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THE INCIDENCE ALGEBRA OF
A UNIFORM POSET

PAUL TERWILLIGER*

Abstract. Let P,< denote afinite graded poset of rank N > 2, with fibers Py, Py, ..., Py.
Let the matrices L;, R;, E}! (0 <i< N) have rows and columns indexed by P, and entries

(Ld)ey =1 i 2€Poy, y€P, 2<y, snd 0 otherwiss (1<i< N),
(Ri)ey =1 if z€ Piyq ,‘ YyE€F, y<z, and 0 otherwise (0<i< N-1),
(E’.‘);,,,‘ =11if 2, y€PR, z=y, and 0 otherwise (0<:i < N),

and Ly = Ry = 0. The incidence algebra of P is the real matrix algebra generated by L;, R;, E;

0<i<g Ngl. P ;s ﬁndlifohm if there exists real numbers e;-", e, fii (1 £i< N) (satisfying a
certain condition) such that ' :

e RiwaLicaLi + LiRiaLi + ¢} LiLiy1Ri = fiL; (1<i<N)
: (R-1 =Ln41 =0).
We show the incidence algebra T of a uniform poset takes a very simple form, and present a -
method for computing the irreducible T-modules. We give 11 families of examples that show
many of the classical geometries are uniform. In each case we compute the irreducible T-modules.

We present some open problems, and discuss a connection with P- and Q-polynomial association
schemes.. : - ’ : V

Key words. Graded poset, Partial geometry, Partial ‘geometric lattice, Association scheme.

AMS(MOS) subject classifications. Primary 05B25, 06A12, 05C50.

1. Introduction. In [2], Bose introduced a semi-linear incidence structure
of points and lines called an (R, K, T)-partial geomeiry. The structure provided a
uniform way of sfudying examples such as the Steiner systems b(where 2<T=
K < R), transversal designs or equivalently nets (whete 2<T=K —1< R), and
generalized quadrangles (where T =1 < R,K). To include more examples, the
concept has since been generalized in two main directions. To get the higher rank
analogs of the nets and generalized quadrangles, namely the d-nets and polar spaces, o
respectively, the point-line system has been replaced with a ranked semi-lattice
satisfying various axioms. This has given rise to the partial d-space of Laskar [17],
the partial geometric lattice of Bose and Miskimins [5], and the regular semi-lattice
of Delsarte [9]. 'We refer the reader to the papers of Liebler and Meyerowitz 20},
 Laskar and Dunbar [18], Laskar and Sprague [19], Meyerowitz [21], and Meyerowitz
and Miskimins [22] for more information on partial geometric lattices. Another
approach is to eliminate the semi-linear condition on the point-line system, in order
to get more general partially balanced incomplete block designs as examples. This
approach has given rise to the partial geometric dgs;’gn of Bose, Shrikhande and

. *Department of Mathematics, University of Wisconsin, Madisén, WI 53706.
Research partially supported by NSF grant DMS-8600882. ;
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Singhi [6], (see also Bose, Bridges, and Shrikhande [3), [4]) and the equivalent 11-
design of Neumaier [24], [25]. The M,- and Sp-designs of Neumaier [23] combine
both approaches to an extent. They are certain rank N graded posets, where the
removal of the upper fiber Py yields a semi-lattice.

In this paper we introduce the notion of a uniform poset. This is a certain

~ finite graded poset with arbitrary rank N > 2, that retains the simple algebraic

properties of a partial geometry, but neither it, nor any truncation or interval is
assumed to be a semi-lattice. In spite of this, uniform posets are in a sense less
general than the above coustructions. Very roughly, the axioms for a partial ge-
ometric lattice and regular semi-lattice endow the upper fiber of the poset with
a simple algebraic structure. In a uniform poset, this structure is extended to all
fibers. This gives a more complete description of the structure of the poset, and also
happens to simplify many of the calculations. We note that a uniform poset that
is also a semi-lattice has a very restricted structure, and can probably be classified
if the rank is sufficiently large. (See Conjecture 3 in Section 4). We will consider
this special case in a future paper, and focus here on the algebraic properties of
arbitrary uniform posets.

For the rest of this section we define our terms and give background informa-
tion. Im Section 2 Vwe define a uniform poset, and give a method for finding its
algebraic structure. The maijn result is Theorem 2.5. In Section 3, we give 11 in-
finite famikies of uniform posets, and in each case compute the algebraic structure
using the method of Section 2. We acknowledge that in many cases some or all

of this structure has previously been found by authors such as Delsarte [9], [10],.
[11], Dunkl [13], [14], and Stanton (29}, {30}, [31], but we wish to stress the essential
similarity of the examples. In Section 4, we give some conjectures relating uniform

posets and P- and Q-polynomial association schemes.

In this paper, P,< is always assumed to be a finite, partially ordered set, or
poset. Usually we just refer explicitly to P. If £ and ¥ are elements of P,
then we write z<y if <y and z#y. Wesay y covers z if z<y,
but thereisno. 2 € P with T<z<y. Agradingof P is a partition of

P into disjoint non-empty sets Fy, P, ...; Py, called fibers, such that, for all ‘

T,y € P, 2€P; and y covers z implies i < N—1 and y ¢ Piyy . The
height function h:P — {0,1,... ,N} of the grading satisfies h(z) =i ifzeh
(x€P, 0<i<N). The integer N is the rank of the grading. A graded poset
is a poset, together with a grading. Now let P be a graded poset of some rank
N > 2, ‘with fibers Py, Py, ..., Py. The dualof P is the poset P = P with
grading P; = Pyo; (0<i< N), where <y in P if and onlyif y<=z in
P. Also, P is said to be ¢-regular if the following conditions (1), (2), (3) hold.

