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ing sign matrices. We characterize the row (column) sum vectors
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number of nonzero entries and characterize the case of equality. We

also study symmetric alternating sign matrices, in particular, those
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ber of edges in such graphs. We also consider n× n alternating sign

matrices whose patterns are maximal within the class of all n × n

alternating sign matrices.
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1. Introduction

An alternating sign matrix, henceforth abbreviated ASM, is an n × n (0, +1, −1)-matrix such that

the +1s and −1s alternate in each row and column, beginning and ending with a +1. For example,
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0 0 +1 0 0

0 +1 −1 +1 0

+1 −1 +1 −1 +1

0 +1 −1 +1 0

0 0 +1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 +1 0

+1 0 0 −1 +1

0 +1 0 0 0

0 0 0 +1 0

0 0 +1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
are ASMs. Since every permutation matrix is an ASM, ASMs can be thought of as generalizations of

permutation matrices. The following elementary properties of ASMs follow from their definition:

(i) The number of nonzeros in each row and column is odd.

(ii) The first and last nonzero in each row and column is a +1.

(iii) The first and last rows and columns contain exactly one +1 and no −1s.

(iv) The partial row sums of the entries in each row, starting from the first (or last) entry, equal

0 or 1. A similar property hold for columns. Moreover, all row and column sums equal 1.

Reversing the order of the rows or columns of an ASM results in another ASM.More generally, thinking

of an n× nmatrix as an n× n square, applying the action of an element of the dihedral group of order

8 to an ASM results in another ASM. Amatrix obtained from an ASM by row and column permutations

is generally not an ASM, even in the case of a simultaneous row and column permutation. In particular,

being an ASM is not a combinatorial property of a matrix.

The substantial interest in ASMs in the mathematics community originated from the alternating

sign matrix conjecture of Mills et al. [4] in 1983; see [1,5,6] for a history of this conjecture and its

relation with other combinatorial constructs. This conjecture, proved by Zeilberger [7] and also by

Kuperberg [3], asserts that the number of n × n ASMs equals

1!4!7! · · · (3n − 2)!
n!(n + 1)!(n + 2)! · · · (2n − 1)! .

In this paper we are concerned with the zero–nonzero pattern of an ASM.

An n × n ASM A has a unique decomposition of the form

A = A1 − A2,

where A1 and A2 are (0, +1)-matrices without any +1 in the same position. For example,

⎡⎢⎢⎢⎢⎢⎢⎣
0 +1 0 0

+1 −1 +1 0

0 0 0 +1

0 +1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 +1 0 0

+1 0 +1 0

0 0 0 +1

0 +1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦−

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0

0 +1 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (1)

The pattern of an ASM A is the (0, +1)-matrix Ã = A1 + A2. The ASM in (1) has pattern

⎡⎢⎢⎢⎢⎢⎢⎣
0 +1 0 0

+1 +1 +1 0

0 0 0 +1

0 +1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,
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which, dropping the symbol 1 or dropping both symbols 1 and 0, we also write as⎡⎢⎢⎢⎢⎢⎢⎣
0 + 0 0

+ + + 0

0 0 0 +
0 + 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ or

⎡⎢⎢⎢⎢⎢⎢⎣
+

+ + +
+

+

⎤⎥⎥⎥⎥⎥⎥⎦ .

An n × n ASM A can be viewed as a signed biadjacency matrix of a bipartite graph G ⊆ Kn,n,

equivalently, the biadjacency matrix of a signed bipartite graph, where the vertices in each part of the

bipartition are linearly ordered and where the edges are signed ±1. Similarly, an n × n symmetric

ASM can be viewed as the signed adjacency matrix of a loopy1 graph G ⊆ Kn, equivalently, the

adjacencymatrix of a signed loopy graph, where the vertices are linearly ordered andwhere the edges

are labeled ±1. As appropriate, we use the terminology alternating signed bipartite graph, abbreviated

ASBG, and alternating signed loopy graph, abbreviated ASLG. If there are only 0s on the main diagonal

of a symmetric ASM, that is, there are no loops in the graph, then we have an alternating signed graph,

abbreviated ASG.

Our main goal in this paper is to investigate possible patterns of ASMs and to determine their

properties. In Section 2 we discuss some basic properties of patterns of ASMs. The maximum number

of nonzeros in an n × n ASM (an ASBG) is easily determined along with the case of equality. The

minimum number of nonzero entries in an n × n ASM is n, since permutation matrices are ASMs. Let

A be an n × n ASM, and let R = (r1, r2, . . . , rn) and S = (s1, s2, . . . , sn) be the row sum vector and

column sum vector of the pattern of A. Then the components of R and S are odd positive integers with

r1 = s1 = rn = sn = 1 and

r1 + r2 + · · · + rn = s1 + s2 + · · · + sn.

We characterize the possible row sum (column sum) vectors of patterns of ASMs. In Section 3 we

determine the minimum number of nonzeros in an ASM whose associated signed bipartite graph is

connected. Recall that the term rank ρ(X) of a matrix X is the maximum possible number of nonzeros

in X with no two from the same row and column, and that by the König–Egérvary theorem, ρ(X) is

the minimum number of rows and columns of X that contain all the nonzeros of X . The term rank of

an n × n ASM may be n, as the permutation matrices show. In Section 4 we determine the smallest

possible term rank of an n × n ASM. In Section 5 we determine the maximum number of edges in an

ASG of order n, that is, the maximum number of nonzeros in an n× n symmetric ASMwith only 0s on

themain diagonal. We also determine when equality occurs. In Section 6 we consider ASMswhich are

maximal in the sense that it is not possible to change one or more 0 to ±1 resulting in another ASM.

Some concluding remarks are given in Section 7.

2. Patterns of ASMs

We first observe that there is a simple construction which shows that given any k× l (0, +1, −1)-
matrix B, there is an ASM that contains B as a submatrix. To construct such an ASM, we proceed as

follows:

(a) If some row of B is a zero row, we put in a new column anywhere which has a+1 in that row

and 0s elsewhere.

(b) If in B the first nonzero entry of some row is a −1, we put in a new column anywhere to its

left whose only nonzero entry is a +1 in that row.

(c) If the last nonzero entry of some row of B is a −1, we put in a new column anywhere to its

right whose only nonzero entry is a +1 in that row.

1 Loopy refers to the fact that loops are allowed but not required.
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(d) If B has two −1s in row i, with no nonzeros in between, we put in a new column anywhere

in between the two −1s whose only nonzero entry is a +1 in that row i.

(e) If B has two +1s in row i with no nonzeros in between, we put in a new column anywhere

between the two+1s and twonew rows, one anywhere above row i and one anywhere below

row i. The new column has a −1 in row i and a +1 in the two new rows.

(f) We repeat (a)–(e) using the columns of B in place of the rows.

Applying this construction, we obtain an ASM A containing B as a submatrix; we say that such an A is

obtained from B by an elementary ASM expansion of B. In general, an ASM containing B as a submatrix

is an ASM expansion of B. It follows from our construction that there can be no forbidden submatrix

condition that can be used to characterize ASMs.

Now let A = [aij] be an n× n ASMwith pattern Ã. Let R = (r1, r2, . . . , rn) and S = (s1, s2, . . . , sn)

be the row sum vector and column sum vector of Ã.

