Math 475, Final Exam (125 points) Name: 12:25 pm, May 19, 2000, B115 Van Vleck Hall Richard A. Brualdi 1. (20 points) We have a multiset X of 14 balls, consisting of 3 identical Red, 4 identical Blue, 5 identical Green, and 2 identical Yellow balls. (a) How many (linear) permutations of X are there? (b) How many (linear) permutations of X are there if the yellow balls are not consecutive? (c) How many circular permutations of X are there if the Yellow Balls are opposite one another? (d) How many ways are there to arrange the balls of X in a 2 by 7 formation if the Yellow Balls are to be in different rows?

- 2. (10+5=15 points)
 - (a) Evaluate the following sum: $\sum_{k=1}^{n} (-1)^{k-1} k \binom{n}{k}$ for $n \ge 1$.

(b) Explain the combinatorial reasoning behind the recurrence relation for the Stirling numbers of the second kind:

$$S(p,k) = kS(p-1,k) + S(p-1,k-1) \quad (1 \le k \le p-1).$$

3. (15 points) How many ways are there to place 7 non-attacking rooks on the 7 by 7 board with forbidden positions as shown:

X	X					
\overline{X}	X					
		X	X	X		
,		X	X	X		
					X	X

- 4. (15 points) Identify each of the relations on a set X below as a partial order, equivalence relation, total order, or none of the above:
 - (a) X the collection of all subsets of $\{1,2,\ldots,10\}$ with $A\,R\,B$ iff $A\subseteq B$.
 - (b) X the set of all real numbers with A R B iff |a| = |b|.
 - (c) X the set of positive integers with a R b iff a is a factor of b.
- (d) X the set of vertices of a tree T with root r with $a\,R\,b$ iff the chain from r to b in T passes through a.
- (e) X the set of ordered pairs (a,b) of real numbers with (a,b) R (c,d) iff $a \le c$ (as real numbers) and $b \le d$.

6. (15 points) Determine the chromatic polynomial of the graph:

7. (10 points) Consider the following network N with source s and target t where the numbers on arcs represent their capacities and the numbers in brackets $[\cdot]$ on arcs represent the value of a function f on the arcs of N .
(a) Check that f is a flow from s to t , and determine its value:
(b) Starting with f , use the basic flow algorithm and obtain a "flow-augmenting path" from s to t to give a flow f' whose value is one more than the value of f . Is f' a maximum flow? If so, give a cut whose capacity equals the value of f' .

8. (15 points) Use Burnside's Theorem to determine the number of inequivalent colorings are corners of a regular hexagon (6-gon) P in the presence of the full corner symmetry group of P	of P.

9. (10 points) A marked 4-omino is a 1 by 4 piece of 4 unit squares joined side to side where each square is marked with 1, 2, 3, 4, 5, or 6 dots. Use **Burnside's Theorem** to determine the number of different marked 4-ominoes.

EXTRA CREDIT PROBLEM (20 points) Consider the graph G with vertices and edges as shown:
(a) How many chains of length 12 connect the lower left vertex X with the upper right vertex Y ?
(b) How many such chains are there if the "middle vertex" A and all the edges that touch it are eliminated from the graph?
(c) How many such chains which do not use any of the vertices on the diagonal running from X to Y ?