(1) For all integers 4, j, k (0 < i Si<k<N) andall z, y € P with
z€ P, y€ P, and z < y, the number of 2€ P with <2<y isa
constant denoted #(4, 5, k).

(2) For all integers i, j (0<i<j<N) and all T € P, the number of z € P;
with # <z is a positive constant denoted ¢(i, j, o0).
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(3) For all integers j, k 0<j<k < N) and all y € Py, the number of z € P;
with z <y is a positive constant denoted ¢(—co, 7, k).

Now again let P be any graded poset of rank N > 2. Define the lowering
matrices L;, the raising matrices R;, and the projection mairices Ef (0<i< N )
of P to have rows and columns indexed by P, and entries

1 i z€Py, yehl, z<
N P Y oasisw
0 otherwise
1 if ze P; N € F;, <z )
(Ri)zy = { . oy Y (OSiSN—l)
: 0 otherwise
1 if z,yeP, z=
(ED)ay { D YSth ey Osi<m),
M 0 otherwise

and Lo = Ry = 0. The ipcidence algebra T of P is the real matrix algebra gener-

ated by the L;, R;, E¥ (0<i< N ). The irreducible T-modules are of interest in"
several contexts. For example, they can give those irreducible representations of the
automorphism group of P that exist in RP. See Dunkl [13] for the subset lattice,
Dunkl [14] for the subspace lattice, Stanton [29] for the polar spaces, and Stanton
[30], [31] for certain posets associated with the bilinear, alternating, hermitian, and
quadratic forms (i.e. 4,(N, M), Alty(N), Herg(N) and Quad,(N) in Section 3
of this paper). We refer the reader to Stanton [32], [33] for related information on
group representations. In another application, the integrality of the T-module mul-
tiplicities can give feasibility conditions governing the existence of certain posets.

This was done (implicitly) for (R, K, T)-partial geometries by Bose [2] and extended
(implicitly) to partial geometric lattices by Liebler and Meyerowitz [20], Meyerowitz.
[21}, and Meyerowitz and Miskimins [22]. The irreducible T-modules can also be
used to compute eigenvalues of graphs that may exist on-a fiber of P. We refer the
reader to Delsarte (9], [10], [11] and the above mentioned papers by Stanton and
Meyerowitz for further details. v ' )

Now let P be a graded poset of rank N, with incidence a._lgebra,, T Let V

be the vector space R™ (m = |P]) , with standard basis identified with P. We
view V as a Euclidean space with the usual inner product { , ), and call V the
standard module of P. A subspace W of V is a module of T if it is invariant
under T, that is, if {(w)€ W forall we W andall ¢ €T . Amodule W of
T is irreducible if it is non-zero, and the only non-zero module it contains is W

itself. T-modules W and Y are 1somorphic if there exists an iéomorphism of
vector spaces o : W — Y such that Ho(w)) = o(t(w)) forall w € W and all
t € T. We do not distinguish between isomorphic T-modules.

2. The structure of a uniform poset. In this section we define a uniform

poset, and give a method for computing the irreducible modules of its incidence
algebra.
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DEFINITION 2.1. Let N be an integer at least 2. A parameter matriz of order
N is a tri-diagonal real matrix E := (eij)a <i,j<n satisfying

(1) es=1 (1<i<N),

(2) €iia#0 (2<i<N)  or ez #0 (1<i<N-1),

(3) The principal submatrix E(r,p) := (eij)r+1<i,j<p is nonsingular for all integers
np (0Sr<p<N).

We denote e i=¢;;; (2<i< N), ef:= €iit1 (1 <i<N-1), and for
convenience set e;” = e}, = 0. The purpose of (2) will become clear from the proof
of part (2) of Theorem 2.5, and the purpose of (8) will become clear from part (1)
of Definition 2.4.

DEFINITION 2.2. Let P be a finite graded poset of rank N > 2, with lowering
and raising matrices  L;, R; (0 <i< N). Then P is uniform if there exists a
parameter matrix E of order N and a vector F := (fiicicy in RV satisfying

(1) e Ri2LiaLi + LiRiiL; + ef Ll R; = fiL; (1<i<N)
' (R-1, Ln41 =0).

Here e}, e; areentries in E as indicated in Definition 2.1. We call E,F a set
of parameters for P . These parameters need not be unique. ’

Note 1. The partial geometric design of Bose, Shrikhande, and Singhi [6] is equiv-
alent to a ¢-regular uniform poset with N =2 and [Po]= 1.
Note 2. The transpose of R; is Liyy 0<i<N-1). In particular, If

P is a uniform poset then the dual poset P is also uniform, with parameters
T =ef i Ji=Fuoin (1gig<N).