Let jn equal then-vector (1, 1, . . . , 1)of all 1s, and letkn be then-vector (1, 3, 5, . . . , 5, 3, 1)which

readsbackward the sameas it reads forward. Thusk6 = (1, 3, 5, 5, 3, 1) andk7 = (1, 3, 5, 7, 5, 3, 1).
There is a well-known special n × n ASM Dn which we call the diamond ASM and illustrate in (2) for

n = 6 and 7, it being obvious how to generalize to arbitrary n:

D6 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
+ − +

+ − + − +
+ − + − +

+ − +
+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, D7 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
+ − +

+ − + − +
+ − + − + − +

+ − + − +
+ − +

+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2)

For n even, the matrix obtained from Dn by taking its rows in the reverse order is also an ASM and we

also refer to it as a diamond ASM. Note that a diamond ASM of order n is symmetric, and its row and

column sum vectors of Dn equal kn.

Let n = 4k be amultiple of 4. For later use we introduce another n× n symmetric ASM E4k of order

4k which we call a near-diamond ASM. The pattern matrix Ẽ4k has row and column sum vector

(1, 3, 5, 7, . . . , 4k − 5, 4k − 3, 4k − 3, 4k − 3, 4k − 3, 4k − 5, . . . , 7, 5, 3, 1),

which differs from the row and column sum vector of D̃4k only in the middle two entries where D̃4k

has 4k − 1. Thus E4k has four fewer non zeros than D4k . The unique + in row 1 of E4k is in column

2k + 2 (where the unique + in row 1 of D4k is in column 2k + 1). We illustrate the construction of E4k
for k = 2 and compare it with the construction of D8 in (3) below.

E8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
+ − +

+ − + − +
+ − + − +

+ − + − +
+ − + − +

+ − +
+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and D8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
+ − +

+ − + − +
+ − + − + − +

+ − + − + − +
+ − + − +

+ − +
+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)
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Lemma 2.1. If A is an n × n ASM whose pattern Ã has row sum vector R and column sum vector S, then

jn ≤ R, S ≤ kn (entrywise).

Moreover, R = S = jn if and only if A is a permutation matrix, and R = S = kn if and only if A is a

diamond ASM.

Proof. The assertions involving jn are obvious since anASMmust have at least onenonzero in each row

and column, and permutationmatrices are ASMs. The assertions involving kn are also straightforward.

The first and last row (respectively, column) of an ASM can contain only one+1 and no−1s. Let i > 1.

The −1s in row i of an ASM can only be in those columns for which the corresponding column sum of

the leading (i−1)×n submatrix Ai−1 of A equals 1. Since the row sums of Ai−1 equal 1 and the column

sums of Ai−1 are nonnegative, exactly i − 1 of the column sums of Ai−1 are equal to 1. We conclude

that there are at most i +1s and at most (i − 1) −1s in row i, and hence at most 2i − 1 nonzeros

in row i. The same argument applies to the column sums taken from bottom to top. This proves that

R ≤ kn, and in a similar way we get that S ≤ kn.

If n is odd and R = S = kn, then row (n + 1)/2 has only nonzero entries, alternating between +1

and −1, and the ASM is uniquely determined as Dn. If n is even, then rows (n/2) ± 1 contain exactly

one 0. Because R = kn, this unique 0 must be in the first column of one of these rows and the last

column of the other, and we again get that A is Dn. �

The linear constraints jn ≤ R, S ≤ kn, r1 = rn = s1 = sn = 1, and r1 + r2 + · · · + rn =
s1 + s2 + · · · + sn for vectors R = (r1, r2, . . . , rn) and S = (s1, s2, . . . , sn) of positive odd integers

are not sufficient to guarantee the existence of an n × n ASM whose pattern has row sum vector R

and column sum vector S. For example, if n = 5 and R = S = (1, 1, 5, 1, 1), there is no 5 × 5 ASM A

whose pattern has this row and column sum vector. This is because the third row of such an A must

be [+ − + − +] and the third column must be the transpose of this vector. Hence the row sum

and column sum vector of such an Amust be k5 and not (1, 1, 5, 1, 1). This leads to another necessary

condition for integral n-vectors R = (r1, r2, . . . , rn) and S = (s1, s2, . . . , sn), namely,

ri − 1

2
≤ ∣∣{j : sj ≥ 3}∣∣ (1 ≤ i ≤ n).

This is because row i of an ASM contains (ri − 1)/2 −1s and so there are at least this many columns

with at least 3 nonzeros. This kind of argument can be carried further. Consider consecutive rows i and

i + 1 of an ASM. Their −1s occur in different columns. Thus there are at least

ri − 1

2
+ ri+1 − 1

2

columns with a −1 and thus at least this many columns with at least three nonzeros. Therefore

ri − 1

2
+ ri+1 − 1

2
≤ ∣∣{j : sj ≥ 3}∣∣ (1 ≤ i ≤ n).

There do not seem to be any easily formulated necessary and sufficient conditions for R and S to be

the row and column sum vectors of an ASM. However, the inequalities jn ≤ R ≤ kn for an n-vector R

of positive odd integers are sufficient to guarantee the existence of an n × n ASM whose pattern has

row sum vector R.

Theorem 2.2. Let R = (r1, r2, . . . , rn) be a vector of positive odd integers. Then there is an n × n ASM

whose pattern has row sum vector R if and only if

jn ≤ R ≤ kn. (4)

Proof. We note that (4) implies that r1 = rn = 1. By Lemma 2.1, (4) is satisfied by the row sum

vector of the pattern of an n× n ASM. Now suppose that (4) holds. We show how to construct an ASM
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whose pattern has row sum vector R. The ASM is obtained by combining the results of two smaller

constructions which we now describe. We first assume that n is an odd integer, n = 2m + 1.

Construction, Part I: For 1 ≤ k ≤ m + 1 we inductively construct a k × (2k − 1) (0, +1, −1)-matrix

Ak such that the rows satisfy the alternating ±1 condition of ASMs with the row sums of its pattern

equal to (r1, r2, . . . , rk), and the columns also satisfy the alternating±1 condition from top to bottom

except for the fact that the full column sum vector is (1, 0, 1, 0, . . . , 1, 0, 1) (and not (1, 1, . . . , 1) as
it would be for an ASM). If k = 1, then A1 = [+]. If k = 2, then

A2 =
⎡⎣ 0 0 +

+ 0 0

⎤⎦ if r2 = 1 and A2 =
⎡⎣ 0 + 0

+ − +

⎤⎦ if r2 = 3.

Suppose that k ≥ 2 andwe have constructed Ak to satisfy our requirements. If rk+1 = 2k+1, thenwe

borderAk with a zero columnon the left and right, and adjoin the (2k+1)-vector [+ − + −· · · + −+]
as a new row. The resulting (k + 1) × (2k + 1)-matrix Ak+1 satisfies our requirements. Now suppose

that rk+1 < 2k + 1. Then we adjoin two zero columns to Ak , a zero column on the left and a zero

column between the rk+1 and rk+1+1 columns of Ak; we then adjoin as a new row the (2k+1)-vector
[+ − + − · · · + − + 0 · · · 0]. The resulting (k+1)×(2k+1)matrix Ak satisfies our requirements.

In this part of the construction, we finish with an (m + 1) × (2m + 1) (0, +1, −1)-matrix Am+1

satisfying our requirements where the row sum vector of the pattern of Am+1 is (r1, r2, . . . , rm+1).
Since the column sum vector of Am+1 is (1, 0, 1, 0, . . . , 1, 0, 1), the last nonzero entry, if there is a

nonzero entry, in its odd numbered columns is a 1, and in the even numbered columns it is a −1.

