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Abstract

The Aztec diamond of order n is a certain configuration of 2n(n+ 1) unit squares.
We give a new proof of the fact that the number Πn of tilings of the Aztec diamond
of order n with dominoes equals 2n(n+1)/2. We determine a sign-nonsingular matrix
of order n(n + 1) whose determinant gives Πn. We reduce the calculation of this
determinant to that of a Hankel matrix of order n whose entries are large Schröder
numbers. To calculate that determinant we make use of the J-fraction expansion of
the generating function of the Schröder numbers.

1 Introduction

Let n be a positive integer. The Aztec diamond of order n is the union ADn of all the unit

squares with integral vertices (x, y) satisfying |x|+|y| ≤ n+1. The Aztec diamond of order

1 consists of the 4 unit squares which have the origin (0, 0) as one of their vertices. The

Aztec diamonds of orders 2 and 4 are shown in Figure 1. Aztec diamonds are invariant

under rotation by 90 degrees, and by reflections in the horizontal and vertical axes. The

part of the Aztec diamond of order n that lies in the positive quadrant consists of a staircase

pattern of n, n − 1, . . . , 1 unit squares. Thus the Aztec diamond of order n contains

4

(
n∑

i=1

i

)
= 2n(n + 1)

unit squares.

The number Πn of tilings of the Aztec diamond of order n with dominoes is 2n(n+1)/2

and this was first calculated in [6, 7], with four proofs given. Other calculations of these
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tilings are given in [4], [12], and [2]. Ciucu [4] derives the recursive relation Πn =

2nΠn−1, n ≥ 2 which, with π1 = 2, immediately gives Πn = 2n(n+1)/2. Kuo [12] used

a method he called graphical condensation (inspired by a classical determinant technique

of Dodgson [5] called condensation), to derive the recursion

ΠnΠn−2 = 2Π2
n−1, (n ≥ 3),

from which, with Π1 = 2 and Π2 = 8, the formula for Πn also follows immediately. In [8]

the number of tilings of Aztec diamonds with defects are counted. Additional references

on these and related questions can be found in the references cited here.

Tilings of Aztec diamonds are in one-to-one correspondence with the perfect matchings

of Aztec graphs. First recall that a perfect matching in a graph is a collection Θ of edges

such that each vertex of the graph is a vertex of exactly one edge in Θ. The Aztec graph

AGn corresponding to the Aztec diamond ADn is the graph whose vertices are the squares

of the Aztec diamond with two squares joined by an edge if and only if they share a side

(and so can be covered by one domino). The number of vertices of AGn equals the number

of squares 2n(n+1) of ADn, and thus AGn is a graph of order 2n(n+1). A drawing of the

graph AGn can be obtained from a drawing of ADn by taking the centers of the squares of

ADn as the vertices and joining two centers by a line segment provided the corresponding

squares share a side. The graph AG4 is obtained from AD4 in this way in Figure 2.

Using the black-white checkerboard coloring of ADn, we see that the Aztec graph

AGn is a bipartite graph (let the vertex take the color of the square containing it). A bi-

adjacency matrix Bn of AGn (formed by choosing an ordering of the black vertices and an

ordering of the white vertices) is an n(n+1) by n(n+1) (0, 1)-matrix and completely char-

acterizes AGn and ADn. The perfect matchings of AGn are in one-to-one correspondence

with the permutation matrices P satisfying P ≤ Bn, where the inequality is entrywise.

Thus the number Πn of tilings of ADn equals the permanent of Bn defined by

per(Bn) =
∑

σ

n(n+1)∏

i=1

biσ(i),

where the summation extends over all permutations σ of {1, 2, . . . , n(n + 1)}. Hence

per(Bn) = 2n(n+1)/2.

Let G be a bipartite graph with bipartition {X, Y } having a perfect matching Θ.