Some infinite families of uniform posets with unbounded rank can be found
in Section 3. Qur purpose for the rest of this section is to show how the incidence
algebra of a uniform poset has a very simple structure, and can be readily computed.
We first define three sets of constants c(r,p), zi(r,p), m(r,p), whose meaning
will become clear in our main Theorem 2.5.

DEFINITION 2.3. Let P be a uniform poset of rank N > 2. For each pair of
integers 1, p (0<r <p<N), denote by c(r,p) the number of sequences
(Try Tria, o-ny @p, T, Tiigy oonsy z,), where z;, zi € P; (r<i< P), T, =z,
Tp = zp, and T; < Tiyg, ) < zi4y (r<i<p-1). We note z;, =} may coincide
forany and all i (r < i <p). :

Note. If P is ¢-regular (see Introduction) then

=1 L.E
c(r,p) = IPrlH¢(.7).7+1>°°) H ¢(7‘1j',"11j) (OSTSPSN),
j=r j=r+1
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where
r—1 -1
IP.l = |Po| [] 86,5 +1,00) (H¢(0 1-1,1)) (0<r < N).
j=0 j=1

DEFINITION 2.4. Let P be a uniform poset of rank N > 2, with parameters
E,F.

(1) For each pair of integers r, p (0<r<p<N), define the real numbers :c.(r, ?)
(r+1<1i<p) tobethe solutlon to the linear system

zr41(r,p) Frar
| E(r,p) z r+2:(’”a p) — i r.+2
zp(r,P) AN

Here E(r,p) is from Definition 2.1.

(2) For each pair of integers r, p (0 Sr<p<N), let m(n p) be the unique
real number satlsfymg

(23) m("'.’p) = 0if r <pa-nd a:r+1(r,p).1:,+2(r,p)---:z;,,(r,p) = 0, and ‘ g

r N . I
@) or,p) = > > mlr, 5z (', p)eesa(r',p') - zp(r', 1) otherwise. R

. r'=0p'=p : T .

Here c(r,p) is from Definition 2.3.

We note the m(r,p) v,i:onst.a.nts can be found recursively by solving (2a), (2b)
in the order (r,p) = (0,N), (0,N-1), (1,N), (O,N—_Z), (1,N-1), (2,N), ...

We are now ready to give the irreducible modules for the incidence a.lgébra. of o i
any uniform poset.

THEOREM 2.5. Let P be a uniform poset of rank N > 2, with lowering,
raising, and projection matrices L;, R;, E¥f (0<i < N). Let T be the incidence
algebra of P acting on its standard module V. Then

() v decomposes into an orthogonal direct sum of irreducible T-modules.

(2) Each irreducible T-module has a basis of the form Wy, Weg1,: -+, W, for some
integers r, p (0 <r <p < N), where '

(22) w;€E}V (r<i<p),
(b)) Liw; = wie; (r+1<i<p), and L,-w,. =0,
(2¢) Ryw;

I

Siga(r,pwiys (r<i<p-1), and Ryw,=0.
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(The zi(r,p) are from Definition 2.4). In particular, the isomorphism class of
an irreducible T-module is determined by the integers r, p.

We refer to the integérs r, p in (2) as the endpoints of the module.

(3) Let r, p be any integers (0 < r < p < N). Then the irreducible T-module
with endpoints r, p occurs in V with multiplicity m(r,p). (m(r,p) is from
Definition 2.4.) If there is no such T-module then m(r,p) = 0.

Proof of (1) Let W C V be any T-module. Then it suffices to show
ti={v|veV, (v, w) =0 forall we€ W} is also a T-module. Now T
is closed under transposition, since each E} is symmetric (0<:<N), and since
R =Lj4; (0<j<N-1). Thusforall we W, v€ W, and A€ T, we have
A* € T and therefore A'w € W, forcing (4v,w) = (v, A'w) =0 and Av € WL,
Thus W+ is a T-module, as desired. :

Proof of (2). From (2) in Definition 2.1, we can assume either (a) e # 0
(2<i<N), or (b) ef #0 (1<i<N-1). First assume Case (a).

Let W CV be an irreducible T-module, and let p be the maximal integer
where E;W # 0. Then E;W is a module for the symmetric matrix R,—1L, =
L;,L,,, so there exists a nonzero vector w, € E;W, and a real number A such
that Rp-1Lyw, = Aw,. Note R,w, = 0 by the maximality of p. Now define
w; = Lijp1Ligg+--Lywp, (-1 £ 4 < p), and let r denote the minimal integer
where w, # 0. Then w; # 0 (r < i < p). Now (2a) and (2b) hold. If r = p there
is nothing further to prove, so assume r < p. From our above remarks, and upon
applying (2.1) to w;, we obtain :

(22) ‘\R,,_lwp._l = /\wp

(2.3) €7 Ricawicy + LiRisywicy + € LiLiRiw; = frwiey (r+1<4<p).

Now by induction'on % = p, p—1,... in (2.3), we find R;w; € Span{wi1}
(r<i<p-1). Nowlet y; (r+1<i<p) denote the real number satisfying
Riw; = yiqwipy (r <i <p-—1), andset y, = yp41 = 0. Substituting this in
(2.3), we find .

e ¥i-1 +yi + ey = fi (r+1<i<p).
But by (1) of Definition 2.4, y; = zi(r,p) (r+1 < i < p) is the unique solution
to this system. This proves (2c), and we are done with Case (a).