Construction, Part II: Using Construction Iwe can obtain anm×(2m−1) (0, +1, −1)-matrix A′
m, such

that the rows of A′
m satisfy the alternating±1 condition of ASMswith the row sums of its pattern equal

to (r2m+1, r2m, . . . , rm+2), and the columns also satisfy the alternating ±1 condition except for the

fact that the full column sums are (1, 0, 1, 0, . . . , 1, 0, 1). Let A′′
m be thematrix obtained by bordering

A′
m by a zero column on the left and right, and then taking its rows in the reverse order. The columns

sums of A′′
m are (0, 1, 0, 1, . . . , 0, 1, 0). The first nonzero entry of the odd numbered columns of A′′

m,

if there is one, is a −1 while the first nonzero entry in the even numbered columns of A′′
m is a +1. It

follows that the matrix⎡⎣ Am+1

A′′
m

⎤⎦
is a (2m + 1) × (2m + 1) ASM whose pattern has row sum vector R.

Nowassume thatn is aneven integern = 2m. Thenusing the ideas above,weobtain anm×(2m−1)
(0, +1, −1)-matrix whose rows satisfy the alternating ±1 condition of ASMs with the row sums of

its pattern equal to (r1, r2, . . . , rm) and whose columns satisfy the alternating ±1 condition except

for the fact that the full column sums equal (1, 0, 1, 0, . . . , 1). We then append a column of all 0s to

obtain anm × 2mmatrix Am with full column sums equal to (1, 0, 1, 0, . . . , 1, 0). We also obtain an

m × 2m (0, +1, −1)-matrix A′
m whose rows satisfy the alternating ±1 condition of ASMs with the

row sums of its pattern equal to (r2m, r2m−1, . . . , rm+1) and whose columns satisfy the alternating

±1 condition except for the fact that the full column sums equal (0, 1, 0, 1, . . . , 0, 1). Taking the rows

of A′
m in the reverse order to produce the matrix A′′

m, we obtain the required 2m × 2m ASM⎡⎣ Am

A′′
m

⎤⎦ . �

3. Minimal connected ASMs

LetA = [aij] be an n×nASM, and let BG(A) ⊆ Kn,n be the alternating signed bipartite graph (ASBG)

determined by A. If BG(A) is connected, then we call A a connected ASM; otherwise, A is a disconnected

ASM. It follows easily that there exist permutation matrices P and Q such that
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+

+

+

+

−

Fig. 1. BG(D3).

PAQ = A1 ⊕ A2 ⊕ · · · ⊕ Ah (h ≥ 1), (5)

where A1, A2, . . . , Ah are also ASMs and BG(Ai) is connected for all i. If, for instance, A is a permutation

matrix, then in (5) we get h = n and PAQ = In. In this section we show that the minimum number

of nonzero entries of an n × n connected ASM equals 2n − 1 (thus BG(A) is a tree) if n is odd, and

equals 2n (thus BG(A) is a unicyclic graph whose unique cycle has even length) if n is even. In each

case, we give a recursive construction to obtain all graphs attaining equality. If A is an n× n ASM, then

the degrees of all the vertices of BG(A) are odd; if BG(A) is a tree, then the sum of the degrees of the

vertices in one part of the bipartition equals 2n − 1, the number of edges of BG(A). Hence BG(A) can
be a tree only if n is odd.

Recall that the diamond ASM D3 equals⎡⎢⎢⎢⎣
+

+ − +
+

⎤⎥⎥⎥⎦ .

The signed bipartite graph BG(D3) is shown in Fig. 1.

Let A be an n × n ASM. Then we use the notation A ∗ D3 to denote an (n + 2) × (n + 2) matrix

obtained from A by identifying a single + of A with a single + of D3 and inserting two new rows and

two new columns in order to embed D3 in the resulting matrix. Neither the two new rows nor the two

new columns need be consecutive, but they must retain the same relative order as in D3 and must

maintain the alternating sign property. The matrix A ∗ D3 is also an ASM, and we say that A ∗ D3

results from A by attaching D3. The bipartite graph BG(A ∗ D3) is obtained by identifying a positive

edge of BG(D3) with a positive edge of BG(A). For instance, if

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
+ − +

+ − +
+ − +

+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

then one possible A ∗ D3 is the matrix⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
+ − +

+
+ − + − +

+ − +
+

+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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where the + of A in its position (3, 3) is identified with the + of D3 in its position (2, 1), and the two

new rows are rows 3 and 6 and the two new columns are columns 4 and 7. Deleting rows 3 and 6 and

columns 4 and 7 of A ∗ D3 results in the original ASM A.

Since BG(D3) is a tree, then by starting with I1 and attaching D3s we can construct for every odd

integer n an n × n connected ASM A with BG(A) a tree. Now suppose that n is an even integer with

n ≥ 4. Then there are n × n connected ASMs with exactly 2n nonzero entries. One such basic family

of ASMs is obtained as follows: Let m ≥ 2 be an integer, and consider a cycle C of even length 2m

whose edges are (arbitrarily) either positive or negative. Depending on the signs of the edges at each

of the individual (original) vertices of C, we attach a new vertex to the graph as well as new edges

and vertices as follows: (i) if two positive edges meet at a vertex of C we attach a negative edge to a

new vertex and to that new vertex two positive edges attached to two new vertices, (ii) if one positive

and one negative edge meet at a vertex of C we attach a positive edge to a new vertex, (iii) if two

negative edgesmeet at a vertexwe attach three positive edges to three new vertices. Since the number

of edges attached to each vertex of C is odd and C has an even number of vertices, the total number of

vertices of the resulting graph is even. If, for instance, the edges of C alternate in sign, then we attach

a positive (pendent) edge to each vertex of C. It is easy to see that the resulting graph G ⊆ K2m,2m can

always be realized (in many ways) as a 2m× 2m ASMwith exactly 2 · 2m nonzero entries; in fact, this

construction is just a graphical description of the elementary ASM expansion construction discussed

at the beginning of Section 2 (reordering the vertices as necessary). For example, with m = 3 and a

cycle of length 6 whose edges alternate in sign, we have⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
+ − +

+
+ − +

+ − +
+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Withm = 3 and a cycle of length 6 with edges +, +, −, +, −, −, we have the 8 × 8 ASM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
+ − +

+
+ − +

+ − + − +
+

+
+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We call an ASM constructed in this way a basic unicyclic ASM.

Given an n × n connected ASM A with 2n nonzero entries, then each matrix of the form A ∗ D3 is

an (n + 2) × (n + 2) connected ASM with 2(n + 2) nonzero entries.

Theorem 3.1. The minimum number of nonzero entries in an n × n connected ASM equals 2n − 1 if n is

odd and 2n if n is even. If n is odd, then an n × n connected ASM A has exactly 2n − 1 nonzero entries if

and only if A equals the 1 × 1 identity matrix I1 or A can be obtained from I1 by recursively attaching D3s.
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If n is even, then an n × n connected ASM A has exactly 2n nonzero entries if and only if A is either a basic

unicyclic ASM or can be obtained from a basic unicyclic ASM by recursively attaching D3s.

Proof. It follows from our preceding discussion that the minima are as given in the theorem, and the

ASMs as described in the theorem attain the minima. We need to show that an ASM satisfying one of

the minima can be obtained as described in the theorem.