Associated with G and each choice of Θ is a digraph D(G, Θ). Let Θ = {m1, m2, . . . , mp},
where mi = {xi, yi}, (i = 1, 2, . . . , p) and X = {x1, x2, . . . , xp} and Y = {y1, y2, . . . , yp}.
The vertices of D(G, Θ) are m1, m2, . . . , mp, and there is an arc from mr = {xr, yr} to

ms = {xs, ys} in D(G, Θ) if and only r 6= s and there is an edge {xr, ys} in G joining

xr and ys. Let B be the bi-adjacency matrix of G with rows corresponding, in order, to

x1, x2, . . . , xp and columns corresponding, in order, to y1, y2, . . . , yp. The elements on the
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main diagonal of B all equal 1, and the matrix B − In is the adjacency matrix of the

digraph D(G, Θ).1 The number of perfect matchings of G, the permanent of B, is the

same as the number of collections of pairwise vertex disjoint directed cycles of D(G, Θ).2

This follows since any collection of pairwise disjoint directed cycles of D(G, Θ) corresponds

to a permutation matrix P ′ contained in some principal submatrix B′ of B, and P ′ can

be uniquely extended to a permutation matrix P using the 1’s on the main diagonal of

the complementary submatrix B′′ of B′ in B.

A square (0, 1,−1)-matrix is sign-nonsingular, abbreviated as SNS, provided there is

a nonzero term in its standard determinant expansion and all nonzero terms have the

same sign. Let B = [bij ] be a (0, 1)-matrix of order p with a nonzero term in its standard

determinant expansion, and suppose it is possible to replace some of its 1’s with −1’s in

order to obtain an SNS-matrix B̂ = [b̂ij ]. We call B̂ an SNS-signing of B. It follows that

| det(B̂)| = per(B).

Thus per(B) can be computed using a determinant calculation. The advantage is that,

unlike the permanent, there are efficient algorithms to calculate the determinant. This

idea was used by Kastelyn [9, 10] in solving the dimer problem of statistical mechanics (see

[3] for history and a thorough development of SNS-matrices). Assume that Ip ≤ B and,

without loss of generality, that B̂ has all −1’s on its main diagonal.3 Since the product

of the main diagonal elements equals (−1)p, B̂ is an SNS-matrix if and only if all the

nonzero terms in its standard determinant expansion have sign (−1)p. Let D(B̂) be the

signed digraph of B̂ with vertices {1, 2, . . . , p} and an arc from i to j of sign b̂ij provided

i 6= j and b̂ij 6= 0. Define the sign of a directed cycle to be the product of the signs

of its arcs. The theorem of Bassett, Maybee, and Quirk [1] asserts, and an elementary

calculation shows [3], that B̂ is an SNS-matrix if and only if the sign of every directed

cycle of D(B̂) is −1.

In this paper we consider a specific perfect matching Θ of the bipartite graph AGn

leading to a digraph which we call an Aztec digraph. We then determine an SNS-signing

B̂n of the associated bi-adjacency matrix Bn. We evaluate the determinant of B̂n by using

the technique of the Schur complement, with respect to a strategically chosen principal

submatrix. This leads to a matrix whose elements are the (large) Schröder numbers, and

then to the computation of a Hankel determinant of order n (in contrast to the order

n(n + 1) of B̂n. We then use a J-fraction expansion to calculate the Hankel determinant.

The result is a new and interesting proof that the number of tilings of the Aztec diamond
1We emphasize that D(G, Θ) and B∗ depend on the choice of perfect matching Θ.
2We include here the empty collection of directed cycles which corresponds to the perfect matching Θ,

equivalently, in the permanent calculation, to In ≤ B.
3This can be accomplished first by multiplication on the left by a permutation matrix and then by

multiplication by a diagonal matrix whose main diagonal elements are 1 or −1, without affecting the
sign-nonsingularity property.
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ADn equals 2n(n+1)/2. Further, the proof’s technique is, we think, potentially transferable

to similar combinatorial problems.

2 The Aztec Digraph and SNS-Matrix

Let n be a positive integer. We define the dual-Aztec diamond of order n to be the

union ADd
n of all the unit squares with vertices (1/2)(x, y) where x and y are odd integers

satisfying |x| + |y| ≤ 2n. The centers of the squares of the Aztec diamond of order n are

the vertices of the squares of the dual-Aztec diamond of order n. The Aztec graph AGn of

order n can be identified as the vertex-edge graph of the dual-Aztec diamond AGd
n, that

is, the vertices of AGn are the vertices of the squares of ADd
n and the edges are the sides

of its squares. Thus Πn equals the number of perfect matchings of the bipartite graph

AGn as realized in this way. We may further identify the vertices of AGn as the set

Vn = {(x, y) : x and y odd integers satisfying |x| + |y| ≤ 2n},

and the edges as the set

En = E′
n ∪ E′′

n,

where

E′
n = {{(x, y), (x, v)} : (x, y), (x, v) ∈ Vn, |y − v| = 2}

and

E′′
n = {{(x, y), (u, y)} : (x, y), (u, y) ∈ Vn, |x − u| = 2}.