Now assuine Case (b), and again let W' be an irreducible T-module. Applying

Case (a) to the dual of P, we conclude W has a basis w], wl,, ... ,w}
where, (in the original poset P), w! € E}V (r <i<p), L; “’: = zi(r, p)wi_,
(r+1<i<p), Liw, =0, Rw!=wly, (r<i<p-1), and Rpw, = 0.
Note zi(r,p)#0 (r+1<1i < p), otherwise Span{wl,...,wp} is a T-module,

contradicting the irreducibility of W. Now set w, = w! and
" .
w; = w} H zi(rp)™ '] - (r+1<i<p).
) j=r+l "
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Then w; (r £i < p) is the desired basis for W.

Proof of (3). Let m(r,p) be the multiplicity of the irreducible T-module with
endpoints r, p, if this module exists, and set m(r,p) = 0 if this. module does not
exist. We must show m(r,p) satisfies (2a), (2b) of Definition 2.4. To prove (2a),
suppose zi(r,p) = 0 for some integer i (r4+1 < i < p). If there exists an irreducible
T-module with endpoints r, p, then, using the notation of (2) in the present theo-
rem, Span{w,,wry1,... wi—1} would be a T-module, contradicting the irreducibil-
ity of W. Hence W does not exist, and m(r,p) = 0, as desired. To prove (2b), we
consider the trace of the element A =L 43Lpq2--- LyRy1Ryy -+ Rry 1R, of T.
Elementary counting arguments give trace(4) = ¢(r,p). Now fix a decomposition
of V into a direct sum of irreducible T-modules. Then trace(4) is equal to the
sum of the traces of the restrictions of A to these modules, and this sum is just
the right side of (2b). [J :

As a consequence of Theorem 2.5, the incidence algebra of a uniform poset has
the following simple basis.

COROLLARY 2.6. Let P be 2 uniform poset of rank N > 2, with lowering,
raising, and projection matrices L;, R;, Ef (0 < i £ N), and incidence algebra
T. For each 4-tuple of integers s, v, p, t (0 <s<r <p<t<N), define

0% (s,7,p,t) = LpyaLpy2 -+ Li—1LeRe1Rez -+~ Ryyy RyLoga Loy -+ - Lyon Ly

9_(3, Ty Py t) =R, 1Rz 'R§+1R3La+1Ls+2 cor Ly LeRyyRyy -+ Rp+1Rp
= transpose of §%(s,r,p,t). o

We interpret 6%(r,r,r,r)=E* (0<r<N).
Then T has a basis B of the form

(24) B = {6*(s,r,p,8) [0S s <r<p<t< N, mfs,t) # 0}

(2.5) U{0(s,mp,t) [0S s Sr<p<t<N, mis,t)#0).

Proof. The dimension of T as a real vector space is certainly at most T(t—s+
1)?, where the sum is over all pairs {s,t|0<s <t <N, m(s,t) # 0}. Since this
is the number of matrices in B, it suffices to show those matrices are independent.
If not, let C' be a minimal subset of B containing dependent matrices. Then C
is a subset of (2.4) or (2.5), and the indices r,p of all matrices in .C are identical.
Without loss, we can assume C is contained in the set (2.4). Suppose

(2.6) - Baabt(s,r,p,t)

is a dependency among the matrices in C. Pick an element §%(s',r,p,t') € C
where &' —s' is maximal, and consider the restriction of (2.6) to an irreducible
T-module with endpoints s, ¢'. Then every element in C is 0 on this module
except 8%(s',r,p,t') itself. But this forces ay¢ = 0, contradicting the minimality
of C. ] ' :
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. COROLLARY 2.7. Let P be a uniform poset of rank N > 2, with incidence
algebra T. Then for each integer i (0 < i < N), the subalgebra EITE: C T is
commutative with dimension at most (N ~i+1)(i +1). :

Proof. Pick any integer ¢ (0 < i< N), and pick any matrices a, b € E}TE;.
Then @ and b commute, since by Theorem 2.5, this is true of their restrictions to
any irreducible T-module. The dimension bound is obtained by counting matrices
in (2.4), (2.5). 0

3. Examples of Uniform Posets. In this section we give 11 infinite families
of uniform posets. For each example we give the irreducible modules of the incidence
algebra using Theorem 2.5. We suppress the details of our calculations.

EXAMPLE 3.1. In each of the 11 examples that follow, P,< is a ¢-regular
graded poset with |Py| = 1 and height function h. Basic combinatorial information
on the examples can be found in the stated references.

1. The truncated subset semi-lattice S(V, M) (2 < N < M) [9], [13].
P = all subsets of {1,2,...,M} with size at most N,

u < v if u is a subset of v (u,v € P),
h(u) = size of u (u € P),
i —1,5) = j—i, ditle) = M=i (0<i<j<N).

2. The Hamming semilattice H(N,M) (N >2, M > 3) [9].
P = all N-tuples of elements from the set {0,1,2,... ,M —1},
u<v if u,v agree on all non-zero coordinates of u (u,v € P),

h(u) = number of non-zero coordinates of u (u € P),

¢(i,j —1,5) = j—i4, #(5,i+1,00) = (M~-1)(N-i) (0<i<j<N).