First consider the case of n odd. We may assume that n ≥ 3. Let A be an n × n ASM where BG(A)
is a tree T . Let u be any pendent vertex of T and root T at u; the unique edge at u is positive. Let d be

the largest distance of a vertex to u. Since n ≥ 3, we may assume that d ≥ 3. The vertices of T are

partitioned into sets V0, V1, . . . , Vd where Vi consists of all vertices at distance i to u (0 ≤ i ≤ d), and
the only edges of T join a vertex in Vi to a vertex in Vi+1 for some iwith 0 ≤ i ≤ d− 1. For each iwith

1 ≤ i ≤ d and each v ∈ Vi, there is a unique vertex w ∈ Vi−1 which is joined by an edge to v.

Let p be any vertex in Vd. Then p is a pendent vertex which is joined by a (positive) edge to a unique

vertex q ∈ Vd−1. The vertex qmust have degree 3, and hence there exist vertices r ∈ Vd−2 and s ∈ Vd

with a negative edge joining q to r and a positive edge joining q to s . The vertex r must be incident

with at least two positive edges, and so there exists another vertex t ∈ Vd−1 such that there is a

positive edge joining r and t. Since this edge is positive and t ∈ Vd−1, t must be a pendent vertex. It

follows that if A′ is the (n − 2) × (n − 2) submatrix of A obtained by deleting the rows or columns

corresponding to vertices p, q, s, t, then A is obtained from A′ by attaching a D3. We need to know that

we can choose t and q so that A′ is also an ASM, that is, so that the row or column corresponding to

vertex r is alternating in sign; there may be many positive and negative edges at vertex r. Since there

is only one edge going from r to a vertex in Vd−3 (one sign in the row or column corresponding to r),

there must be such a consecutive pair.

Now assume that n ≥ 4 is even, and that A is an n × n connected ASM with 2n nonzero entries.

Since BG(A) is a connected bipartite graph with 2n vertices and 2n edges, BG(A) contains a unique

cycle and it has even length. The graph BG(A) consists of this cycle with a tree (possibly empty) rooted

at each of its vertices. Since A is an ASM, it follows easily that A contains a basic unicyclic ASM U as a

submatrix. If A = U we are done. Otherwise, there exists a tree rooted at at least one of the vertices of

BG(U). Now, using an argument similar to that used in the odd case, we complete the proof. �

4. Term rank of ASMs

The term rank ρ(B) of a matrix B is the maximum number of nonzeros of B with no two from

the same row or column. The term rank of B also equals the smallest number of rows and columns

that contain all the nonzeros of B (see e.g. [2]). An ASM A and its pattern Ã have the same term rank:

ρ(A) = ρ(̃A). As already remarked, the term rank of an n × n ASM may equal n. In this section we

obtain a lower bound for the term rank of an ASM and then provide a construction to show that it is

the best possible.

Theorem 4.1. Let A be an n × n ASM. Then

ρ(A) ≥
⌈
2
√

n + 1 − 2
⌉
. (6)

Proof. Let the term rank of A be t. Then there exist e rows and f columns of A with e + f = t that

contain all the ±1s of A. We permute the rows and columns of A bringing these e rows to the top and

bringing these f columns to the left, otherwise respecting the order of the rows and columns. The

resulting matrix A′ has the form⎡⎣ A1 A2

A3 On−e,n−f

⎤⎦ ,

where A1 is an e× f matrix. The columns of A2 and the rows of A3 satisfy the alternating sign property

of ASMs. Thus the sum of the entries of A2 equals n − f and the sum of the entries of A3 equals n − e.
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Let pi and ni denote, respectively, the number of +1s and number of −1s in Ai for i = 1, 2, 3. Then,
using the alternating sign property, we see that the following relations hold:

p2−n2 = n−f , p3−n3 = n−e, (p1+p2)−(n1+n2) = e, (p2+p3)−(n1+n3) = f . (7)

The relations in (7) imply that

n1 − p1 = n − (e + f ) = n − t, (8)

that is, A1 has n − t more −1s than +1s. Since A1 is an e × f matrix and since e + f = t, we obtain

n1 − p1 = n − t ≤ ef ≤
(
t

2

)2

. (9)

Manipulating (9), we get

n − t ≤ t2

4

4n + 4 ≤ t2 + 4t + 4 = (t + 2)2

2
√

n + 1 ≤ t + 2

2
√

n + 1 − 2 ≤ t,

and (6) follows. �

We now show by construction that for each n ≥ 1 there exists an n × n ASM for which equality

holds in (6). We consider the two cases:

t = 2k if k(k + 1) < n + 1 ≤ (k + 1)2 for some integer k (10)

and

t = 2k + 1 if (k + 1)2 < n + 1 ≤ (k + 1)(k + 2) for some integer k. (11)

First consider the case given by (10), and let B be any k×k (0, −1)-matrixwith exactly q = (n−2k)
−1s. Suppose that for i = 1, 2, . . . , k, row i of B has ri −1s and column i of B has si −1s. Then∑k

i=1 ri = ∑k
i=1 si = q. Applying an elementary ASM expansion to B we obtain an ASM A all of

whose nonzero entries are contained in the k rows and k columns that contain its submatrix B. Hence

ρ(A) ≤ 2k. Moreover, the number of rows of A that are not rows of B equals

k∑
i=1

(si + 1) = q + k = (n − 2k) + k = n − k,

and hence A has n rows. Similarly, A has n columns. Since by (10), 2k is a lower bound for the term rank

of an ASM of order n, we have ρ(A) = 2k as desired.

Nowconsider the casegivenby (11), and letBbeanyk×(k+1) (0, −1)-matrixwithq = n−(2k+1)
−1s. Again, applying an elementary ASM expansion to B we obtain again an ASM A of order n all of

whose nonzero entries are contained in the k rows and k + 1 columns of its submatrix B. Hence

ρ(A) ≤ 2k + 1. Since by (11), 2k + 1 is a lower bound for the term rank, we have ρ(A) = 2k + 1 as

desired.

This completes the construction that shows that equality can be obtained in Theorem 4.1 for all n.

As an example of this construction, let k = 3 and n = 14 so that we are in the case given by (10). Let

B be the 3 × 3 (0, −1)-matrix with q = n − 2k = 14 − 6 = 8 −1s whose only zero is in its lower

right corner. Then a matrix produced by an elementary expansion is

Please cite this article in press as: R.A. Brualdi et al., Patterns of alternating signmatrices, Linear Algebra Appl. (2012),

http://dx.doi.org/10.1016/j.laa.2012.03.009

http://dx.doi.org/10.1016/j.laa.2012.03.009


R.A. Brualdi et al. / Linear Algebra and its Applications xxx (2012) xxx–xxx 11⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
+

+
+ − + − + − +

+
+

+
+ − + − + − +

+
+

+
+ − + − + 0

+
+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

The nonzeros can be covered with the 3 rows and 3 columns containing the −1s.

Corollary 4.2. The minimum term rank of an n × n ASM equals⌈
2
√

n + 1 − 2
⌉
.