Consider the subset Θ
(∗)
n of E′′

n defined by

Θ(∗)
n = ∪{Θ(y)

n : y = ±1,±3, . . . ,±(2n − 1)} (1)

where for y = ±1,±3, . . . ,±(2n − 1),

Θ(y)
n = {{(x, y), (x + 2, y)} : x = −(2n − |y|),−(2n − |y| − 4), . . . , (2n − |y| − 6), (2n − |y| − 2)} .

(2)

Then the edges of Θ
(∗)
n constitute a perfect matching of AGn, and we call Θ

(∗)
n the Aztec

matching of order n. We partition Θ
(∗)
n into three sets

Θ(±1)
n = Θ(1)

n ∪ Θ(−1)
n ,

Θ(+)
n = Θ(3)

n ∪ Θ(5)
n ∪ · · · ∪ Θ(2n−1)

n , and

Θ(−)
n = Θ(−3)

n ∪ Θ(−5)
n ∪ · · · ∪ Θ(−2n+1)

n .

The Aztec digraph of order n is defined to be the digraph D(AGn, Θ
(∗)
n ) with vertex set

Θ
(∗)
n . The Aztec digraph of order 4 is pictured in Figure 5, as it is obtained from the Aztec
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graph of order 4 and the Aztec matching Θ
(∗)
4 . There is a natural partition of the arcs of

ADn which is clear from the picture of AD4 given in Figure 5. There are n two-way arcs

(so 2n arcs) which are pictured vertically; we refer to these arcs as the north-south arcs,

and sometimes distinguish them as North and South. Above these there are arcs which

go East, NorthEast, and SouthEast; we refer to these arcs as the easterly arcs. Below

are the arcs which go West, NorthWest, and SouthWest; we refer to these arcs as the

westerly arcs. There are no directed cycles made up entirely of easterly arcs and none

made up entirely of westerly arcs. Thus every directed cycle uses at least two north-south

arcs. In fact, it is easy to see that each directed cycle uses exactly one North arc and

exactly one South arc. Hence if we give the sign −1 to the North arcs and the sign +1

to every other arc, then the sign of each directed cycle of ADn is −1. This gives an SNS-

signing B̂n of the bi-adjacency matrix Bn of the Aztec diamond of order n corresponding

to the Aztec matching Θ∗
n. Hence B̂n is an SNS-matrix which we call the nth order Aztec

SNS-matrix.4 Corresponding to the partition Θ
(∗)
n = Θ

(±1)
n ∪ Θ

(+)
n ∪ Θ

(−)
n , there are three

induced subdigraphs D(AGn, Θ
(±1)
n ) D(AGn, Θ

(+)
n ) D(AGn, MΘ

(−)
n ), with the latter two

subdigraphs acyclic and isomorphic.

Using our notation, we partially summarize as follows.

Theorem 2.1 For each n ≥ 1, Πn = (−1)n(n+1) det(B̂n) = det(B̂n). ♣

While our definition determines the Aztec digraph, we need to choose a particular

ordering of the matching edges in Θ
(∗)
n in order to uniquely specify its bi-adjacency matrix

An.5

We now specify an ordering of the matching edges in Θ
(∗)
n . We first take the edges

in Θ−1
n in the order reverse of that specified by (2) and then the edges in Θ1

n again in

the order reverse of that specified by (2). The edges in Θ
(−)
n come next followed by the

edges in Θ
(+)
n . It remains to specify an ordering for the edges in these two sets, and we do

this next. First consider Θ
(−)
n . We consider the natural order of the edges in each Θy

n as

specified in (2) by increasing values of x. The edges in Θ
(−)
n are in a triangular formation

according to the values of y = −3,−5, . . . ,−(2n − 1). We select them in the order: last

edge in Θ−3
n , last edge of Θ−5

n , second-from-last edge in Θ−3
n , last edge in Θ−7

n , second-

from-last edge in Θ−5
n , third-from-last edge in Θ−3

n , last edge in Θ−9
n , etc. We specify an

ordering for the edges in the set Θ
(+)
n in a similar way. In Figure 5, the edges of the Aztec

matching are labeled from 1 to 20 according to the prescription given. With this labeling,

the SNS-matrix B̂4 is given by:

4B̂n is a matrix of order n(n + 1).
5Otherwise, the bi-adjacency matrix is only determined up to permutation similarity, that is, PAnP T

where P is a permutation matrix.