“This the poset of type I (with ¢ = 1) in [9].

3. The folded Hamming poset H*(N,3) (N > 2) [9]
Let u,v be any elements of the poset H(NN,3) in the above example, with
u = (u1,...,uy) and v = (vy,...,0n) (u;v; € {0,1,2}, 1 <i< N). Call
u, v antipodal opposites if  (u;,v;) = (0,0), (1,2), or (2,1) for all integers
i(1<i<N). -
P = all unordered pairs (u,v) where u,v are antipodal opposites in H(N,3)
(u,v) £ (¥,0") ifatleastoneof u<u/, u<o, v<u, v<o
holds in H(N,3) ((u,v), (W',v') € P),
h(u,v) = number of non-zero coordinates in w or v ((u,v) € P),
i —Li)=j—i (0<i<j<N),
#(0,1,00) = N, ' -
$(i,i+1,00) =2(N ~4) (1<i<N).
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4. The bipartition poset Part(2N) (N >3) [9]. Let X = {1,2,... ,2N}.

P = all unordered pairs (u,v) where u,v C X, uNv=4¢, ulUv=X.

(u,v) < (v',v") ifatleastoneof uC o, uCv', vCu, vCv, ((u,v),(x,v')€P),
h(u,v) = min{lul,v]} ((u,0) € P),

Bii—1,d) = j—i O0<i<ji<N) (i) #(O,N),

#(0,N —1,N) = 2N, '

$(i,i+1,00)=2N —i (0<i<N).

5. The truncated subspace semi-lattice Sy(N, M) (2< N < M) [7,Sec-
tion 9.3], [9], [14].

P = all subspaces of dimension at most N in an M-dimensional vector
* space over the finite field GF(g),

u <v if u isasubspaceof v (u,v € P),

k(1) = dimensionof u (u € P),

) M—~i 1
85 —1,5) =2

-1 . -
, ¢, i+1,00)= qq———

—_ (0<i<j<N).

g-1 -1

6. The polar spaces of rank N (N > 2) [7, Section 9.4}, [29].

Let H be a vector space over GF(g) that possesses one of the following
nondegenerate forms:

name dim(H) form e
Bn(q) 2N +1 quadratic 0
Cn(9) 2N symplectic 0
v quadratic
Dn(g) 2N (Witt index n)
2Dvaa(a)  ON 42 quadratic 1
N+1lq (Witt index N)
2Agn(r) 2N +1 e
2Az2n-a(r) 2N : He(rql-I——lgl)am -2

The parameter e will appear in later calculations. A subspace of H is called
isotropic whenever the form vanishes completely on that subspace. In each of the
above cases, the dimension of any maximal isotropic subspace is N.

P = all isotropic subspaces of H,
u.<wv if u is a subspace of v (u,v € P),
h(u) = dimension of u (u € P),

S giti1 N—ite 1 1}(gV—i—
86,5 -19) = £ i +1,00) = LMD 0cicjem),
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7. The attenuated space A, (N,M) (2 <N < M) [7, Section 9.5],
(9], [28], [31].

Let H be a vector space of dimension M +N over GF(g), and fix a subspace
w C H of dimension M.

P = all subspaces v of H where uNw = 0,
u <o if u is a subspace of v (u,v € P),
h(u) = dimension of u (u € P),

J=i qM+N—:‘ _ qM
$(i,j —1,5) = (ii+1,00) = ———"—  (0<i<j<N)

1
-1 g—1

This poset is equivalent to the poset of type II (with ¢ # 1) in 9. If N>3, itis
also equivalent to an N-net [28].

8. The poset Alty(N) of alternating forms (N > 2) [7, Section 9.5],
[30], [31].

Let H be a vector space of dimension N over GF(q).

= all pairs (u, f), where u isa subspace of H and f is an alternating

bilinear form on wu,
(w,)<@,f) if uCu' and f=fl ((uf),,f)eP),
h(u,f) = dimension of u ((u, f) € P), .

.. NPT =1
¢(Za.7_11.7)= _1 )

g

#(iri+1,00) = ==

(0<i<j<N).

9. The poset Hery(N) of Hermitian forms (N > 2) [7, Section 9.5,
(30], [31].
Same as 8, except H is over GF(q?) and f is a Hermitian form.

2}—2'—,1 . 2N __ 2 . .
¢(z,]-—1,_7)———_:—1—, ¢(z,z+1,oo)=q_(qﬁ_) (0<i<j<N)

10. The poset Quad,(N) of quadratic forms (N > 2) [7, Section 9.5],
[30], [31]. _

Same as 8, except f is a quadratic form. We allow ¢ even or odd. See Bannai
and Ito [1, p. 309] for the definition of a quadratic form if ¢ is even.

