MATH 240; EXAM # 1, 100 points, February 28, 2003 (R.A.Brualdi) TOTAL SCORE (11 problems):

Name:

Disc. (circle) TUES. 8:50 TUES 12:05 THURS. 8:50 THURS. 12:05

- 1. [5 points] Which of the following propositions doesn't belong in this group:
 - (a) If p, then q.
 - (b) If $\neg q$, then $\neg p$.
 - (c) q is a sufficient condition for p.
 - (d) $\neg p \lor q$.

Circle your answer

2. [6 points] State the converse and contrapositive of the following proposition I get an A in a math course if I study hard.

Converse:

Contrapositive:

- 3. [12 points] Let P(m,n) be the predicate: m divides n, where the universe of discourse for each of m and n is the set $Z^+ = \{1, 2, 3, 4, \ldots\}$ of positive integers. Determine the truth values of each of the following propositions:
 - (a) $\forall m \ \forall n \ P(m, n)$.
 - (b) $\exists m \ \forall n \ P(m, n)$.
 - (c) $\exists n \ \forall m \ P(m,n)$.
 - (d) $\forall n \; \exists m P(m, n)$.

- 4. [9 points] Let P(x) and Q(x) be predicates where the universe of discourse for x is some set U. Let $A = \{x : P(x) \text{ is true}\}$ and $B = \{x : Q(x) \text{ is true}\}$ be the truth sets of P(x) and Q(x), respectively. In terms of A and B give:
 - (a) the truth set of the predicate $P(x) \to Q(x)$.
 - (b) the truth set of the predicate $P(x) \wedge \neg Q(x)$.
 - (c) Give a predicate, obtained using only \neg (negation) and \wedge (conjunction) from P(x) and Q(x), whose truth set is $\overline{A} \cup \overline{B}$

- 5. [12 points] Determine whether the following functions are **injective**, **surjective**, or both (**bijective**). If **bijective give the inverse function**.
 - (a) $f: Z \to Z$ defined by f(n) = n + 1. Inverse?
 - (b) $f: Z^+ \to Z^+$ defined by f(n) = 3n + 5. $(Z^+ = \{1, 2, 3, 4, \dots, \})$. **Inverse?**
 - (c) $f: R \to Z$ defined by $f(x) = \lfloor x + 1/2 \rfloor$. (R is the set of real numbers.) **Inverse?**
 - (d) $f: R \to R$ defined by f(x) = 5x 2. Inverse?

6. [10 points] Compute the following sum:

$$\sum_{i=0}^{n} \sum_{j=0}^{m} 4^i \cdot 7^j.$$

7. [6 points] Give as good a big-O estimate as possible for each of the following functions:

(a)
$$\frac{3x^4+2x^3-2x+5}{7x^2+3x+4}$$
:

(b)
$$(x \log x + x^2)(x^4 + 5x^2 + 3x)$$

8. [8 points] Give the disjunctive normal form (sum of minterms) and conjunctive norm	al
form (product of maxterms) of the Boolean function f of three variables x, y, z which equal	ıls
1 if and only if an odd number of the variables x, y, z equals 1.	

Disjunctive normal form:

Conjunctive normal form:

9. [10 points] Give a indirect proof of: If a_1, a_2, \ldots, a_n are numbers whose average is 100, then at least one of the numbers is greater than or equal to 100.

10. [10 points] Prove by mathematical induction: For all $n \ge 1$, $2^{2n} \equiv 1 \pmod{3}$. Be sure to clearly specify the two steps in induction.

- 11. [12 points] Bob wants to receive a secure message from Alice using the RSA system. He chooses a public key of n=221 by choosing the two primes 17 and 13 whose product is 221. Part of Bob's public key is the encryption exponent e=11 chosen to be relatively prime to $16 \cdot 12 = 192$.
- (a) Determine Bob's private decryption key d by using the method of the Euclidean division algorithm.

(b) Using Bob's public keys n=221 and e=11, Alice sends Bob an integer between 1 and 220 which is received by Bob as 60. What integer did Alice send Bob?