5






−1 1 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 −1 1 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 −1 1 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 1 −1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 −1 0 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 −1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 1 1 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 −1 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 1 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1




.

Let N =
(n
2

)
. For n ≥ 2, let Pn be the (0, 1)-matrix of order n which has 1’s on its

superdiagonal and 0’s elsewhere, let Qn be the back-diagonal permutation matrix of order

n (with 1’s in positions (1, n), (2, n− 1), . . . , (n, 1) and 0’s elsewhere), and let MN denote

an upper-triangular (0, 1,−1)-matrix of order N with −1’s on the diagonal and 0’s and 1’s

off the main diagonal in certain positions. Also let Xn,N and YN,n denote certain (0, 1)-

matrices of sizes n by N and N by n, respectively. Then the nth order Aztec SNS-matrix

has the form:

B̂n =




−In + Pn −In Xn,N On,N

In −In + P T
n On,N QnXn,N

YN,n ON,n MN ON

ON,n YN,nQn ON MN




. (3)
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Here Pn corresponds to the East arcs in the subdigraph D(AGn, Θ
(±1)
n ) while P T

n corre-

sponds to the West arcs in this subdigraph. The third diagonal block MN equals −IN +UN

where UN is the adjacency matrix of D(AGn, Θ
(−)
n ), and the fourth diagonal block MN

equals −IN + Un where UN is also the adjacency matrix of D(AGn, Θ
(+)
n ). The matrices

Xn,N and YN,n correspond to the arcs from Θ
(−1)
n to Θ

(−)
n and from Θ

(−)
n to Θ

(−1)
n , respec-

tively. The matrices QnXn,N and YN,nQn correspond in a similar way to the arcs between

Θ
(1)
n and Θ

(+)
n .

3 Schur Complements and Schröder Numbers

We begin by recalling the idea of a Schur complement and the resulting Schur determinant

formula.

Let A be a matrix of order n partitioned as in

A =

[
A1 A12

A21 A2

]

where A1 is a nonsingular matrix of order k. Let

C =

[
Ik O

−A21A
−1
1 In−k

]
.

Then

CA =

[
A1 A12

O A2 − A21A
−1
1 A12

]
,

Since det(C) = 1, it follows that

det(A) = det(A1) det(A2 − A21A
−1
1 A12). (4)

The matrix A2 − A21A
−1
1 A12 is called the Schur complement of A1 in A, and the deter-

minant formula (4) is Schur’s formula. As seen by our calculation, the Schur complement

results by adding linear combinations of the first k rows of A to the last n − k rows.

Next we recall the sequence of (large) Schröder numbers (r(n) : n ≥ 0) which begins

as

1, 2, 6, 22, 90, 394, 1806, . . . .

The Schröder number r(n) is defined to be the number of lattice paths in the xy-plane

which start at (0, 0), end at (n, n), and use horizontal steps (1, 0), vertical steps (0, 1), and

diagonal steps (1, 1), and never pass above the line y = x. Such paths are often called

Schröder paths. The sequence (s(n) : n ≥ 1) of (small) Schröder numbers begins as

1, 1, 3, 11, 45, 197, 903, . . . .
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We have

r(n) = 2s(n + 1) for n ≥ 1 with r(0) = 1. (5)

The generating function for the small Schröder numbers s(n) is

∞∑

n=1

s(n)xn =
1 + x −

√
1 − 6x + x2

4
,

and they satisfy the recursive formula

(n + 1)s(n + 1) − 3(2n − 1)s(n) + (n − 2)s(n − 1) = 0 (n ≥ 2), s(1) = 1, s(2) = 1.

The large Schröder numbers then satisfy

(n + 3)r(n + 2) − 3(2n + 3)r(n + 1) + nr(n) = 0 (n ≥ 0), r(0) = 1, r(1) = 2,

and it follows from (5) that their generating function is

∞∑

n=0

r(n)xn =
1 − x −

√
1 − 6x + x2

2x
.