. . =i 1 .. N g | .. -
86,319 =T diitne) =110 o<icicm)

11. Hemmeters’ poset Hemq(Nj (N >2) (g odd) [15].

Let X%, X~ denote two copies of the graph of the dual polar space X =
Cn-1(g); (g odd) (Bannai and Ito [1, p. 303]). Let Y be the bipartite graph with
vertex set Xt U X =, where vertices z+ € X*, y~ € X~ are adjacent in Y if
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andonly if z =y or z,y areadjacent in X. Then Y is the new distance-regular
graph discovered by Hemmeter [15]. (¥ has the same intersection numbers as the
graph Dn(g)). Now let 8 be the usual distance function in Y, and fix any vertex
up €Y (the choice of up is irrelevant since Y is vertex transitive). Now define

P =Y,
wu<v if O(ug,u)+(u,v)=0(uo,v) (u,v€P),
h(u) = 8(uo,u) (u€ P),

. N @1 . N ¢ ..
¢(z7.7_11.7)= -1 ¢(z,z+1,oo)= q—1 (0-<-Z<]SN)'

THEOREM 3.2. Let P denote any of the posets in Example 3.1. Then P is-
uniform. Indeed ’

(3.1) e RiaLi-aLi + LiRiaL;i + efLiLiyaRi = fili (1Si<N),

where €, f; are given below
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Ezample e; (2<i<N)
1. S(N, M) -1
-1
2. H(N,M) -1
3. H*(N,3)
-1
4
4. Part(2N) -3
| -1
-2
5. 54(N,M) —g(g+1)™*
-1
6. Polar spaces  —(q+ 1)-1
of rank N
7. Aq(N, M) —g(g+ 1)1
8 Al (N)  —(g+D)7
0. Her(N)  —g*(g® + 1)
10. Quad,(N) —¢*(g+ 1)
11. Hemy(N) ~g*(g+1)?

ef (1<igN-1)

(]

[

| | |
N o= N

|
[N [53

—(g+1)7?

—g(g+ 1™

—(g+1)7!
- g+ 1)
-~ (¢* +1)7!
=g (g +1)

—g~ g+ 1)

fi (1<i<N)
1
M—2N+2

M~1

M—i

M~N+1_ N—1

q —q

q—1

qe+2N+1-—2i + qi—l

q

qN—l

Case
1<<N-1

i=N

3<i
i<N-2
i=N-1
=N
1<i<N-1

=N

Proof. Pick any integer : (1 <¢ < N) and pick any z € P, 'y € P;. Then,
(LiRi—1Li)zy counts the number of ordered pairs w, z € P, where z € Py,
weP, t<w, 2z<w,and z<y. The =, y entries of Ri_gL;_1Li, LiLi11Rs,
and L; have similar interpretations. The following table displays these counts in
all cases where at least one of them is nonzero.

-
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Ezample

S(N, M)

H(N, M)

H*(N,3)

Part(2N)

SulN, M)

PolarSpaces
A (N, M)
Alty(N)

.

Hery(N)

Quady(N)

Hem,(N)

(Ri-2Li—1Li)zy (LiRi-1Li)zy (LiLiy1 Ri)zy
2(i—-1) M 2M —i)
2(N-1) M 0

2 2 2
2 2 0
2(i-1) NM-1)—-(G-1)}(M-2) 2N —- )M ~1)
2 2 2
2 1 0
0 N 4N —-1)
2 2N 4(N ~2)
2(i —1) 2N —i+1. 4N —1)
4 2 0
2 1 0
2 4 4
2 2 2
2(G-1) aN 4N -2
2N -1) 4N 0
2 2 2
2 4 0
0 0 6
(2 -1)(g+1) SrgMoiH g1 (7 1) gd)
g=—1 g-1 g-1
N-1 -
— g
(g q-ll)_(g+1) gNiqu:";“ ¢-1 0
g+1 g+1 g+1
g+1 g+1 0
(4‘-‘—1)qu+1) (@ oV T e gl (g Ty T )
qq+ 1 qq+ 1 qq+ 1
qg+1 1 0
(= 1) (g+1} gNEM=it1 oMy gig (gMEN=i_gMY(e+1)
g-1 g=-1 q=-1
g+1 g+1 q+1
g+1 q 0
(g =1)(g+1) gV —g?4giti—giv? ("= Ng+1)
g-1 g-1 9-1
g+1 g(g +1) 7*(g+1)
(g+1)? (g +1) 0
(q""—])(q’+1) g:N+:_q4+qzi+2_qzi-1 q(q’"—q’i)(q°+l)
qé-1 . géi-1 g3-1
¢ +1 e +1) 7 +1)
qz +1 q4 0
(a+D(*+1) o*(g+1) 0
([i"‘-l](g-i-ll N1 _ al 41 8 N _ b 41
g-1 g-1 g-1
g+1 a(g+1) (e +1)
g+1 2 0
2(g+1) 2¢2 0
“-'-'1_1)‘“_“) N_ a3 i1 i1 “N_laxﬁn
’ q-1 g-1 g-1
g+1 a(g+1) a*(g+1)
2g+1) (g+1)(29-1) o{e* - 1)
0 g+1 a(g+1)?
(g+1) (g +1) 0

(L )zy

- OO MM

oo

OO D OO C O pt e b

OO OO O oo DO e OO (= =

OO0 -

Comments

i< N
i=N
2<i<N
i=N

2<i<N
2<i

=1
i=2
3<1
i=3
3<i
1=2
3<i< N

i<N-1
i=N
2<i<N-1
i=N
i=N-1,N>4

i< N
i=N
2<i<N
i=N

S2<i<N
2<i
3<i

2<i<N
2<i
3<i

2<i< N
3<i< N
3<i<N
3<i



This establishes (3.1). Conditions (2) and (3) of Definition 2.1 must now be
verified. But condition (2) is immediate and condition (3) holds since det E(r,p)

in the following table is never 0.

