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Rayleigh Quotients

Let A be an n X n symmetric matrix. Fix an orthonormal eigenbasis (bg, . ..,b,—1) of A, ordered such that
the associated eigenvalues \; are decreasing. Writing a non-zero vector v € R™ as v = tgbg + ...+ tp—1bn—1,
we see:
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Spectra of k-regular graphs
In particular, if A is the adjacency matrix of a graph T' = (X, R):
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Now, let v be a Ap-eigenvector of A, and pick j such that |v;| > |v;| for all . Then we have:
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Thus, A\g < deg(x;), so the largest eigenvalue of a graph is between its average degree and maximum degree.
In particular, for k-regular graphs, we have A\g = k. Notice in this case that we have equality all the way
through, so |v;| = |v;| for &; ~ ;. Applying this argument to the vertices of distance 2 from x;, and so on,
we get that |v;| = |v;| for all ¢ such that z; is in the connected component C' of z;. Then v — |vj|14,cc is
another k-eigenvector of A with more zeroes than v, so we apply this argument again to eventually write v
as a linear combination of the 1,,c¢c for C' a connected component of I'. Since those vectors are orthogonal,
we get that the multiplicity of k = Ao as an eigenvalue of A is the number of connected components of T

Proposition 1. A k-regular graph T' = (X, R) with spectrum \o > ... > A,_1 is bipartite if and only if
An—1 = —k.

The Laplacian
Closely related to the adjacency matrix of a graph is its Laplacian:
L = diag(deg(z1),...,deg(z,)) — A

If T is k-regular, this is equal to kI — A, so its spectrum is 0 < k — Ay < ... < k — \,_1 (note that it is
therefore positive semi-definite). We may also think about it as an averaging operator on L?(X), and to
random walks on the graph.



1 Expander Graphs and the Spectral Gap

We wish to have a notion of “highly connected” graphs. To this end, given a subset W of the vertices, we
let £(W) be the set of edges which are incident on both W and its complement. This allows us to define the
Cheeger constant of a graph as follows:
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This is inspired by the notion of the Cheeger constant of a Riemannian manifold. The following proposition
shows how to view how well-connected a graph is in terms of its Cheeger constant.

Proposition 2. h(T') > 0 if and only if T is connected, and if W C X with |[W|/n =06 < 1/2, then we must
delete at least dnh(T") edges to disconnect W from the rest of the graph.

Proof. To disconnect W from the rest of the graph, we must delete £(W), which has > |W|h(T') = dnh(T")
edges. O

A family of expander graphs is a family of connected k-regular graphs (at least we want a global upper
bound on the maximum degree) for which the number of vertices goes to infinity and for which the Cheeger
constant is bounded below. The interesting thing is that we can characterize this property in terms of the
spectrum of the graph.

Proposition 3. LetT' be a connected k-regular graph and let A (I") be the smallest eigenvalue of its Laplacian.
Then:
h(I')?
2k

Thus, a family I', ;, of connected k-regular graphs with n — oo is an expander family if and only if the
A1 (T, 1) are bounded below.

Thinking in terms of the adjacency matrix, we are trying to bound the second largest eigenvalue above.
More generally, we can bound the second largest eigenvalue in absolute value of a graph. Writing the
spectrum of the adjacency matrix as A\g > ... > \,_1, this would be max(|\1],|An—2|) if T is bipartite, and
max(|A1], | An—1|) otherwise. We denote this value by A(T'). This quantity controls combinatorial properties
of the graph such as diameter, independence number, and chromatic number. The best we can do in that
regard was shown by Alon and Boppana:
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Theorem 4. Let Iy, i be a family of k-regular graphs with n — co. Then
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This bound is derived by considering the universal cover of the I',, ;, namely the (infinite) k-regular tree.
This motivates the following definition:

Definition 5. A k-regular graph I', ; is Ramanujan if A(X) < 2vk — 1.

We see that Ramanujan graphs are the best possible expanders. I will now outline their construction,
following Lubotzky, Phillips, and Sarnak.

Constructing Ramanujan Graphs

Definition 6. Let G be a group and let S C G be symmetric, i.e. S = S~1. The Cayley graph C(G,S) is a
graph whose vertex set is G, and for which two vertices g and ¢’ are connected if there is some s € S such
that gs = ¢'.



For a quadratic form @, we write rg(n) = #{Qz = n}. For Q(z) = 23 + 23 + 23 + 23, we may obtain an
explicit formula by writing down the function Y, rq(n)e?™"*, which is a modular form, in terms of a basis
of modular forms with known Fourier coefficients (known as Eisenstein series):
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In particular, let p and ¢ be distinct primes which are congruent to 1 modulo 4. The above formula states that
ro(p) = 8(p+1), of which p+1 are such that z¢ is positive and odd. Given such a solution o = (ag, a1, a2, as),

we associate the matrix:
o= ( ap + 201 a2—|—za3>
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where i is an integer for which 2 is congruent to —1 modulo 4. If p is a square mod ¢. Let S = {a}. Then
|S| =p+1, so C(PSLy(Fy,S) is a Ramanujan graph. Otherwise, w consider C(PGL2(F,),S). The ideas
involved in proving that these graphs have the desired properties involve realizing this graph explicitly as
a quotient of the k-regular tree using quatnerion algebras, and then doing harmonic analysis on the tree.
The key input in this argument, which is where the name “Ramanujan graph” comes from, is an asymptotic
formula for rg(p*) where

Q(x) = 22 + 4¢%2? + 4¢*x3 + 4¢° 23

As before, we may attempt to write the exponential generating function ., ro(n)e*™"* as a modular form

of a certain type, however the space of such modular forms no longer has a basis purely in terms of Eisenstein
series. We may also encounter “cusp form”, whose Fourier coefficients we do not know well. The Ramanujan
conjecture, in its most naive form, gives a bound on the Fourier coefficients of cusp forms (this naive form is
now a theorem, proven by Deligne, however a much more general representation-theoretic statement is still
unknown).