For these relationships and other combinatorial interpretations of Schröder numbers, one

may consult [13, 14, 15].

4 Schur Complementation of the Aztec SNS-matrix

Consider the nth order Aztec SNS-matrix B̂n and its principal, nonsingular submatrix

MN⊕MN . Taking the Schur complement of MN⊕MN in B̂n and using Schur’s determinant

formula, we get that

det(B̂n) = det(MN )2 det

[
En −In

In Fn

]
= det

[
En −In

In Fn

]
. (6)

where

En = −In + Pn − Xn,NM−1
N YN,n, (7)

and

Fn = −In + P T
n − QnXn,NM−1

N YN,nQn. (8)

Recall that a Toeplitz matrix T (c−(n−1), . . . , c−1, c0, c1, . . . , cn−1) is a matrix T = [tij ]

of order n such that tij = cj−i for i, j = 1, 2, . . . , n. For example,

T (c−3, c−2, c−1, c0, c1, c2, c3) =




c0 c1 c2 c3

c−1 c0 c1 c2

c−2 c−1 c0 c1

c−3 c−2 c−1 c0


 .
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Lemma 4.1 For n ≥ 0, the matrix Fn is the lower triangular Toeplitz matrix

T (r(n − 2), . . . , r(2), r(1), r(0) + 1,−1, 0, 0, . . . , 0)

of order n, where r(0), r(1), . . . , r(n−1) are large Schröder numbers. The matrix En equals

F T
n = T (0, 0, . . . , 0,−1, r(0) + 1, r(1), r(2), . . . , r(n − 2)).

Proof. First we consider the matrix MN = −IN + UN = −(IN − UN ) where UN is

the adjacency matrix of D(AGn, Θ
(−)
n ). Since UN is a strictly upper triangular matrix (so

a nilpotent matrix) that records the arcs from Θ
(−)
n to Θ

(−)
n , we have

M−1
N = (IN − UN )−1 = −

(
IN + UN + U2

N + · · · + UN−1
N

)
.

Hence the element of MN in position (k, l) is 0 if k > l, −1 if k = l, and the number of

paths in D(AGn, Θ
(−)
n ) from its kth vertex to its lth vertex if k < l. Since Xn,N records

the arcs from Θ
(−1)
n to Θ

(−)
n and YN,n records the arcs that go the other way, it follows

that

Xn,NM−1
N YN,n

records the number of paths from the ith vertex of Θ
(−1)
n to its jth vertex. This number is

0 if j ≤ i and equals the kth Schröder number r(k) if j > i and k = j−i−1. Multiplying on

the left and right by the back-diagonal matrix Qn reorders the rows and columns from last

to first. The matrix P T
n has 1’s in the subdiagonal and 0’s elsewhere. Adding −In + P T

n ,

we get the Toeplitz matrix Fn = T (r(n − 2), . . . , r(2), r(1), r(0) + 1,−1, 0, 0, . . . , 0). That

En = F T
n follows by symmetry. ♣

For the case n = 4, corresponding to Figure 5, the Toeplitz matrix F4 in Lemma 4.1 is




−1 0 0 0
2 −1 0 0
2 2 −1 0
6 2 2 −1


 .

By (6) and Lemma 4.1, we have reduced the calculation of the determinant of the

SNS-matrix B̂n of order n(n + 1) to the calculation of a determinant of a matrix of order

2n:

det(B̂n) = det

[
F T

n −In

In Fn

]
.

We further reduce the calculation to the determinant of a matrix of order n:

det(B̂n) = det

[
F T

n −In

In Fn

]
= det

[
In On

−(F T
n )−1 In

]
det

[
F T

n −In

In Fn

]
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= det

[
F T

n −In

On Fn + (F T
n )−1

]

= det(F T
n ) det

(
Fn + (F T

n )−1
)

= (−1)n det
(
Fn + (F−1

n )T
)

.

In order to evaluate this last determinant, we need to compute F−1
n . To do this we

first derive a recurrence relation for the Schröder numbers r(n).

Lemma 4.2 The Schröder numbers (r(n) : n ≥ 0) satisfy

r(n) = r(n − 1) +
n−1∑

k=0

r(k)r(n − 1 − k) for n ≥ 1, with r(0) = 1.

