Math 240, Fall Semester 2001-02 NAME: (Prof.) R.A. Brualdi Exam 1: October 12, 2001, Total Points:

[points in brackets]

1. [15 points] (a) Partition the propositions into groups whereby each pair of propositions in the same group are logically equivalent while two propositions in different groups are not logically equivalent:

$$\begin{split} p &\to q, \\ \neg q &\to \neg p, \\ \neg (p \lor q), \\ p \lor \neg q, \\ \neg (\neg p \land q), \\ \neg p \lor q. \\ \\ p &\to q, \neg q \to \neg p, \neg p \lor q \\ p \lor \neg q, \neg (\neg p \land q) \\ \neg (p \lor q) \end{split}$$

(b) Let the variable x in the predicates P(x), Q(x), and R(x) vary over a universe U. Let

$$A=\{x|P(x) \text{ is true}\}, B=\{x|Q(x) \text{ is true}\}, \text{ and } C=\{x|R(x) \text{ is true}\}$$

be the truth sets of P(x), Q(x) and R(x). Using only the set operations union and complement, give the truth sets of:

(i)
$$(P(x) \wedge Q(x)) \vee \neg R(x)$$
:

$$(A \cap B) \cup (\overline{C})$$

(ii)
$$P(x) \to Q(x)$$
:

$$\overline{A} \cup B$$

(ii)
$$P(x) \leftrightarrow Q(x)$$
: $(A \cap B) \cup (\overline{A} \cap \overline{B})$

2. [10 points] (a) How many different Boolean functions of n Boolean variables are there? Justify your answer.

 2^{2^n}

(b) Let x, y, z be Boolean variables. Express the Boolean function f(x, y, z) using only the Boolean operations $+, \cdot,$ and $\overline{-}$:

f(x,y,z)=1 if and only if an odd number of x,y,z have value 1. $x\bar{y}\bar{z}+\bar{x}y\bar{z}+\bar{x}\bar{y}z+xyz$

3. [15 points] (a) Which of the following functions are injective (one to one), surjective (onto), bijective (one to one and onto), or none of the above. If bijective, give the inverse. (Here Z is the set of all integers, Z^+ is the set of positive integers, and $\mathcal{P}(S)$ denotes the collection of all subsets of a set S.)

$$f: Z^+ \to Z^+, \ f(x) = x + 1.$$

injective

$$f: Z \to Z, \ f(x) = x + 1.$$

bijective;
$$f^{-1}(x) = x - 1$$

$$f: \mathcal{P}(S) \to \mathcal{P}(S), \ f(X) = \overline{X}.$$

bijective;
$$f^{-1}(A) = \overline{A}$$

$$f: \mathcal{P}(S) \to \mathcal{P}(S), \ f(X) = X \cap A \text{ where } A \text{ is a fixed subset of } S.$$

neither in general

(b) Consider the function $f:\Re\to Z$ defined by $f(x)=\left\lceil x-\frac{1}{2}\right\rceil$. Determine the inverse image of 3.

$$\lceil x - 1/2 \rceil = 3 \text{ iff } 2 < x - 1/2 \le 3 \text{ iff } 5/2 < x \le 7/2$$

4. [20 points] (a) Use the Euclidean algorithm to find the multiplicative inverse of 20 modulo 51 (*Trial and error not accepted*).

inverse of 20 mod 51 is 23

(b) Does $20x \equiv 4 \pmod{51}$ have a solution x? If so, find it. Is this solution unique modulo 51? **Explain**.

YES: $x \equiv (20)^{-1} \cdot 4 \mod 51 \equiv 23 \cdot 4 \mod 51 \equiv 92 \mod 51 \equiv 41 \mod 51$.

(c) Note that $11 \cdot 3 \equiv 1 \mod 32$. Use this fact to find the 11th root of 31 modulo 51, i.e. a number a such that $a^{11} \equiv 31 \mod 51$.

This question was thrown out.

- 5. [20 points] We have $385 = 5 \cdot 7 \cdot 11$.
- (a) Use the Chinese Remainder Theorem to explain how to represent every integer n with $0 \le n \le 384$ **uniquely** as a three tuple of integers (a_1, a_2, a_3) where $0 \le a_1 \le 2$, $0 \le a_2 \le 6$, and $0 \le a_3 \le 10$. You must explain the uniqueness.

We did not do this.

(b) What three tuple represents 200?

We did not do this.

(c) Under what conditions does the following hold:

a|c and b|c implies ab|c?

(Here a, b, c are positive integers.)

When a and b are relatively prime.

6. [10 points] Consider the functions below and list them from top to bottom (smallest order of magnitude to largest) putting functions f and g in the same line if $f = \Theta(g)$:

$$n^4$$
, 2^n , $n \log n$, n^2 , 5^n , $n \log n^4$, \sqrt{n} .
 \sqrt{n} , both of $n \log n$, $n \log n^4$, n^2 , n^4 , 2^n , 5^n

7. [10 points] Prove by mathematical induction:

$$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \dots + \frac{1}{(2n-1)\cdot (2n+1)} = \frac{n}{2n+1} \quad (n \ge 1).$$

We haven't done this yet.