o X) for all X, then |det Ao X| =
| det ¢p(A o X)| for all X.

Proof. Assume that ¢ preserves the permanent of matrices in M4(C). By a special
permutation operator we can move any diagonal to the main diagonal without changing
either the permanent or the absolute value of the determinant. Therefore we can assume
that A and B have all 1’s on their main diagonals, and that ¢ sends the ith element on
the main diagonal of A to the ith element on the main diagonal of B. It then suffices
to show that each set C' of nonzero positions of A corresponding to a permutation cycle
is mapped by ¢ to a set ¢(C') of nonzero positions of B corresponding to a permutation
cycle (necessarily of the same length). Since ¢ preserves the permanent, ¢(C) is a union
of cycles. If there were more than one cycle in this union, then there is a matrix in
M 4(C) with zero permanent which is mapped by ¢ into a matrix in M pg(C) with nonzero
permanent (consider a cycle in the union and elements on the main diagonal). This
contradiction completes the proof. &

Isomorphisms of diagonal hypergraphs of matrices were considered in [4]. If A and B
are fully indecomposable matrices, then a diagonal hypergraph isomorphism ¢ : H(A) —
H(B) that takes linear sets to linear sets is a special permutation operator.

Another example of a non-special permutation operator ¢ from one coordinate sub-
space to another that preserves determinant (and so the diagonal hypergraph) is given
(with the convention previously introduced) by:

0 a b 0 0 0 a b 0 0
c de 0 0 c d e 0 0
A=|f 0 g h i@ |andB=|f 0 g 7 0 (6)
0 05 0 &k 0 0 A O I
000 [ m 0 0 i kE m

It is straightforward to check that the formal determinants (and permanents) of A and B
(i.e. generating functions of H(A) and of H(B)) are identical, and thus that (i) det X =
det ¢(X) for all X € M4(C) and (ii) H(A) = H(B). We note that in this isomorphism,
the non-linear set {b, e, g, h,i} of A becomes a linear set of B, and the linear set {b, ¢, g,j}
of A becomes a non-linear set of B.

The matrix A in (6) is obtained by joining two square matrices A; and A, of order 3
with a common element ¢ to produce a matrix whose order is 5, one less that the sum of
the orders of the two matrices. We write

0 a b g h 1
A:Al*AQ, A1: c d e ,AQZ ] 0 k
f 0 g 0 I m

(Note that the notation used does not indicate the common element used in the join.)
The matrix B in (6) is then the matrix A; * A}, the matrix obtained from the matrix
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A by partial transposition of A on Ay. The matrix C = AT x A, is obtained from A by
partial transposition on A;. The matrix A7 x A7 is the transpose A" of A.

The join operation is an associative operation. As a result we may consider successive
joins and write A; x Ay x ---x Ag. Let A} = A; or AT. Then the matrix A} x A *---x A}
is obtained from A; x As * - - - x Ay by partial transposition. (Note that this implies that
A is a partial transposition of itself.) If A} = AT for all 4, then A} x Ay x---x A} = AT. It
is straightforward to verify that partial transposition is a permutation operator from one
coordinate subspace to another that preserves the determinant, the permanent, and the
diagonal hypergraph. Partial transpositions can be composed with special permutation
operators to produce other permutation operators that preserve the determinant, the
permanent, and the diagonal hypergraph.

A set L of elements of A is a linearizable set [4] provided there is a matrix B with
H(A) = H(B) such that L is a linear set of B. Linearizable sets are investigated in
[4]. In the next lemma we collect properties of linearizable sets which follow easily from
definitions.

Lemma 4.4 Let A be a fully indecomposable matriz of order n, and let L be a linearizable
set of A. Then the following hold:

(a) [L| <n;

(b) For each hyperedge F of H(A), |FNL| =1;

(¢) L is mazimal with respect to the property (b),
)

(d) L is cycle-free (that is, does not contain the set of edges of any cycle of the bipartite
graph BG(A) of A);

(e) Each cycle of BG(A) intesects L in 0 or 2 elements.

In hypergraph terminology, properties (b) and (c) are equivalent to the fact that a
linear set is a mazimal strongly-stable set of the hypergraph #H(A). In general, there are
non-linear strongly stable sets. The following theorem is proved in [2] (see also [5]).

Theorem 4.5 Let A be a (0, 1-matriz of order n with total support. A set S of vertices
of H(A) is a mazimal strongly stable set if and only if there exist nonnegative integers p
and q withp+q=n—1 and a p by q zero submatriz Opy of A such that S is the set of

nonzero positions of A in the complement of Op,: there exist permutation matrices P and
Q such that

Opq A
PAQ = (7)
Ay | Ao

where S is the set of nonzero positions of A in the submatriz Ais.
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If in Theorem 4.5 the set S has cardinality n, then the bipartite graph of A;, has
(n—p)+(n—q) =n-+1 vertices and n edges (corresponding to the nonzero positions
S); hence if S is in addition cycle-free, then this bipartite graph is a tree. Brualdi and
Ross [4] characterized linearizable sets of cardinality n as given in the next theorem. The
number of 1’s in a (0,1)-vector or matrix x is denoted by ||z||.

