Math 240, Fall Semester 2001-02

NAME:

(Prof.) R.A. Brualdi

Total Points:

Final Exam (150 points): 2:45 pm, December 20, 2001,

([points in brackets], calculations of factorial, binomial coefficients can be omitted)

1. [6 points] Construct the truth table for the compound statement:

p only if q.

2. [6 points] Let P(x, y) be an arbitrary predicate of two integer variables x and y.

Let $p = \forall x \exists y P(x, y)$ and let $q = \exists y \forall x P(x, y)$.

Is $p \to q$ True, False or Neither?

Is $q \to p$ True, False or Neither?

3. [10 points] Determine the number of different fu of n elements to a set of m elements?	nctions from a set
How many of these functions are one-to-one?	

4. [10 points] Prove using mathematical induction:

$$\sum_{j=2}^{n} \binom{j}{2} = \binom{n+1}{3} \quad (n \ge 2).$$

If you use identities for binomial coefficients $\binom{n}{k}$ be sure to indicate so.

5. [10 points] Solve the recurrence relation:

$$a_n = a_{n-1} + 6a_{n-2}$$
 $(n \ge 2)$ where $a_0 = 2, a_1 = 1$.

6. [8 points] Messages are sent over a channel using two different signals. One signal requires 2 microseconds for transmittal and the other requires 3 microseconds. Each signal of a message is followed immediately by the next signal. Find a recurrence relation for the number of different signals that can be sent in n microseconds, and give the initial conditions. (You are not expected to solve the recurrence relation.)

7. [16 points] Consider an ordinary deck of 52 cards of thirteen ranks (say, 1, 2,, 13) and four suits (say, hearts, diamonds, spades, clubs). A hand means 13 (unordered) cards.
(a) How many different hands are there?
(b) How many hands contain no pairs (two cards of the same rank)?
(c) How many hands contain 5 hearts, 3 diamonds, 4 clubs, and 1
spade?
(d) What is the probability that a hand chosen at random contain
(d) What is the probability that a hand chosen at random contain 5 hearts, 3 diamonds, 4 clubs, and 1 spade?

8. [10 points] Determine the number of functions from $\{1,2,\ldots,n\}$ to $\{a,b,c\}$ that are onto.

9. [10 points] Use the Euclidean algorithm to determine the GCD of $3n + 2$ and $2n + 1$ where n is an arbitrary positive integer.
10. [14 points] (a) Define an equivalence relation :
(b) Define a partial order relation:
(c) Determine the number of different equivalence relations on a set $\{a,b,c\}$ of three elements?

11. [20 points] Consider the poset whose Hasse diagram is shown.Determine, if they exist, all:(a) maximal elements:
(b) minimal elements:
(c) all greatest elements:
(d) all least elements:
(e) the GLB of $\{a, b, c\}$:
(f) the LUB of $\{x, y\}$:
(g) whether or not the poset is a lattice:
(h) Consider the poset $(S,)$ where $S = \{1, 2,, 100\}$. If they exist, determine for this poset: (i) GLB of 42 and 63:
(ii) LUB of 28 and 26:

12. [10 points] Apply Dijkstra's algorithm to the weighted graph below to get shortest paths from vertex a to every other vertex in the graph):

13. [10 points] Apply Kruskal's algorithm to determine a minimum weight spanning tree for the weighted graph shown:

14. [10 points] An algebraic expression is given in preorder form as:

$$\times + \times 223 - +31 \times 52.$$

Write the expression in the usual in-order form with parantheses.