Math 542 Midterm Exam, Spring 2016
Prof: Paul Terwilliger
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1. Let R and S denote nonzero rings. Prove that the ring R x S is not a field.

Solution. Pick nonzero r € R and nonzero s € S. The elements (r,0) and (0,s) of R x S
are nonzero, and their product is zero. So R x S is not an Integral Domain. A field is an
Integral Domain, so R x S is not a field.



2. Prove that the polynomial ring Z[z, 3] is not a Euclidean domain.

Solution. The ring R = Z[x,y] is a UFD since Z is a UFD. The ideal I = Rx + Ry of R
consists of all the polynomials in R that have zero constant term. Therefore I # R. The
ideal I is not principal, since x,y are irreducible with GCD equal to 1. The ring R is not a
PID, and therefore not a Euclidean Domain.



3. Find all the ordered pairs r, s of positive integers such that r? + s? = 999.

Solution. Suppose that r and s are positive integers such that 72 4 s = 999. Each of 72, s
is equal to 0 or 1 (mod 4). So r? + s? is equal to 0 or 1 or 2 (mod 4). But 999 is equal to 3
(mod 4). Therefore 7, s do not exist.



4. Let F denote a field and consider the polynomial ring R = F[x,y]. Consider the ideals
I = R(x—y?) and J = R(z* —y?) in R. Prove that the quotient rings R/I and R/.J are not
isomorphic.

Solution. Note that R is a UFD. The polynomial x — y? is irreducible in R, so R/I is an
Integral Domain. The polynomial 22 — y? = (z + y)(z — y) is not irreducible in R, so R/J
is not an Integral Domain. Therefore R/I and R/J are not isomorphic.



5. Let IF denote a field. Let R denote the set of polynomials in F[z] that have z-coefficient
zero. Note that R is a subring of F[z]. Prove that R is not a UFD.

Solution. The units of R are the nonzero elements of F. Note that 25 = (22)? and 2° = (7).

The elements 22 and 22 are irreducible in R, since no element in R has degree 1. The result
follows.



6. Prove that the polynomial x® + nx + 2 is irreducible in Z[z], provided that n # 1, =3, —5.

Solution. Assume the given polynomial is reducible in Z[x]. Then there exist integers a, b, ¢
such that x* + nz + 2 = (2% + az + b)(x + ¢). Comparing the two sides we obtain a +c¢ =0
and bc = 2 and n = ac + b. The possible solutions for (a,b,c) are

(—2,1,2), (—1,2,1), (2,—-1,-2), (1,—2,-1).

For these four possible solutions the corresponding values of n are —3, 1, —5, —3 respectively.
These values of n are not allowed, so we have a contradiction.



7. For the Z-modules M = Z/7Z and N = Z/6Z, find all the elements in Homz (M, N).

Solution. Homy(M, N) contains the zero homomorphism and nothing else. We now give the
reason. For all @ € M we have 7Ta = 0. For all b € N we have 60 = 0. For ¢ € Homy(M, N)
we have

p(a) = 1p(a) = Tp(a) = p(7a) = (0) = 0.

Therefore ¢ = 0.



8. Let n = 1000. Find the order of the group of units for the ring Z/nZ.

Solution. The answer is 400. The number of units in the ring Z/nZ is equal to the number
of positive integers up to n that are relatively prime to n. This is ¢(n) where ¢ is the
Euler function. We have ¢(n) = ¢(10%) = ¢(235%) = ¢(2%)p(5%). Also ¢(2%) = 22 = 4 and
#(5%) = 5% — 52 = 100. So ¢(n) = 400.



9. Let R denote a ring with 1 # 0. Let M denote an R-module, and let N denote an
R-submodule of M. Define J = {r € R|ra = 0 for all a € N}. Prove that J is a 2-sided
ideal in R.

Solution. One checks that J contains 0 and is closed under addition. So J is a subgroup
of the abelian group R. For r € R and s € J we have (rs)N = r(sN) = r(0) = 0. Therefore
rs € J. We have (sr)N = s(rN) C s(N) = 0. Therefore sr € J. We have shown that J is a
2-sided ideal in R.
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10. Let R denote a commutative ring with 1 # 0. Let F' denote a free R-module with finite
rank. Prove that the R-modules Hompg(F, R) and F are isomorphic.

Solution. Denote the rank by ¢ and view FF' = R X R X --- X R (t copies). For 1 <i <t
let e; denote the element of F' that has 1 in coordinate 7 and 0 in all other coordinates.
Consider the map 6 : Homg(F, R) — F that sends ¢ — (p(e1), p(e2), ..., p(e:)). We have
O(p+ @) = 0(p) +0(0) for all ¢, ¢ € Hompg(F, R). We have 0(r¢) = rf(p) for all r € R and
¢ € Hompg(F, R). Therefore 6 is an R-module homomorphism. We check that 6 is injective.
Given ¢ € Hompg(F, R) such that 6(¢) = 0, we show that ¢ = 0. By construction ¢(e;) =0
for 1 <i <t. The elements ey, ..., e; generate the R-module F'| so p(x) = 0 for all x € F.
Therefore ¢ = 0. We have shown that 6 is injective. We check that 6 is surjective. For a € F
write (ap,as, ...,a;). There exists ¢ € Homg(F, R) such that p(e;) = a; for 1 <1i <t¢. By
construction (¢) = a. We have shown that 6 is surjective. By the above comments 6 is an
R-module isomorphism.
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