Proof. The Schröder number r(n) equals the number of lattice paths γ that begin at

(0, 0) and end at (n, n) which use steps of the type (1, 0), (0, 1), and (1, 1), and never pass

above the line y = x. There are r(n − 1) such paths γ1 that begin with the diagonal step

(1, 1). The remaining paths γ2 begin with the horizontal step (1, 0). There is a first value

of x between 1 and n such that a path γ2 crosses the line y = x−1, necessarily by a vertical

step (0, 1). The number of such paths γk
2 that cross at x = k equals r(k−1)r(n−1−(k−1)).

Hence

|{γ}| = |{γ1}| +
n∑

k=1

|{γk
2}|

= r(n − 1) +
n∑

k=1

r(k − 1)r(n − 1 − (k − 1))

= r(n − 1) +
n−1∑

k=0

r(k)r(n − 1 − k).

♣

Lemma 4.3 For n ≥ 2, the inverse of the Toeplitz matrix

Fn = T (r(n − 2), . . . , r(2), r(1), r(0) + 1,−1, 0, 0, . . . , 0)

of order n is the Toeplitz matrix

−T (r(n−1), . . . , r(2), r(1), r(0), 0, 0, . . . , 0) = T (−r(n−1), . . . ,−r(2),−r(1),−r(0), 0, 0, . . . , 0).
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Proof. We prove the lemma by induction on n. The relation is true for n = 2 since

[
−1 0

2 −1

]−1

=

[
−1 0
−2 −1

]
.

We now proceed by induction assuming the relation holds for some n ≥ 2. We have that

Fn+1 =




Fn

0
0
...
0

r(n − 1) · · · r(1) r(0) + 1 −1




and also

Fn+1 =




−1 0 0 · · · 0

r(0) + 1
r(1)

...
r(n − 1)

Fn




.

Computing the inverses of Fn+1 using each of these forms, we get

F−1
n+1 =




F−1
n

0
0
...
0

xT −1




, (9)

and

F−1
n+1 =




−1 0 0 · · · 0

y F−1
n


 , (10)

where x and y are vectors of size n. Two applications of the inductive assumption now

imply that we need only show that the element α of F−1
n+1 in position (n + 1, 1) equals the

Schröder number r(n). Since F−1
n+1Fn+1 = In+1 and xT = (α, r(n − 1), . . . , r(1), r(0)), we

have

α = r(n − 1)(r(0) + 1) + r(n − 2)r(1) + · · · + r(1)r(n − 2) + r(0)r(n − 1)

= r(n − 1) +
n−1∑

k=0

r(k)r(n − 1 − k). (11)

By Lemma 4.2, α = r(n). ♣
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We now have that det(B̂n) = (−1)n det
(
Fn + (F−1

n )T
)

where Fn + (F−1
n )T equals the

sum of two Toeplitz matrices:

T (r(n−2), . . . , r(2), r(1), r(0)+1,−1, 0, 0, . . . , 0)+T (0, 0, . . . , 0,−r(0),−r(1),−r(2), . . . ,−r(n−1)),

and hence equals the Toeplitz matrix

T (r(n − 2), . . . , r(2), r(1), r(0) + 1,−r(0) − 1,−r(1),−r(2), . . . ,−r(n − 1)). (12)

For example, when n = 4 the matrix (12) whose determinant we need to calculate is




−2 −2 −6 −22
2 −2 −2 −6
2 2 −2 −2
6 2 2 −2


 ,

which, upon reordering the rows from last to first, becomes the Hankel matrix




6 2 2 −2
2 2 −2 −2
2 −2 −2 −6

−2 −2 −6 −22


 .

In general, a Hankel matrix results from a Toeplitz matrix by reordering the rows from

last to first. Specifically, the Hankel matrix H(a1, a2, . . . , a2n−1) is the matrix H = [hij ]

of order n such that hij = ai+j−1 for i, j = 1, 2, . . . , n. Note that H(a1, a2, . . . , a2n−1) and

H(a2n−1, . . . , a2, a1) are related by a simultaneous permutation of rows and columns and

thus have equal determinants. The Hankel matrix H(c−(n−1), . . . , c−1, c0, c1, . . . , cn−1) re-

sults from the Toeplitz matrix T (c−(n−1), . . . , c−1, c0, c1, . . . , cn−1) by reordering the rows

from last to first, and thus their determinants differ only by a factor of (−1)n(n−1)/2. Thus

by Theorem 2.1,

Πn = det(B̂n) = (−1)n det
(
Fn + (F−1

n )T
)

= (−1)n(n+1)/2 det (H(r(n − 2), . . . , r(1), r(0) + 1,−r(0) − 1,−r(1), . . . ,−r(n − 1))) .

