MATH 441; EXAM # 1, 100 points, February 22, 2005 (R.A.Brualdi)

TOTAL SCORE (5 problems; 100 points possible):

Name: SOLUTIONS

1. [20 points] Let \equiv be an equivalence relation on a set S. Let a, b be two elements in S.

Prove that if the equivalence classes containing a and b have a nonempty intersection, that is, $[a] \cap [b] \neq \emptyset$, then [a] = [b].

Suppose that $c \in [a] \cap [b]$. Let $x \in [a]$. By properties of an equivalence relation (reflexive,symmetric, transitive) we have $x \equiv a \equiv c \equiv b$ and so $x \equiv b$. Thus $[a] \subseteq [b]$ and in a similar way one concludes that $[b] \subseteq [a]$. Hence [a] = [b].

2. [20 points] determine the least nonnegative residue of the following (calculator answer not acceptable):

• $8^{101} \mod 9$.

We have $8 \equiv -1 \mod 9$, and so $8^{101} \equiv (-1)^{101} = -1 \equiv 8 \mod 9$

• $13^{101} \mod 168$.

We have $13^2 = 169 \equiv 1 \mod 168$ and so $13^{101} \equiv (13^2)^{50} \cdot 13 \equiv 1^{50} \cdot 13 = 13 \mod 168$.

• 12345678987654321 mod 11

The given number is congruent mod 11 to: 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 + 9 - 8 + 7 - 6 + 5 - 4 + 3 - 2 + 1 = 1.

• 12345678987654321 mod 8

The given number is congruent mod 8 to 321, since 1000 is divisible by 8, and 321 is congruent to 1 mod 8.

- **3.** [30 points] Consider the commutative ring with identity, Z/18Z.
- What is $\phi(18)$?

 $\phi(18) = 6$

• Determine which elements of Z/18Z are units?

For $a \in \{1, 2, ..., 18\}$ to be a unit, GCD(a, 18) = 1. So we get as units: 1, 5, 7, 11, 13, 17.

• Pair up the units of Z/18Z so that in each pair $\{a, b\}$, b is the inverse of a. (Of course, some elements might be paired with themselves.)

1 and 1, 5 and 11, 7 and 13, 17 and 17.

• If possible, solve 5x=7 in Z/18Z.

By above 11 is the inverse of 5 mod 18. So in Z/18Z, we have $x = 11 \cdot 7 = 5$.

- 4. [15 points] Let R be a commutative ring R with identity. Let a and b be elements in R.
 - What is the definition of -a in R?

-a is defined to be the element of R which when added to a, in either order, gives 0.

• Prove that -(ab) = a(-b).

We have $ab + a(-b) = a(b + (-b)) = a \cdot 0 = 0$ by distributive law and a property of 0. Addition in the other order works in a similar way.

5. [15 points] Prove using mathematical induction that for $x \neq 1$ (Be sure to set up the induction carefully):

$$1 + x + x^{2} + \dots + x^{n-1} = \frac{1-x^{n}}{1-x}, \quad (n \ge 1).$$

We use induction on $n \ge 1$. If n = 1, the LHS is 1 and the RHS is 1 - x/1 - x = 1. Now assume the identity holds for n, and we prove directly that it holds for n + 1:

$$1 + x + x^{2} + \dots + x^{n-1} + x^{n} = (1 + x + x^{2} + \dots + x^{n-1}) + x^{n}$$
$$= \frac{1 - x^{n}}{1 - x} + x^{n}$$
$$= \frac{1 - x^{n} + x^{n}(1 - x)}{1 - x}$$
$$= \frac{1 - x^{n+1}}{1 - x}$$

which is the identity with n replaced by n + 1.

Hence the identity is true for all $n \ge 1$ by induction.