Math 641, Fall 1999

R.A. Brualdi

Exercise Set 7, ** exercises due Friday, December 17, 1999

**1. Consider the code C^* obtained from a Reed-Solomon [n=q-1,k,d=n-k+1] code over F_q by adding an overall parity check. As we know C^* is a [n=q,k,n-k+1] code over F_q consisting of all vectors of the form

$$(f(1), f(\gamma), \dots, f(\gamma^{q-2}), f(0))$$

where f(x) ranges over all the polynomials over F_q of degree at most k-1.

- (a) Write down a parity check matrix for C^* .
- (b) Use the parity check matrix in (a) to determine a parity check matrix for an extension C^{**} of C^* which is an MDS code with parameters [n=q+1,k,d=q-k+2].
- **2. Let C be a binary code of length n with weight enumerator A(z) and let C^* be the code of length n+1 obtained from C by adding an overall parity check. Prove that the weight enumerator of C^* is

$$\frac{1}{2}\left((1+z)A(z)+(1-z)A(-z)\right).$$

- 3. Problem 6.13.6 on page 111 of van Lint's book.
- **4. Prove that the 2nd order Reed-Muller code RM(2,m) is Z_4 linear. (A hint is given in the solution for exercise 8.5.2. (p. 138) of van Lint's book on page 212.)
- **5. Problem 8.5.3 on page 138 of van Lint's book. (A hint is given in the solutions on page 212.)
- **6. Prove that the first order Reed-Muller code RM(1, m+1) of length 2^{m+1} is a subcode of the binary image of the dual of the code C_m in Example 8.4.1 (p. 136) of van Lint's book.