(13)

We now turn to the evaluation of the determinant in (13). First we recall Dodgson’s

rule [5] for determinant calculation (see also [17]).6 For a matrix A of order n, A(i|j)
denotes the matrix obtained from A by deleting row i and column j, and A(i, j|k, l)

denotes the matrix obtained from A by deleting rows i and j, and columns k and l.

6As alluded to in the introduction, Kuo [12] derived a formula for computing the number of perfect
matchings in a planar bipartite graph which bears a strong resemblance to Dodgson’s rule for determinants.
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Lemma 4.4 Let A = [aij] be a matrix of order n. Then

det(A) det(A(1, n|1, n)) = det(A(1|1)) det(A(n|n)) − det(A(1|n)) det(A(n|1)).

Applying Lemma 4.4 to a Hankel determinant we get the following identity.

Corollary 4.5

det(H(a1, a2, . . . , a2n−1)) det(H(a3, a4, . . . , a2n−3)) =

det(H(a3, a4, . . . , a2n−1)) det(H(a1, a2, . . . , a2n−3)) − det(H(a2, a3, . . . , a2n−2))
2.

♣

In order to evaluate the determinant in (13) we shall need to evaluate a more general

Hankel determinant of Schröder numbers r(n). For j, k ≥ 1, we define a matrix H(j, k) of

order k + j by

Hj,k = H(r(2k − 1), r(2k − 2), . . . , r(1), r(0) + 1,−r(0)− 1,−r(1),−r(2), . . . ,−r(2j − 2)).

In addition, we define matrices H0,k of order k and Hj,0 of order j by

H0,k = H(r(2k − 1), . . . , r(2), r(1)) and Hj,0 = H(−r(0) − 1,−r(1), . . . ,−r(2j − 2)).

To evaluate the determinants of the matrices Hk,j , we require the following result (The-

orem 11 in [11] and Theorem 51.1 in [16]) which gives a method for computing Hankel

determinants if one can find a certain continued fraction known as a J-fraction.

Lemma 4.6 Let (µi; i ≥ 0) be a sequence of numbers with generating function
∑∞

n=0 µnxn

which can be expanded as a J-fraction:

∞∑

n=0

µnxn =
µ0

1 + a0x − b1x2

1+a1x− b2x2

1+a2x−···

.

Then

det(H(µ0, µ1, . . . , µ2n−2)) = µn
0bn−1

1 bn−2
2 · · · b2

n−2bn−1.

We first evaluate the determinants of H0,k, and Hj,0.

Lemma 4.7 For positive integers j and k,

det(H0,k) = 2k(k+1)/2 and det(Hj,0) = (−1)j2j(j+1)/2.
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Proof. As previously mentioned, the generating function for the Schröder numbers

(r(n); n ≥ 0) is
∞∑

n=0

r(n)xn =
1 − x −

√
1 − 6x + x2

2x
.

Hence the generating function for the sequence of numbers (r′(n) : n ≥ 0), where r′(0) =

r(0) + 1 = 2 and r′(n) = r(n) for n ≥ 1, is

f(x) =
∞∑

n=0

r′(n)xn =
1 + x −

√
1 − 6x + x2

2x
.

Also the generating function for the sequence of numbers (r(n + 1) : n ≥ 0) equals

g(x) =
∞∑

n=0

r(n + 1)xn =
1 − 3x −

√
1 − 6x + x2

2x2
.

We have det(H0,k) = det(H(r(1), r(2), . . . , r(2k−1)) and det(Hj,0) = (−1)j det(H(r(0)+

1, r(1), . . . , r(2j−2)). Thus we seek a J-fraction expansion of the generating functions f(x)

and g(x). We first note that w = g(x) is a solution of the equation x2w2−(1−3x)w+2 = 0

so that w(1 − 3x − x2w) = 2. Therefore,

w =
2

1 − 3x − x2w

w =
2

1 − 3x − 2x2

1−3x−x2w

w =
2

1 − 3x − 2x2

1−3x− 2x2

1−3x−x2w

· · ·
w =

2

1 − 3x − 2x2

1−3x− 2x2

1−3x− 2x2

1−3x−···

Thus in the J-fraction expansion as given in Lemma 4.6, we have µ0 = b1 = b2 = b3 =

· · · = 2, and hence

det(H(r(1), r(2), . . . , r(2k − 1)) = 2
∑k

i=1
i = 2k(k+1)/2.

