
Math 542 Midterm Exam, Spring 2016
Prof: Paul Terwilliger

Your Name (please print) SOLUTIONS

NO CALCULATORS/ELECTRONIC DEVICES ALLOWED.

MAKE SURE YOUR CELL PHONE IS OFF.

Problem Value Score

1 10
2 10
3 10
4 10
5 10
6 10
7 10
8 10
9 10
10 10

Total 100

1



1. Let R and S denote nonzero rings. Prove that the ring R× S is not a field.

Solution. Pick nonzero r ∈ R and nonzero s ∈ S. The elements (r, 0) and (0, s) of R × S
are nonzero, and their product is zero. So R × S is not an Integral Domain. A field is an
Integral Domain, so R× S is not a field.
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2. Prove that the polynomial ring Z[x, y] is not a Euclidean domain.

Solution. The ring R = Z[x, y] is a UFD since Z is a UFD. The ideal I = Rx + Ry of R
consists of all the polynomials in R that have zero constant term. Therefore I 6= R. The
ideal I is not principal, since x, y are irreducible with GCD equal to 1. The ring R is not a
PID, and therefore not a Euclidean Domain.
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3. Find all the ordered pairs r, s of positive integers such that r2 + s2 = 999.

Solution. Suppose that r and s are positive integers such that r2 + s2 = 999. Each of r2, s2

is equal to 0 or 1 (mod 4). So r2 + s2 is equal to 0 or 1 or 2 (mod 4). But 999 is equal to 3
(mod 4). Therefore r, s do not exist.
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4. Let F denote a field and consider the polynomial ring R = F[x, y]. Consider the ideals
I = R(x− y2) and J = R(x2− y2) in R. Prove that the quotient rings R/I and R/J are not
isomorphic.

Solution. Note that R is a UFD. The polynomial x − y2 is irreducible in R, so R/I is an
Integral Domain. The polynomial x2 − y2 = (x + y)(x − y) is not irreducible in R, so R/J
is not an Integral Domain. Therefore R/I and R/J are not isomorphic.
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5. Let F denote a field. Let R denote the set of polynomials in F[x] that have x-coefficient
zero. Note that R is a subring of F[x]. Prove that R is not a UFD.

Solution. The units ofR are the nonzero elements of F. Note that x6 = (x2)3 and x6 = (x3)2.
The elements x2 and x3 are irreducible in R, since no element in R has degree 1. The result
follows.
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6. Prove that the polynomial x3 +nx+ 2 is irreducible in Z[x], provided that n 6= 1,−3,−5.

Solution. Assume the given polynomial is reducible in Z[x]. Then there exist integers a, b, c
such that x3 + nx+ 2 = (x2 + ax+ b)(x+ c). Comparing the two sides we obtain a+ c = 0
and bc = 2 and n = ac+ b. The possible solutions for (a, b, c) are

(−2, 1, 2), (−1, 2, 1), (2,−1,−2), (1,−2,−1).

For these four possible solutions the corresponding values of n are −3, 1,−5,−3 respectively.
These values of n are not allowed, so we have a contradiction.
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7. For the Z-modules M = Z/7Z and N = Z/6Z, find all the elements in HomZ(M,N).

Solution. HomZ(M,N) contains the zero homomorphism and nothing else. We now give the
reason. For all a ∈M we have 7a = 0. For all b ∈ N we have 6b = 0. For ϕ ∈ HomZ(M,N)
we have

ϕ(a) = 1ϕ(a) = 7ϕ(a) = ϕ(7a) = ϕ(0) = 0.

Therefore ϕ = 0.
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8. Let n = 1000. Find the order of the group of units for the ring Z/nZ.

Solution. The answer is 400. The number of units in the ring Z/nZ is equal to the number
of positive integers up to n that are relatively prime to n. This is φ(n) where φ is the
Euler function. We have φ(n) = φ(103) = φ(2353) = φ(23)φ(53). Also φ(23) = 22 = 4 and
φ(53) = 53 − 52 = 100. So φ(n) = 400.
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9. Let R denote a ring with 1 6= 0. Let M denote an R-module, and let N denote an
R-submodule of M . Define J = {r ∈ R|ra = 0 for all a ∈ N}. Prove that J is a 2-sided
ideal in R.

Solution. One checks that J contains 0 and is closed under addition. So J is a subgroup
of the abelian group R. For r ∈ R and s ∈ J we have (rs)N = r(sN) = r(0) = 0. Therefore
rs ∈ J . We have (sr)N = s(rN) ⊆ s(N) = 0. Therefore sr ∈ J . We have shown that J is a
2-sided ideal in R.
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10. Let R denote a commutative ring with 1 6= 0. Let F denote a free R-module with finite
rank. Prove that the R-modules HomR(F,R) and F are isomorphic.

Solution. Denote the rank by t and view F = R × R × · · · × R (t copies). For 1 ≤ i ≤ t
let ei denote the element of F that has 1 in coordinate i and 0 in all other coordinates.
Consider the map θ : HomR(F,R) → F that sends ϕ 7→ (ϕ(e1), ϕ(e2), . . . , ϕ(et)). We have
θ(ϕ+ φ) = θ(ϕ) + θ(φ) for all ϕ, φ ∈ HomR(F,R). We have θ(rϕ) = rθ(ϕ) for all r ∈ R and
ϕ ∈ HomR(F,R). Therefore θ is an R-module homomorphism. We check that θ is injective.
Given ϕ ∈ HomR(F,R) such that θ(ϕ) = 0, we show that ϕ = 0. By construction ϕ(ei) = 0
for 1 ≤ i ≤ t. The elements e1, . . . , et generate the R-module F , so ϕ(x) = 0 for all x ∈ F .
Therefore ϕ = 0. We have shown that θ is injective. We check that θ is surjective. For a ∈ F
write (a1, a2, . . . , at). There exists ϕ ∈ HomR(F,R) such that ϕ(ei) = ai for 1 ≤ i ≤ t. By
construction θ(ϕ) = a. We have shown that θ is surjective. By the above comments θ is an
R-module isomorphism.
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