5. Symmetric ASMs

The n × n diamond ASM Dn is a symmetric matrix. As noted in Section 1, we can view an n × n

symmetric ASM A = [aij] as the adjacencymatrix of a signed loopy graph (an ASLG) G(A)with linearly

ordered vertices 1, 2, . . . , n with a positive (respectively, negative) edge between vertices i and j if

and only if aij = +1 (respectively, aij = −1). We denote a signed edge {i, j} by {i, j}+ and {i, j}−,

respectively. The defining property of an ASLG is: If i is any vertex and {j1, j2, . . . , jk} are the vertices

joined to i by an edge (k is necessarily odd) where 1 ≤ j1 < j2 < · · · < jk ≤ n, then we have

{i, j1, }+, {i, j3}+, . . . , {i, jk}+ and {i, j2}−, {i, j4}−, . . . .{i, jk−1}−. We observe that if A is an n × n

ASM with only zeros on the main diagonal, then n must be even. This is because the degrees of the

corresponding loop-free graph G(A) are all odd, and so G(A) has an even number of vertices. Another

example of an ASLG with loops is given by the ASM⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
+ − +

+ − +
+ − + − +

+ − +
+ − +

+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Its signed loopy graph contains a 5-cycle with vertices 2, 3, 4, 5, 6 and signed edges {2, 4}−, {4, 6}−,

{6, 3}+, {3, 5}−, {5, 2}+, {3, 4}−, {4, 1}+, and {4, 7}+, and positive loops at each of the vertices 2, 3,

4, 5, and 6.
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The elementary expansion construction used in Section 2 to show that every (0, +1, −1)-matrix is

a submatrix of some ASM can be used in a symmetrical way to show that every symmetric (0, 1, −1)-
matrix B is a submatrix of a symmetric ASM A. Thus every signed (loopy) graph is an induced subgraph

of an alternating signed (loopy) graph. If there are all 0s on the main diagonal of B, the construction

can be carried out so that A has all 0s on its main diagonal.

We now turn our attention to determining the largest number of nonzeros in an n × n symmetric

ASMwith only zeros on its main diagonal, that is, the maximum number of edges in an ASG. Let σ(A)
equal the number of nonzero entries of A, and let σ ∗(A) equal the number of nonzeros above themain

diagonal of A. For a symmetric ASM with a zero main diagonal we have σ(A) = 2σ ∗(A).
For n a positive integer, let

αn = max{σ(A) : A an n × n symmetric ASM}
and, for n a positive even integer, let

βn = max{σ(A) : A an n × n symmetric ASM with a zero main diagonal}.
Since Dn is a symmetric ASM,

αn =
⎧⎨⎩

n2+1
2

if n is odd

n2

2
if n is even.

We first suppose that n is a multiple of 4. In this case the diamond ASM Dn with n = 4k is a

symmetric matrix whose main diagonal consists of k consecutive 0s, followed by 2k consecutive +1s,

followed by k consecutive 0s. Taking these 2k +1s and every other pair of −1s on the superdiagonal

and subdiagonal, we get k disjoint principal 2 × 2 submatrices of the form⎡⎣+ −
− +

⎤⎦ .

Replacing each of these 2× 2 submatrices of Dn with a 2× 2 zero matrix we get a symmetric ASM D∗
n

with a zero main diagonal, and we call this ASM a type 1 hollowed-diamond ASM of order n = 4k.

For instance, for k = 2 we have

D8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
+ − +

+ − + − +
+ − + − + − +

+ − + − + − +
+ − + − +

+ − +
+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
+ − +

0 0 + − +
+ 0 0 − + − +

+ − + − 0 0 +
+ − + 0 0

+ − +
+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= D∗
8.

By taking the rows of the diamond ASM in the reverse order and replacing k disjoint principal subma-

trices of the form⎡⎣− +
+ −

⎤⎦ (13)

by 2× 2 zero matrices, we get a different ASM, which we call a type 2 hollowed-diamond ASM of order

4k and also designate as D∗
n . For k = 2, we get the matrices
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D8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
+ − +

+ − + − +
+ − + − + − +

+ − + − + − +
+ − + − +

+ − +
+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
+ − +

+ 0 0 − +
+ − 0 0 + − +

+ − + 0 0 − +
+ − 0 0 +

+ − +
+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= D∗
8.

Notice that the type 1 and type 2 hollowed-diamond ASMs are not equivalent under the action of the

dihedral group of order 8. We refer to both of them as hollowed-diamond ASMs.

The number of nonzero entries of a hollowed-diamond ASM of order n = 4k (of either type) is

σ(D∗
n) = σ(Dn) − 4k = 2(2k)2 − 4k = 8k2 − 4k = n2 − 2n

2
.

Thus we have an ASG without loops of order n = 4k with n2−2n
4

= 4k2 − 2k edges. There is another

n × n symmetric ASM with zero diagonal with the same number of nonzero entries. It is obtained

from the near-diamond ASM En of order n = 4kwith four fewer nonzero entries than D4k by replacing

k− 1 disjoint 2× 2 principal submatrices of the form (13) with zero matrices to get a symmetric ASM

E∗
n with zero diagonal. We call E∗

n a hollowed-near-diamond ASM. We illustrate this construction, again

for n = 8.

E8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
+ − +

+ − + − +
+ − + − +

+ − + − +
+ − + − +

+ − +
+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
+ − +

+ − + − +
+ 0 0 − +

+ − 0 0 +
+ − + − +

+ − +
+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= E∗
8 .

Theorem 5.1. Let n ≡ 0 mod 4. Then βn = n2−2n
2

. Equivalently, the maximum number of edges in an

ASG of order n without loops is n2−2n
4

. Moreover, a symmetric ASM of order n with zero diagonal has n2−2n
2

nonzero entries if and only if it is a hollowed-diamond ASM of type 1 or 2, or a hollowed-near-diamond

ASM.

Proof. Let n = 4k and let A = [aij] be an n× n symmetric ASMwith a zero diagonal. We first observe

that a 2 × 2 submatrix of A of the form⎡⎣ ai−1,i ai−1,i+1

aii = 0 ai,i+1

⎤⎦ contains at least one other zero (i = 2, 3, . . . , n − 1). (14)
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Otherwise, by symmetry, the submatrix of A determined by rows and columns i − 1, i, i + 1 is of the

form ⎡⎢⎢⎢⎣
0 e f

e 0 g

f g 0

⎤⎥⎥⎥⎦ ,

where e, f , g �= 0. Thus f = −e and g = −e, and so f = g, violating the alternating sign property of

A.

Consider the partition of A given by

A =

⎡⎢⎢⎢⎣
A1 X Y

Xt A2 Z

Yt Zt A3

⎤⎥⎥⎥⎦ , (15)

where A1 and A3 are k × k symmetric matrices with zero diagonals, and A2 is a 2k × 2k symmetric

matrix with a zero diagonal. Then, it follows from (14) that A2 contains at least k − 1 zeros above its

main diagonal, that is,

σ ∗(A2) ≤ 2k2 − 2k + 1. (16)

For thehollowed-diamondASMD∗
4k , the submatrices corresponding toA1, A3, and Y arezeromatrices,

and thenumber of zeros above themaindiagonal in its 2k×2k submatrix corresponding toA2 is exactly

k. It follows from the definition of the near-diamondASM E4k that for the hollowed-near-diamondASM

E∗
4k , we have that A1 and A3 are zero matrices, the matrix Y has one nonzero entry, a+ in its lower left

corner, and the number of zeros above the main diagonal in A2 is k − 1.

