Algebraic Graph Theory Notes

Karthik Ravishankar

May 6, 2022

1 Combinatorially 2 Homogenous Graphs

We fix $\Gamma = (X, R)$ to be a bipartite distance regular graph with diameter $D \ge 3$ and valency $k \ge 3$ for the rest of this section. **Definition 14:** For $x, y \in X$ with $\partial(x, y) = 2$, we set $\Omega_{1,2}(x, y) = \Omega_{1,2}$.

Definition 14: For $x, y \in X$ with $\partial(x, y) = 2$, we set $\Omega_{i,j}(x, y) = \Omega_{i,j} = \Gamma_i(x) \cap \Gamma_j(y)$, that is the set of vertices at distance *i* from *x* and distance *j* from *y*. Let $\mathcal{L} = \{ij : 1 \leq i, j \leq D, i+j \geq 2, |i-j| = 0, 2\}.$

Observe that $\Omega_{i,j} \neq 0 \implies ij \in \mathcal{L}$ since $\partial(x, y) = 2$. Recall that b_i is the number of vertices at distance i + 1 from x and 1 from y, and c_i is the number of vertices at distance i - 1 from x and 1 from y. Then we have:

Lemma15: a) For i < D, $z \in \Omega_{i+1,i-1}$ is adjacent to $c_{i+1} - c_{i-1}$ vertices in $\Omega_{i,i}$, c_{i-1} vertices in $\Omega_{i,i-2}$ and b_{i+1} vertices in $\Omega_{i+2,i}$. We have analogous equalities for $\Omega_{i-1,i+1}$.

b) For i < D and $z \in \Omega_{i,i}$ if δ_i is the number of neighbours in $\Omega_{i-1,i-1}$, then z has $b_i - c_i + \delta_i$ neighbours in $\Omega_{i+1,i+1}, c_i - \delta_i$ vertices in $\Omega_{i-1,i+1}$ and by definition δ_i vertices in $\Omega_{i-1,i-1}$.

 $c)z \in \Omega_{D,D}$ has k neighbours in $\Omega_{D-1,D-1}$ where k is the valency. The proofs follow from the definitions of the c and k and Ω

The proofs follow from the definitions of the c_i and b_i and $\Omega_{i,j}$.

Theorem 16: The following are equivalent: $a)\forall i, z \in \Omega_{ii}\gamma_i = |\Omega_{1,1} \cap \Gamma_{i-1}(z)|$ is independent of z. $b)\forall i, z \in \Omega_{ii}\delta_i = |\Omega_{i-1,i-1} \cap \Gamma_1(z)|$ is independent of z. $c)\forall ij, mn \in \mathcal{L}$ and for $z \in \Omega_{i,j}$ the scalar $|\Omega_{m,n} \cap \Gamma(z)|$ is independent of z. $d)span\{\sum_{z \in \Omega_{i,j}} \hat{z} : ij \in \mathcal{L}\}$ is A-invariant.

If the four conditions above are true then $\forall i, 1 \leq i < D, \gamma_i$ is non zero and $\delta_i = c_{i-1}\gamma_i/\gamma_{i-1}$.

Proof: $a \implies b$ follows from counting the number of ordered pairs uv such that $u \in \Omega_{1,1} \cap \Gamma_{i-1}(z)$ and $v \in \Omega_{i-1,i-1} \cap \Gamma(z)$. There are γ_i choices of u and given u there are c_{i-1} choices of v. On the other hand there are δ_i choice for v and given v there are γ_{i-1} choices for u. Therefore we get the equation $\delta_i = c_{i-1}\gamma_i/\gamma_{i-1}$ above, and this shows that δ_i is independent of z if the γ_i 's are. $b \implies c$ follows from lemma 15. $c \implies d$ follows from the definitions. Lastly $d \implies a$ follows by observing that $|\Omega_{1,1} \cap \Gamma_{i-1}(z)|$ is the z coordinate of $A_{i-1}(\sum_{z \in \Omega_{1,1}} \hat{z})$.

We can now define the notion of combinatorially 2 homogenous.

Theorem 17: The following are equivalent:

a) the conditions of theorem 13 (from the previous section) hold $\forall i, 1 \leq i \leq D-1$.

 $b) \forall x, y \text{ with } \partial(x, y) = 2 \text{ the conditions of theorem 16 hold.}$

 $c)\exists x, y \text{ with } \partial(x, y) = 2 \text{ such that the conditions of theorem 16 hold.}$

When any of the conditions of theorem 17 hold, we say that Γ is combinatorially 2 homogenous.