
Section 8.8 Graph Coloring

Coloring of a graph G: an assignment of colors to the vertices so that
no two adjacent vertices are assigned the same color.

So a coloring partitions the vertex set V into sets V1, V2, . . . , Vk so that
no two vertices in the same set are joined by an edge. Think of V1 as the
blue vertices. V2 as the red vertices, etc.

The chromatic number χ(G) of G is the smallest number of colors
possible (smallest k above).

Examples:
1. It is easy to check that χ(Cn) is 2 if n is even and 3 if n is odd..
2. χ(Kn) = n since no two vertices can get the same color.
3. A bipartite graph G with at least one edge satisfies χ(G) = 2. In fact,

this was basically our definition of bipartite; think of Left as Red and Right
as Blue.

4. χ(Qn) = 2 since Qn is bipartite (even number of 1’s corresponds to
Red and odd number of 1’s corresponds to Blue).

Application/Motivation: Scheduling classes, exams, events, ... .

Form a graph G whose vertices are the events and put an edge between
two events if they conflict (cannot be scheduled in the same time slot). Then
χ(G) is the smallest number of time slots needed to schedule all events.

Remark: Computation of χ(G) is a NP-Hard problem; best known al-
gorithms have exponential complexity.

Clearly, if a graph has n vertices, then χ(G) ≤ n. We can do better.

Theorem: If ∆ is the max degree of a vertex of G, then χ(G) ≤ ∆ + 1.

Proof. Consider ‘colors’ 1, 2, . . . , ∆, ∆ + 1. List the vertices v1, v2, . . . , vn.
The following recursive/iterative algorithm colors G using at most ∆ + 1
colors:

1. Color v1 with color 1.
2. For i = 2, . . . , n, color vi with the smallest color not assigned already to

the vertices among {v1, . . . , vi−1} joined to vi (i.e. colors among the vertices
adjacent to vi that have already been colored.). Since the max degree is ∆
and we have ∆ + 1 colors, there will always be an available color.

1



Remark: If G is connected, the only graphs for which χ(G) = ∆ + 1 are
complete graphs and odd length cycles.

9.1 Trees
Trees are important dats structures in CS.

A tree is a connected graph that is barely connected in the sense that each
edge is a cut-edge (bridge).: removing any edge of a tree leaves a non-
connected graph. So a tree cannot have any cycles, since removing an edge
of a cycle in a connected graph cannot disconnect the graph.

Up to isomorphism, there are 1, 1, 1, 2, 3, trees on 1, 2, 3, 4, 5, vertices,
respectively. Drwa them!

Characterising properties of tree with n > 1 vertices.

1. connected and every edge a bridge (our definition).

2. connected with no cycles.

3. connected with a unique simple path joining each pair of vertices.

4. connected graph with n − 1 edges.

(I planned to but didn’t get to the following but will resume this on
Friday.)
Remarks:

1. If the degrees of the vertices of a tree are d1, d2, . . . , dn, then

d1 + d2 + · · · + dn = 2(n − 1).

This implies that a tree with n > 1 vertices has at least two vertices of degree
equal to 1. Such vertices are called pendent and the unique edge incident
with a pendent vertex is called a pendent edge.

2. Recursively, removing a pendent vertex, pendent edge pair gets one
down to a single vertex. (implying again that a tree with n vertices has n−1
edges).

2