Now assume that A has the maximum number of nonzeros among all symmetric ASMs of order

n with a zero main diagonal. Then since σ(D∗
4k) = σ(E∗

4k) = 8k2 − 4k and σ ∗(D∗
4k) = σ ∗(E∗

4k) =
4k2 − 2k, we have that

σ(A) ≥ 8k2 − 4k and σ ∗(A) ≥ 4k2 − 2k. (17)

ThenumberofnonzerosofA in thefirstk rows (respectively, columns) is atmost1+3+· · ·+(2k−1) =
k2, and hence, using (16) and (17), we get

4k2 − 2k ≤ σ ∗(A) ≤ σ ∗(A2) + k2 + k2 − σ(Y)

≤ (2k2 − 2k + 1) + 2k2 − σ(Y)

= 4k2 − 2k + 1 − σ(Y).

From this calculation we see that

0 ≤ σ(Y) ≤ 1, (18)

and then that the number of nonzeros of A in the first k rows (respectively, columns) is at least k2 − 1,

that is,

σ
([

A1 X Y
])

≥ k2 − 1 and, similarly, σ

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

Y

Z

A3

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ ≥ k2 − 1. (19)
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Since the number of nonzeros in each row is odd, it follows from (19) that the numbers of nonzeros

in rows 1, 2, . . . , k of A are 1, 3, . . . , 2k − 1, respectively, and, similarly, the numbers of nonzeros in

the last k columns of A are 2k − 1, . . . , 3, 1, respectively. This implies that the first k rows of A, after

deletion of zero columns, is a k × (2k − 1) matrix of the form (shown here for k = 5)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
+ − +

+ − + − +
+ − + − + − +

+ − + − + − + − +

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (20)

If in A1 there were a nonzero (necessarily not on its main diagonal), and so a +1, then by symmetry

there would be an iwith 1 ≤ i ≤ k, such that there is at least one +1 below the main diagonal in row

i of A1 and at least one +1 above the main diagonal in column i of A1, But then, using the above form

for the first k rows of A, there would be a nonzero in the diagonal position (i, i) in A1, a contradiction.

Thus A1, and similarly A3, is a zero matrix.

By (18), we have only two cases to consider.

Case 1: σ(Y) = 0: In this case, since A1, A3, Y, Yt are zero matrices and all row and column sums of

A equal 1, the sum of all the entries of A outside of A2 equals 4k, and hence the sum of the entries of

A2 is zero. Since A2 has a zero main diagonal, σ ∗(A2) is even. Thus equality cannot occur in (16) and

hence σ ∗(A2) ≤ 2k2 − 2k. Therefore,

σ ∗(A) = σ ∗(A2) + 2k2 ≤ 2k2 − 2k + 2k2 = 4k2 − 2k

as desired. If equality occurs, then σ ∗(A2) = 2k2 − 2k and A2 has exactly 4k zeros, with k of them

above the main diagonal. With the structure already determined for A, it is now straightforward to

verify that A is a hollowed-diamond ASM of type 1 or type 2.

Case 2: σ(Y) = 1: In this case,

σ ∗(A) ≤ σ ∗(A2) + 2k2 − 1 ≤ 2k2 − 2k + 1 + 2k2 − 1 = 4k2 − 2k

as desired. If equality occurs, then σ ∗(A2) = 2k2 − 2k + 1 and A2 has exactly 2(2k − 1) zeros, with

k−1 above themain diagonal. Again, with the structure already determined for A, it is straightforward

to check that A is a hollowed-near-diamond ASM. �

We now assume that n ≡ 2 mod 4. In this case, the diamond ASM Dn with n = 4k + 2 is a

symmetric matrix whose main diagonal consists of k + 1 consecutive 0s, followed by 2k consecutive

−1s, followed by k + 1 consecutive 0s. Taking these 2k consecutive −1s and every other pair of +1s

on the superdiagonal and subdiagonal, we get k disjoint principal 2 × 2 submatrices of the form⎡⎣− +
+ −

⎤⎦ . (21)

Replacing each these 2 × 2 submatrices of Dn with a 2 × 2 zero matrix, we get a symmetric ASM D∗
n

with a zeromain diagonal. If we take the rows ofDn in the reverse order, the−1s on themain diagonal

are replacedwith+1s, and the 2×2 submatrix (21) is also reversed. Continuingwith the terminology

used in the case n = 4k, we call both of these matrices hollowed-diamond ASMs of order 4k + 2. For

example, with k = 2 we have
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D∗
10 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
+ − +

+ − + − +
+ 0 0 − + − +

+ − 0 0 + − + − +
+ − + − + 0 0 − +

+ − + − 0 0 +
+ − + − +

+ − +
+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The number of nonzero entries of the hollowed-diamond ASM of order n = 4k + 2 is

σ(D∗
4k+2) = σ(D4k+2) − 4k = 2(2k + 1)2 − 4k = 8k2 + 4k + 2 = n2 − 2n + 4

2
.

Theorem 5.2. Let n ≡ 2mod 4. Then βn = n2−2n+4
2

. Equivalently, the maximum number of edges in an

ASG of order n without loops is n2−2n+4
2

. Moreover, a symmetric ASM of order n with zero diagonal has

n2−2n+4
2

nonzero entries if and only if it is a hollowed-diamond ASM.

Proof. The proof is similar to the proof of Theorem 5.1 and we shall be more brief.

We now consider a symmetric ASM = [aij] of order n = 4k + 2 with a zero diagonal, partitioned

as in (15), where A1 and A3 are now (k + 1) × (k + 1) matrices and, as before, A2 is 2k × 2k. As

in the proof of Theorem 5.1, A2 contains at least k − 1 zeros above its main diagonal, and hence

σ ∗(A2) ≤ 2k2 − 2k + 1. For the hollowed-diamond ASM D∗
4k+2, we have σ(D∗

4k+2) = 8k2 + 4k + 2

and thusσ ∗(D∗
4k+2) = 4k2+2k+1. The submatrix ofD∗

4k+2 corresponding toA2 has a total of 4k
2−4k

nonzero entries, and hence has above its main diagonal, 2k2 − 2k nonzero entries and k zeros.

Assume that A has themaximum number of nonzeros among all symmetric ASMs of order nwith a

zeromain diagonal. Then σ ∗(A) ≥ σ ∗(D∗
4k+2) = 4k2 +2k+1. Calculating, as in the proof of Theorem

5.1, we get

4k2 + 2k + 1 ≤ σ ∗(A) ≤ σ ∗(A2) + 2(k + 1)2 − σ(Y)

≤ 2k2 − 2k + 1 + 2(k + 1)2 − σ(Y)

= 4k2 + 2k + 3 − σ(Y).

Hence

0 ≤ σ(Y) ≤ 2. (22)

If σ(Y) = 2, then the first k rows of A have the form shown in (20) for k = 5, and all the nonzeros in

these rows must be above the main diagonal of A. But then σ(Y) ≥ 3, a contradiction. Thus σ(Y) =
0 or 1.

Suppose that σ(Y) = 0. Since the last row of X and the first column of Z each contain at most 2k

nonzero entries, we now get that

4k2 + 2k + 1 ≤ σ ∗(A) ≤ σ ∗(A2) + 2((k + 1)2 − 1) ≤ 4k2 + 2k + 1. (23)
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This implies that the last row of X and the first column of Y each contain 2k nonzero entries. Thus,

since each row of an ASM contains an odd number of nonzero entries, row k+ 1 and column 3k+ 2 of

A each contain the maximum number 2k + 1 of nonzero entries. Hence for each iwith 1 ≤ i ≤ k + 1,

row i contains the maximum number 2i − 1 of nonzero entries and column 3k + 1 + i contains the

maximumnumber 2i−1 nonzero entries. Thus the first k+1 rows of A, after deletion of zero columns,

form a (k + 1) × (2k + 1) matrix of the form in (20). This leads to a contradiction as in the proof of

Theorem 5.1. Thus we must have σ(Y) = 1 (as in D∗
4k+2).