Ezample

S(N, M)

H(N, M)
H*(N,3)

Part(2N)

Se(N, M)

Polar spaces
A,()V, M)
Al (N)
Quad,(N)
Hemy(N)

Her,(N)

det E(r, p) (0<r<p<N)
(p—r+1)2r-7
gr—p+1
(p—r+1)27F
(p -r+ 1)2r-»
(p—r+1)2r?
or—pt+1
or—p+2
' 1

qp-r+1 —

"

T (P

P—r+l __ 1
(g‘“qjl‘—)(q +1)7P

same
same
same

same

q2p—2r+2 -1

(N + )7

q

Recall that for any integer r > 0,

(a)r =1

Also,

if =40,

Ly

Case
p<N

p=N

p<N-1
p=N-1

r+l<p=N

‘r+l=p=N

-p<N

p=N

and a(a—1)---(a—r+1) if r>0.

(a;q),..=1 if r=0, and (1-a)(1-ag)---(1—ag™™?) if r>0.

206




THEOREM 3.3. Let P denote any poset in Example 3.1. Then the parameters
determining the irreducible modules of the incidence algebra (by Theorem 2.5) are
as follows. All m(r,p) not listed are 0.

1. S(N,M).
G—r)p—i+1) if p< N
z(rp) = ‘ - (1<r+1<i<p<N)
G—rM—-r—i+1l) f p=N
m(r,p) = (MT?('](QI_—;Z_::-)I) if p=min{M —r,N} (0<r<p<N).
2. H(N,M).
ai(rp) = (M-1)G-r)p—i+1) (1Sr+1<i<p<N)
_ (NN M - N p—ry1)
mrE) = N p= NN D) @sr<psNsr+p).
3. H*(N,3).
r - i r=0and i=1
zi(r,p) = (1€r+1<i<p<N)

2 —r)(p—i+1) otherwise

m(r.p) = (N +1),(p—r+1)
I IN = +p— NN +1)

(0<r<p<N <rip, r4+p—N even)

4. Part(2N).

AN —r)(N—r+1)  if i=p=N"
zi(rp) =4 (i-r)@N—-r—i+1) if 1<i<N-1and p>N-1
G-r)p—i+1) df p<N -1
(1<r+1<i<p<N)

. _(2N),(2N —2r +1)
m(rP) =GN —r 1)

where p= N (r even) or p=N~1 (r odd)

O0<r<p<N<r+p) o
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5. So(N,M).

E_ P\ ,P _ i1y '
(¢ 9" ) g ) if p<N

-1 2 11 )
zi(r,p) = ,.(q, )Af_, i1 \ (1<r4+1<i<p< N
(¢ —-q )0} -q¢ if p=N
(a-1)*¢1
N, -1 N __ _2r=1
m(r, p) =(q i (e ) if p=min{N,M—r} (0<r<p<N).

(69)r(gVN — ¢ 1)

6.  Polar spaces of rank N.

(@477 4 1)(g ~ g)(g? — g
g~ g—-1)

zi(r,p) = (1Sr+1<i<p<N)

m(r,p) =
(@Y 0= 4 Yo (—=¢* " ) v—p(q~T; DN-p(0" N )N p(—gtt V22 )y
(6 )r(—g**N=2r42, 0) (g F =", ). (05 9)N —p(—°F; QN—p(—geHtN—2rtl )y

(1 + qe—r+2N—2p)
(g N1 )n-p(1 + ¢*~7)

q(er+2r-( ";" )+(N—p)(2r-—N+p—1)+ep.—-eN)(_l)p-—N

(0<r<p<N<r+p).
7. Ag(N,M).

MAN—=p—r—itl( i _ TV P _ im1
zi(r,p) = & (q(fl)f)(q d )_ (1<r+1<i<p<N)

_ - ’ rip-N - -
A )N (g0 ) gt N R (_1)re-N
m(r,p)— (qN“"'“'q"l)N' (¢ ) (g;
; -2 ON-p(8 Drtp-N

(0<r<p<N<Zr+p<M+N).

8. Alt,(N).

N-r-p(gf — g")(g? - ¢*~1)
(g—1)

zi(r,p) = 1 (1<r+1<i<p<N)

m(r, P) = :
(@397 )rap-n (2N TP Y Ny (VT — NS ) O ) S 2
(4% 0" g (g I —p(gN 741 = 1)

(0<r<p<N<r+p, r+p-N even).
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9.  Hery(N).