Now we note that

f(x) =
1 + x −

√
1 − 6x + x2

2x

14



=
8x

2x(1 + x +
√

1 − 6x + x2)

=
2

1+x
2 +

√
1−6x+x2

2

=
2

1+x
2 − x2w + 1−3x

2

=
2

1 − x − x2w
.

Inserting the J-fraction expansion of w, we obtain the J-fraction expansion of f(x), and

again µ0 = 2 = b1 = b2 = b3 = · · ·. Hence

det(H(r(0) + 1, r(1), . . . , r(2j − 2)) = 2
∑j

i=1
i = 2j(j+1)/2.

This completes the proof of the lemma. ♣

We now evaluate the determinants of the matrices Hj,k.

Lemma 4.8 For nonnegative integers k and j with k + j ≥ 1, we have

det (Hj,k) = (−1)j2(k+j)(k+j+1)/2. (14)

Proof. We prove (14) by induction on l = j + k. If k = 0 or j = 0, (14) follows from

Lemma 4.7. We now assume that k, j ≥ 1. If k = j = 1, then

detH1,1 = det

[
2 2
2 −2

]
= −8 = (−1)122(2+1)/2.

Now assume that l ≥ 3. By Corollary 4.5 we have that det(Hj,k) det(Hj−1,k−1) equals

det(Hj,k−1) det(Hj−1,k)−det(H(r(2k−2), . . . , r(1), r(0)+1,−r(0)−1, . . . ,−r(2j−3))2 =

det(Hj,k−1) det(Hj−1,k) − det(Hk,j−1)
2,

the last since

det(H(r(2k − 2), . . . , r(1), r(0) + 1,−r(0) − 1, . . . ,−r(2j − 3))

= det(H(−r(2j − 3), . . . ,−r(0) − 1, r(0) + 1, . . . , r(2k − 2))).

Using the induction assumption, we now get

det(Hj,k)(−1)j−12(l−2)(l−1)/2 = (−1)j2l(l−1)/2(−1)j−12(l−1)l/2 −
(
(−1)k2l(l−1)/2

)2

= −2l(l−1)/2 − 2l(l−1)/2 = −2l(l−1)+1.
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Therefore det(Hj,k) = (−1)j2l(l+1)/2 completing the induction. ♣

We now complete our proof that Πn = 2n(n+1)/2.

Theorem 4.9 For n ≥ 1,

det(B̂n) = 2n(n+1)/2.

Proof. By (13)

det(B̂n) = (−1)n(n+1)/2 det (H(r(n − 2), . . . , r(1), r(0) + 1,−r(0) − 1,−r(1), . . . ,−r(n − 1))) .

For n an odd integer,

H(r(n − 2), . . . , r(1), r(0) + 1,−r(0) − 1,−r(1), . . . ,−r(n − 1)) = H(n−1)/2,(n+1)/2

so that by Lemma 4.8, its determinant equals

(−1)(n+1)/22n(n+1)/2.

For n an even integer,

det (H(r(n − 2), . . . , r(1), r(0) + 1,−r(0) − 1,−r(1), . . . ,−r(n − 1)))

equals

(−1)n det (H(r(n − 1), . . . , r(1), r(0) + 1,−r(0) − 1, r(1), . . . , r(n − 2))) ,

which equals the determinant of Hn/2,n/2. Hence

det (H(r(n − 2), . . . , r(1), r(0) + 1,−r(0) − 1,−r(1), . . . ,−r(n − 1)))

equals

(−1)n/22n(n+1)/2.

Therefore

det(B̂n) = (−1)n(n+1)/2(−1)dn/2e2n(n+1)/2 = 2n(n+1)/2.

♣

Since Πn equals det(B̂n), we immediately get our desired evaluation.

Corollary 4.10 The number Πn of tilings of the Aztec diamond of order n satisfies

Πn = 2n(n+1)/2.

♣
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