Now with σ(Y) = 1, as before we conclude that A has 2i − 1 nonzeros in rows i and columns

4k + 3 − i for i = 1, 2, . . . , k + 1. Moreover, the 2i − 1 nonzeros in these rows and columns must be

above the main diagonal, as in D∗
4k+2. This allows us to conclude that A = D∗

4k+2 and A has n2−2n+4
2

nonzero entries where n = 4k + 2. The theorem now follows. �

If we drop the symmetry assumption, it is not difficult to determine the maximum number of

nonzero entries in an ASM whose main diagonal contains only zeros. In fact, this maximum is(
n

2

)
if n ≡ 0, 3 mod 4

and (
n

2

)
− 1 if n ≡ 1, 2 mod 4.

We illustrate ASMs that achieve these maxima for n = 9, 10, 11, and 12 from which the general

pattern can be discovered.

(n = 9)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 +
0 + − +
+ 0 − + − +

+ − + 0 − + − +
+ − + 0 − + − +

+ − + 0 − +
0 + − + 0

+ − + 0

+ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(35 nonzeros)

(n = 10)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 +
0 + − +

0 + − + − +
0 0 + − + − +
+ − 0 + − + − +

+ − + − 0 + − +
+ − + − + − 0 +

+ − + − + 0 0

+ − + 0

+ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(44 nonzeros)
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(n = 11)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 +
0 + − +

0 + − + − +
+ 0 − + − + − +

+ − + 0 − + − + − +
+ − + − + 0 − + − +

+ − + − + 0 − +
+ − + − + 0

+ − + − + 0

+ − + 0

+ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(55 nonzeros)

(n = 12)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 +
0 + − +

0 + − + − +
+ 0 − + − + − +

+ − + 0 − + − + − +
+ − + − + 0 − + − + − +

+ − + − + 0 − + − +
+ − + − + 0 − +

+ − + − + 0

+ − + − + 0

+ − + 0

+ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(66 nonzeros)

6. Maximal ASMs

Let A = [aij] and B = [bij] be n × n ASMs. Then B is an ASM extension of A provided A �= B and

aij �= 0 implies bij = aij (i, j = 1, 2, . . . , n).

In particular, if B is an ASM extension of A, then their patterns satisfy

Ã ≤ B̃ (entrywise) and Ã �= B̃.

If B is an ASM extension of A, then E = B − A is a (0, +1, −1)-matrix with all row and column sums

equal to 0. We call an ASM Amaximal provided it does not have an ASM extension. The identity matrix

In and the back-identitymatrix I∗n (corresponding to the permutation (n, n−1, . . . , 2, 1)) aremaximal
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ASMs; this can be argued by induction using the fact that an ASM with +1s in opposite corners has

no other nonzeros in rows and columns 1 and n. It can also be checked that⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
+

+
+

+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is a maximal ASM. The permutation matrix⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
+

+
+

+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is not a maximal ASM, since⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
+

+ − +
+ − +

+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is an ASM obtained by replacing the 2 × 2 zero matrix in rows 3 and 4, and columns 2 and 3 with⎡⎣− +

+ −

⎤⎦ . (24)

Generalizing this example, let P be an n× n permutationmatrix corresponding to the permutation

π of {1, 2, . . . , n}. Let 1 ≤ p < q ≤ n and 1 ≤ k < l ≤ n. Let Tp,q;k,l = [tij] be the n × n

(0, +1, −1)-matrix such that

tij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
+1 if (i, j) = (p, k) or (q, l)

−1 if (i, j) = (p, l) or (q, k)

0 otherwise.

Suppose that the 2 × 2 submatrix determined by rows p and q and columns k and l of the ASM P is a

zero matrix. Then P + Tp,q;k,l is an ASM extension of P provided that there is a 1 of P above and to the

right of the −1 in position (p, l), and below and to the left of the −1 in position (q, k), that is,

π(p) > l, π(q) < k, π−1(k) > q, and π−1(l) < p.
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Pictorially, we have

(k) (l)

⊕

(p) 0 0 ⊕
(q) ⊕ 0 0

⊕
where the 0s are in rows p and q and columns k and l, and the ⊕s indicate the relative positions of the

+s of P in rows p and q and columns k and l. Replacing Tp,q;k,l with −Tp.q;k,l , we get a similar picture

with the permutation π satisfying

π(p) < k, π(q) > l, π−1(k) < p, and π−1(l) > q.

Under these circumstances, we call P ± Tp,q;k,l an elementary ASM extension of P. Thus if B is an

elementary ASM extension of P, then B has n + 4 nonzero entries of which exactly two are −1.

We now show that if a permutationmatrix P has an ASM extension, then it has an elementary ASM

extension.

Theorem 6.1. Let P be an n × n permutation matrix such that P is not a maximal ASM. Then P has an

elementary ASM extension.

Proof. Let B be an ASM extension of P where, as above, we distinguish each +1 of P by ⊕. Consider

the (0, +1, −1)-matrix E = B− P. We construct a bipartite graph G, the bipartition of whose vertices

is given by the set U of positions in which E has +1s and the set V of positions in which E has −1s.

There are an equal number of +1s and −1s in each row and in each column of E so that |U| = |V |.
In each row and in each column of B a ⊕, if not the first or last + in its row or column, lies between

two consecutive −1s of B, and thus on each of the four sides (horizontally and vertically) of such a ⊕,

there are an equal number of +1s and −1s of B; the +1s and −1s alternate from +1 to −1 to the

left (respectively, above) a ⊕ and from −1 to +1 to the right (respectively, below) a ⊕. The horizontal

edges of G are obtained as follows: (i) by joining by an edge the position of a +1 which is to the left

of the ⊕ in its row to the position containing the −1 in its row that follows it, and (ii) by joining by

an edge the position of a −1 which is to the right of the ⊕ in its row to the position of the +1 that

follows it. The vertical edges of G are similarly defined. Thus both the horizontal edges and the vertical

edges form perfect matchings of G, and each vertex of G has degree equal to 2, meeting exactly one

horizontal edge and exactly one vertical edge. It follows that the edges of G can be partitioned into

cycles γ1, . . . , γk , whose edges alternate between horizontal and vertical. This is illustrated in Figs. 2

and 3.

Continuing, let Ci be the (0, +1, −1)-matrixwhose nonzero entries are those corresponding to the

vertices of γi (i = 1, 2, . . . , k). Then it follows that P + Ci is an ASM which is an extension of P; in

fact, P +∑
i∈K Ci is an extension of P for all ∅ �= K ⊆ {1, 2, . . . , k}. Thus we may now assume that

B = P + C1, that is, G is a cycle of even length.

Consider the top row of C1 that contains a position (p, q) with a −1 (so there is a ⊕ above it) and

assume without loss of generality that the edge of γ1 goes to a +1 to its right, We follow γ1 until we

arrive at the first position (r, s) with a −1 for which the edge of γ1 goes to the left; such a position

exists since γ1 is a cycle. There are two possibilities according to whether we arrive at this position

(r, s) from above it or below it. See Fig. 2.
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Fig. 2. An elementary ASM extension.

