MATH 441; EXAM $# 2$, 100 points, April 14, 2005 (R.A.Brualdi)

TOTAL SCORE (7 problems; 100 points possible):

Name: SOLUTIONS

1. [15 points] Consider Z_{22} .

(i) List the elements of the unit group U_{22} .

Since $\phi(22) = \phi(2)\phi(11) = 1 \cdot 10 = 10$, we should expect 10 integers (relatively prime to 22). They are:

1, 3, 5, 7, 9, 13, 15, 17, 19, 21.

(ii) What are the possible orders of the elements of U_{22} ?

Since the order of U_{22} is 10, the order of its elements are divisors of 10 and so one of 1, 2, 5, 10.

2. [10 points] Prove Fermat's Theorem for finite abelian groups: Let $G = \{e = a_1, a_2, \ldots, a_n\}$ be an abelian group with *n* elements. Then for each *a* in G , $a^n = e$, the identity of G .

Proof: By the cancellation law for groups, if a is any element of G, then $\{aa_1, aa_2, \ldots, aa_n\}$ $\{a_1, a_2, \ldots, a_n\}$. So

$$
aa_1aa_2\cdots aa_n=a_1a_2\cdots a_n.
$$

That is, $a^n(a_1a_2\cdots a_n) = (a_1a_2\cdots a_n)$. By cancellation, we get $a^n = e$.

3. [10 points] Let G be a multiplicative group. Using only the definition of a group (the group axioms), prove that a linear equation of the $ax = b$ has **exactly one** solution.

Proof: First $a^{-1}b$ is a solution, since $a(a^{-1}b) = (aa^{-1})b = eb = b$. Suppose there are two solutions g and h. Then $ag = b$ and $ah = b$ so that $ag = ah$. By cancellation, $h = g$. So the solution is unique.

4. [20 points] Let G be a multiplicative group and let H be a nonempty subset of G.

(i) What two properties need to be checked for H to be a subgroup of G ?

Closure under multiplicaion and closure under taking inverses.

(ii) If H is a subgroup of G, state Lagrange's theorem.

The order of H is a divisor of the order of G .

(iii) Let G be the group U_{13} of units of Z_{13} . Determine a subgroup H of 3 elements and then determine its distinct cosets (as subsets of U_{13}).

We need to find an element of order 3, The element 2 doesn't work but 3 does: 3^1 = $3, 3² = 9, 3³ = 1$ (all mod 13). So H={1, 3, 9} is a subgroup of order 3. H is a coset, and the other cosets are:

$$
2H = \{2, 6, 18 = 5\}, 4H = \{4, 12, 36 = 10\}, 7H = \{7, 21 = 8, 63 = 11\}.
$$

5. [10 points] Let G and G' be multiplicative groups with identities e and e' , respectively. Let $f: G \to G'$ be a homomorphism. Using that $f(e) = e'$, prove that

$$
f(a^{-1}) = f(a)^{-1} \quad (a \in G).
$$

We have $aa^{-1} = e$, and so $f(aa^{-1}) = f(e) = e'$. Since f is a homomorphism, this gives $f(a) f(a^{-1}) = e'$. Hence $f(a^{-1})$ is the inverse of $f(a)$, that is, $f(a)^{-1} = f(a^{-1})$.

6. [15 points] What is the order of the subgroup of S_{12} generated by the permutation

$$
\left(\begin{array}{ccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 7 & 10 & 9 & 8 & 1 & 12 & 3 & 4 & 11 & 6 & 5 & 2 \end{array}\right).
$$

f partitions into cycles of lengths 6, 4, and 2. Hence the order is $LCM(6, 4, 2) = 12$. 7. [20 points] Use the Euclidean algorithm to find the GCD of the two polynomials in $Z_2[x]$:

$$
f(x) = x4 + x2 + 1
$$
 and $g(x) = x3 + 1$,

and express it as a linear combination of $f(x)$ and $g(x)$.

We have

$$
x^{4} + x^{2} + 1 = x(x^{3} + 1) + (x^{2} + x + 1)
$$

$$
x^{3} + 1 = (x + 1)(x^{2} + x + 1) + 0.
$$

Hence the GCD is $x^2 + x + 1$ and

$$
x^{2} + x + 1 = 1(x^{4} + x^{2} + 1) + x(x^{3} + 1).
$$