2N=2p—2r+10,2i _ 027Y(o2p _ ,2i-2 )
wilrp) =2 ‘éz_32“ ) Gsrii<i<pm

m(r,p) =
_ T - - - rip~N e
(q2N;q 2)r+p—1v(q‘“" 2r 2p;q 2)N—p(92N 2r+2_q2N 2P)(___q)( 7 ')(._1)r+p .
(=8 ~Qrtp-N{(g% *)v—p(@?V 22 - 1)

(0<r<p<N<r+p)

10.  Quady(N).

Ne—p—rtlf i _ r\( p _ ,i-1
zi(r,p) = (a_%¥q ) (1<r+1<i<p<N)

(@30 et (@ N TP g )N p(gV T H — gN-PY(—1)r =N
(7% 47 %) tany (g5 9)N—p(gV 7+ - 1)

m(r,p) =
(0<r<p<N<r+p)

11.  Hemy(N). Same as Alt,(N).

Proof. The 'zi(r,p) constants are found by solving the linear system in (1)
of Definition 2.4. Since E(r,p) is tri-diagonal, this amounts to solving a 3-term
linear recurrence equation. To get the m(r,p) constants, we first find the e(r,p)
constants using the Note after Definition 2:3, and then apply (2) of Definition 2.4
and induction. We note that much of this data has been found by other authors
using different methods. See Dunkl [14] for ' S;(N, M) and A4(N, M), and Stanton
(29}, [30], [31] for the polar spaces, Alty(N), H erg(N), and Quady(N). 01

4. Remarks. In this section we give some directions for future research. Let
X denote a d-class symmetric association scheme with Bose Mesner algebra M
(defined in Bannai and Ito [1, p. 56]), and let P denote a uniform poset with rank
‘N and incidence algebra T. Call X and P compatible if X can be identified
with the upper fiber Py of P sothat M isa subalgebra of E}TEj. Note this
implies d < N by Corollary 2.7. Each uniform poset in Example 3.1 is compatible
with at least one P- and Q-polynomial association scheme with d 2 2. Denoting
by A the first associate matrix of the scheme, we have, using the notation of
Bannai and Ito [1, p. 301}

209




Poset

1.

2a.

6a.

6b.

10.

11.

S(N, M)
H(N,M)

H(N,3)

H*(N,3)

Part(2N)
S(N, M)
Rank N polarspaces

Cn(g) (godd) .

Bn(q)
Ag(N, M)

Alty(N)
Hery(N)

Quady(N)

Hem,(N)

Compatible d — class scheme

Johnson scheme J(N,M)
d=min{N,M~-N}

Hamming scheme H(N,M-1)
d=N

1H(N+1,2)

a2

Antip. quot. of H(N,2)
d=[N/2)

Antip. quot. of J(V2N)
d=|N/2]

q-Johnson scheme J,(N,M)
‘d=min{N,M~N}

schemes of dual polar spaces
d=N

Ustimenko’s scheme [16]

d=[43]

1Dy +1(9)
d={&$]

bilin. forms scheme H,(N.M)

d=min{N,M}
alt. forms scheme At

=[N/2]

Herm. forms scheme Her

quad. forms scheme Quad
d=[43)

Quad
d=[N/2]
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Comments
A=Ry_ 1Ly - NE}
A=Ry_1Ly— NE}

A=3IRN_1Bn_3Ln_1Ln-
(N —2)Byo Ly + X5 gy,

A=Ry_1Ly— NEN ‘
(N 2>3)

A=1Ry_Ly- NEj
N— *
A=RyaLn - (EF)EY

A= RyaLy - (L31)Ex

A=(¢+ 1) Ry-1Bnv—2Ly-1 Ly~

-1
ﬂi";T_l}'RN—ILN'*'

N N_ "
(E3N&SE - 1B

same as 6a.
N_
A= Ry1Ly - (LFEY

A=(g+1)
x(By-1Ly ~ (£54)E)

(¢+1)A? + 24 - g(q-1)Rn—1 Ly

2y )
=(3)EN

no simple relationship

same as 8.




We note A € E};TE}, for Examples 9, 10. For Example 9, this follows since
T is the full commuting algebra of Aut(P), which contains A (see [30, Theorem
4.10]). For Example 10, this follows from the averaging technique of Stanton [31,
p-304). Call a symmetric association scheme geometric if it is compatible with some
uniform poset. Then the above information shows that most of the known P- and
Q-polynomial schemes with d > 7 are geometric. Indeed, the catalog in [7, Section
8.5] shows that apart from the ordinary cycles, the known P- and - @-polynomial
schemes with d > 7 that are possibly not geometric are (i) the Doob schemes
[12] (with the same parameters as the Hamming schemes H(d,4)), and (ii) the
Hemmeter schemes [15] (with the same parameters as Da(q), ¢ odd), and (iii) the
antipodal quotient of the half cube 3 H(n,2), (with n even).

Problem 1. Determine if the examples (i), (ii), (iii) above are geometric. If not,
can the definition of “geometric” be slightly generalized so that they are?

Conjecture 2. All geometric association schemes are P- and Q-polynomial.

Conjecture 3. For sufficiently large N, the only uniform ¢-regular semi-lattices
of rank N are those in 1, 2, 5, 6, 7 of Example 3.1.

Problem 4. Find a simple axiom system for the points Py and lines Pyn_y
(and if necessary, planes Py_,) that characterizes the 11 examples in Section 3 {or
all uniform posets). See Ca.meron [8] for Example 6 and Sprague [26], {27], [28] for
Examples 1, 2, 5, 7.

Acknowledgements. The author would like to thank Tatsuro Ito, Arnold Neu- ,
maier and Dennis Stanton for helpful discussions on the subject of this paper.
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