Math 475, Exam I March 3, 2000 Richard A. Brualdi Name:

1. (10 points) It's your turn in a game of NIM. In front of you, you see four piles, with 15, 13, 10, and 7 sticks, respectively. You want to win the game. What's your move?

2. (10 points) How many ways are there to place 8 non-attacking rooks -4 identical red rooks and 4 identical blue rooks - on a 8 by 8 chessboard, if the square in the upper left corner of the board cannot contain a rook?

- 3. (5 points each) Answer the following questions:
 - a) The number of circular permutations of 5 X's, 3 Y's and 1 Z equals:
 - b) The permutation of $\{1, 2, 3, 4, 5, 6, 7\}$ with inversion sequence 3, 4, 3, 1, 1, 1, 0 is:
- c) The combination of $\{x_6, x_5, x_4, x_3, x_2, x_1, x_0\}$ that comes immediately **before** $\{x_6, x_3\}$ in the binary arithmetic generating scheme is:
- d) The next 5-combination of $\{1, 2, 3, 4, 5, 6, 7, 8\}$ that comes immediately **after** $\{2, 4, 5, 6, 9\}$ in the lexicographic ordering of 5-combinations is:
- e) The 5-tuple that comes immediately **after** 0 1 0 0 0 in reflected Gray code ordering of the binary 5-tuples is:
 - f) The coefficient of $a^3b^2c^4d$ in the expansion of $(a+b+c+d)^{10}$ is:

- g) There are N people in a room with ages between 21 and 40, inclusively. The smallest value of N that guarantees there are at least five people of the same age is:
 - h) $K_n \to K_r, K_b, K_g$ means that:
- i) A partition of the partially ordered set $\mathcal{P}(X)$, \subseteq of combinations of $X=\{1,2,3,4\}$ into symmetric chains is:

j) The reason $\mathcal{P}(X)$ cannot be partitioned into fewer chains (not necessarily symmetric chains) than you found above is:

k) The relation R defined on the real numbers by a Rb if and only if $|a-b| \le 1$ is a (choose one) a partial order equivalence relation neither because:

l) The diagram for	the partially	ordered set o	of integers	$\{1,2,\ldots,12\}$	whose partial	order is	(is
a factor of) is:							

m) The number of even combinations of $\{1,2,3,4,5,6,7,8\}$ is: because:

5. (15 points) Determine the number of 10-combinations of the multiset $\{4\cdot A, 4\cdot B, 6\cdot C, 3\cdot D\}$.