Theorem 4.6 Let A be a fully indecomposable (0,1)-matriz of order n > 1. Let S be
a set of n positive positions of A. There exists a (0,1)-matriz B and a permutation
operator ¢ : M4(C) — Mp(C) such that ¢ is an isomorphism from H(A) onto H(B) (so
¢ preserves the absolute value of the determinant) that takes S to a linear set in B if and
only if there is a p by q zero submatriz Opq of A with p,q > 0 and p+q =n—1 such that
after row and column permutations to obtain the form given in (7), the following hold:

(i) S is the set of positive positions of the n —p by n — q submatriz A1x complementary
to Opg;

(ii) S is cycle-free;

(iii) For each row x of A, the number of rows y of As such that y < z (entrywise)
equals ||z|| — 1;

(iv) For each column u of A1z, the number of columns v of Ay such that v < u (entrywise)
equals ||u|| — 1.

Moreover, every such permutation operator ¢ 1s a composition of special permutation
operators and partial transpositions.

Note that
Y (2]l =1) = [[Aw|| = (n —p) =n— (n —p) = p,

X
the number of rows of Ay. Since A is fully indecomposable, each row of A, contains at
least two 1’s. If some row y of A, satisfied y < 2’ and y < 2" for two rows 2’ and z” of
Ao, then S would not be cycle-free. Thus when the conditions in Theorem 4.6 hold, each
row y of A, satisfies y < x for exactly one row x of Ajs.
We now obtain a simpler characterization of linearizable sets of cardinality n.

Theorem 4.7 Let A be a fully indecomposable (0,1)-matriz of order n > 1. Let S be a

set of n positive positions of A. There exists a (0,1)-matriz B and a permutation operator
¢ : Ma(C) — Mp(C) such that ¢ is an isomorphism from H(A) onto H(B) that takes S
to a linear set in B if and only if

(a) S is a mazimal strongly stable set of H(A);
(b) Each cycle of the bipartite graph of A has 0 or 2 edges in common with S.

Moreover, every such permutation operator ¢ is a composition of special permutation
operators and partial transpositions.
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Proof. The theorem asserts the equivalence of conditions (i) to (iv) of Theorem 4.6
with conditions (a) and (b). It follows from Lemma 4.4 that (a) and (b) hold for a
linearizable set. Conversely, suppose (a) and (b) hold. Then by Theorem 4.5 there is a p
by ¢ zero submatrix O, of A with p+ ¢ =n — 1 so that (i) and (ii) hold. Without loss
of generality we can assume that A has the form given in (7). As already noted,

(2l = 1) = [|Asl|| = (n — p) = p, (8)

xz

the number of rows of A,. Suppose for some row x of Aj9, the number of rows y of A,
such that y < z is strictly less than ||z|| — 1. Then (8) implies that for a different row
x' of Ajs the number of rows y of Ay with y < x is at least equal to ||z’||. This implies
that A has a ||2'|| by (¢ + (n — g — ||2'||)) = n — ||2'|| zero submatrix. Since both ||2/||
and ¢ + (n — q) — [[2'||) are positive, this implies that A is not fully indecomposable, a
contradiction. Thus (iii), and similarly (iv), of Theorem 4.6 holds. &

It has been conjectured in [4] that if for two (0,1)-matrices A and B of order n,
0 : H(A) — H(B) is an isomorphism, then € is a composition of special permutation
operators and partial transpositions. We additionally conjecture here that Theorems 4.6
and 4.7 hold without the assumption that S has cardinality n. To prove this conjecture
one cannot simply replace a 0 of A with a 1 to get a set S’ of cardinality n satisfying the
conditions of Theorem 4.7 (or therefore those of Theorem 4.6).

For example, let

a b 0 0fe
0 0 c d|f
A=1|p g r s|0
0 0 uv|0
z y 0 00

The set S = {a,b,c,d} satisfies (a) and (b) of Theorem 4.7 and there is a unique zero
submatrix, the sum of whose dimension equals 4, containing S in its complement. Re-
placing any 0 in the upper left 2 by 4 submatrix containing S with g, we obtain a matrix
A" in which S" = {a,b,c,d, g} is a maximal strongly stable set. But the bipartite graph
of every such A’ contains a cycle intersecting S’ in 4 elements.

On the other hand, starting with A and applying special permutation operators and
partial transpositons we get:

a b 0 0 e a b 0 0 e a b e 00
0 0 ¢ d f xry 0 00 ry 0 00
pqr s O0|l—=|pqgr s O0|l—=>|pq 0 1r s
0 0uwv O 0 0 ¢cd f 00 f ¢ d
z y 0 0 0 0 0 wowv O 0 0 0 u w

13



a b e 0 0 a b 0 e 0

z y 0 0 0 0 0 ¢cr wu
—|p ¢ 0 f O0O|—=]1004d s v|=A4A.

0 0r c wu z y 0 0 0

0 0 s dw p q f 00

Now replacing the 0 in the (1, 3) position of A’ with g we obtain a set S’ of cardinality 5
satisfying (a) and (b). We can now apply Theorem 4.7 and conclude that S is a linearizable
set of A and that by special permutation operators and partial transpositions we can from
A get to a matrix in which S is a linear set.
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