Fig. 3. An elementary ASM extension.

If we arrive from above, then the initial −1 in position (p, q) along with the −1 in the position

(r, s) give the matrix −Tp,r:q,s. Considering the positions containing a ⊕, we see that P − Tp,r;q,s is
an elementary extension of P. Suppose we arrive at position (r, s) from below it. Let (g, h) be the

position containing a −1 that came before (r, s). Then considering again where the ⊕s are, we see

that P + Tg,r;h,s is an elementary extension of P. See Fig. 3. �

Corollary 6.2. Let P be an n×n permutationmatrix corresponding to the permutationπ of {1, 2, . . . , n}.
Then P is a maximal ASM if and only if there do not exist integers p, q, k, l with 1 ≤ p < q ≤ n and

1 ≤ k < l ≤ n such that

π(p) > l, π(q) < k, π−1(k) > q, and π−1(l) < p

or

π(p) < k, π(q) > l, π−1(k) < p, and π−1(l) > q.

Elementary extensions are obtained by appropriately adding ±Tp,q;k,l to an ASM A in such a way

that the nonzero positions of A and those of Tp,q:k,l do not overlap. It is also possible to add ±Tp,q;k,l
to an ASM where the nonzero positions overlap and the result is an ASM. For example,⎡⎢⎢⎢⎣

+1 0 0

0 +1 0

0 0 +1

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
−1 +1 0

+1 −1 0

0 0 0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0 +1 0

+1 0 0

0 0 +1

⎤⎥⎥⎥⎦ .

In fact, with two overlapping positions and starting with an ASM equal to the permutationmatrix P as

in theexample, the result is anotherpermutationmatrixQ if andonly if thepermutation corresponding

to Q is obtained from the permutation corresponding to P by a transposition. Another example, this

time with an overlap of one position, is
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0 0 +1 0 0

0 +1 0 0 0

+1 0 −1 0 +1

0 0 0 +1 0

0 0 +1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 −1 +1 0

0 0 +1 −1 0

0 0 0 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 +1 0 0

0 +1 −1 +1 0

+1 0 0 −1 +1

0 0 0 +1 0

0 0 +1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The above examples lead us to to define an ASM-interchange to be the operation (or result thereof)

of adding ±Tp,q:r,s to an ASM provided the result is also an ASM. As shown above, ASM-interchanges

generalize transpositions of permutations.

We now show that every ASM can be generated from the special ASM In by a sequence of ASM-

interchanges. Since we can generate all permutation matrices from In by transpositions, this is equiv-

alent to showing that every ASM results from the special subclass of ASMs consisting of permutation

matrices by a sequence of ASM-interchanges. In fact, we can get every ASM from a permutationmatrix

by ASM-interchanges with overlap of only 1 or 2.

Theorem 6.3. Let A be an n × n ASM. Then there is a sequence of ASM-interchanges such that starting

from the identity matrix In we obtain A.

Proof. If A does not have any−1s, then A is a permutation matrix and we are done. Suppose A = [aij]
has at least one −1, and choose the first row that has a −1 and the first column in that row that has

a −1. Suppose this −1 is in position (q, l), that is, aql = −1. Since A is an ASM, there exists unique

p < q such that apl = +1 and ail = 0 for all i �= p with i < q. Similarly, there exists unique k < l

such that aqk = +1 and aqj = 0 for all j �= q with j < l. Then A + Tp,q;k,l is an ASM with one less −1

than A. Proceeding inductively, there is a sequence of ASM-interchanges which reduces A to an ASM B

without any −1s. Thus B is a permutation matrix, and further ASM-interchanges (i.e. transpositions)

reduce A to In. �

7. Concluding remarks

We conclude with some comments and open questions. As we have observed, every (0, +1, −1)-
matrix (possibly rectangular) is a submatrix of some ASM, and every symmetric (0, 1, −1)-matrix is

a principal submatrix of some symmetric ASM. If B is a (0, +1, −1)-matrix, we define ζ(B) to be the

smallest n such that B is a submatrix of an n × n ASM, and

ζ(k, l) = max{ζ(B) : B a k × l (0, 1, −1)-matrix} (k, l ≥ 1).

Note that if B is a submatrix of an n × n ASM, then by taking a direct sumwith an identity matrix, B is

a submatrix of an m × m ASM for all m ≥ n.

Similarly, if C is a symmetric (0, +1, −1)-matrix, we define ζp(C) to be the smallest n such that C

is a principal submatrix of an n × n symmetric ASM, and

ζp(k) = max{ζp(C) : C a k × k symmetric (0, 1, −1)-matrix} (k ≥ 1).

Let

B =
⎡⎣− −

+

⎤⎦ .

Then
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A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
+

+ − + − +
+

+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is an ASM whose submatrix determined by rows 3 and 4 and columns 2 and 4 equals B. Although B is

not symmetric, we can insert a new row and column to get an ASM A′ which contains B as a principal

submatrix in rows and columns 3 and 5:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
+

+ − + − +
+

+
+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Question 1. What are the values of ζ(k, l) and ζp(k), and which (0, +1, −1)-matrices achieve these

maxima?

Let Jk be the k × k matrix all of whose entries equal +1. Then Jk is a (principal) submatrix of the

diamond ASM D4k−3 and −Jk is a (principal) submatrix of the diamond ASM D4k−1. It is natural to

conjecture that ζ(k, k) = 4k − 1, equivalently, that every k × k (0, +1, −1)-matrix is a submatrix of

a (4k − 1) × (4k − 1) ASM.

In Section 6 we have seen that a permutation matrix may or may not be maximal, that is, may or

may not have an ASM extension.

Question 2. Characterize maximal ASMs.

LetAbeann×nASM.Aspreviously remarked, the sevennon-identity rowandcolumnpermutations

of A corresponding to the dihedral group of order 8 result in ASMs, some ofwhichmay equal A. Let C(A)
denote the equivalence class of all ASMs that can be gotten from A by permuting rows and columns.

Thus if A is a permutation matrix, then C(A) is the set of all permutation matrices and has cardinality

n!.
Question 3. What is

max{|C(A)| : A an n × n ASM}? (25)

From the above, this maximum is at least n! but, in general, it is much larger. For example, consider

the n × n ASM A which is the direct sum of l copies of D3 and one I1 (so n = 3l + 1). By recursively

choosing three rows and three columns for each of the l D3s to go into an n× nmatrix and then noting

that each set of choices can be gotten in l! ways, we see that the number of ASMs in C(A) is

1

l!
(
n

3

)2(
n − 3

3

)2

· · ·
(
4

3

)2

= n!2
l!62l . (26)
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If l ≥ 2, then (26) is greater than n!. If A′ is the direct sum of l− 1 copies of D3 and one D4, the number

of ASMs in C(A′) is

2
1

(l − 1)!
(
n

3

)2(
n − 3

3

)2

· · ·
(
7

3

)2

= 2n!2
(l − 1)!62l16 . (27)

(The factor of 2 is due to the fact that the rows of D4 can be reversed to create the other matrix we

have referred to as D4.) Subtracting (26) from (27), we see that if l > 8,

|C(A′)| > |C(A)|.
These calculations illustrate that the determination of (25) is apt to be very difficult. A related question

is:

Question 4. What is

max{|C(A)| : A an n × n connected ASM}?
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