Classical t -designs

Yuxiao Fu

April 28, 2023

In this notes, I will introduce t-designs, a standard design in combinatorics to approximate the whole set.

0.1 Basics of designs

Definition 0.1 (t - (v, k, λ) Design). Let $t, k, v, \lambda \in \mathbb{Z}_+$ with $t \leq k \leq v$. Consider a finite subset V consisting of v points and the set $V^{(k)}$ consisting of the k-element subsets of V. A pair (V, \mathcal{B}) of V and a subset $\mathcal B$ of $V^{(k)}$ is called a t - (v, k, λ) design (or simply a t-design) if there exists a $\lambda \geq 1$ such that for any $T \in V^{(t)}$, the following holds:

$$
|\{B \in \mathcal{B} : T \subseteq B\}| = \lambda.
$$

For a t-design (V, \mathcal{B}) , an element of V is called a **point**, and an element of \mathcal{B} is called a **block**. A design is also called a block design.

Remark 0.1. In other words, a $t-(v, k, \lambda)$ design is a set of v points and a collection of blocks, each with k points, such that any t points occur together in exactly λ blocks.

Example 0.1. The following figure shows a 2- $(7, 3, 1)$ design, where V is a 7-element set and there are 7 blocks consisting of 3 edges and 3 medians of the triangle, and 1 circle inscribed in the triangle.

Definition 0.2 (Isomorphism of block designs). Two *t*-designs (V, \mathcal{B}) and (V', \mathcal{B}') are said to be isomorphic if there exists a bijection from V to V', and the bijection induces a bijection from B to B', and moreover $p \in B$ in (V, \mathcal{B}) implies $p^{\sigma} \in B^{\sigma}$ in (V', \mathcal{B}') , where σ denotes the bijection.

Proposition 0.1. Let (V, \mathcal{B}) be a t- (v, k, λ) design. For any integer s with $0 \leq s \leq t$, (V, \mathcal{B}) is an s-design. Namely, if we let

$$
\lambda_s = \frac{{v-s\choose t-s}}{{k-s\choose t-s}}\lambda
$$

then λ_s is a natural number and (V, \mathcal{B}) is an $s \cdot (v, k, \lambda_s)$ design. (The concept of a 0-design has no special meaning but λ_0 can be regarded as the number $|\mathcal{B}|$ of blocks.)

Proof. For $S \in V^{(s)}$, let $\lambda(S) = |\{B \in \mathcal{B} \mid S \subseteq B\}|$. We prove that $\lambda(S)$ is independent of the choice of S as follows. By counting the number of pairs (T, B) of $T \in V^{(t)}$ and B such that $S \subseteq T \subseteq B \in \mathcal{B}$ in two ways, we obtain

$$
\lambda(S)\binom{k-s}{t-s} = \binom{v-s}{t-s} \lambda.
$$

(If we choose T first, we will get the right-hand side, and if we choose B first, we will get the left-hand side.) Therefore $\lambda(S) = \frac{\binom{v-s}{t-s}}{\binom{k-s}{t}}$ $\frac{\lambda(t-s)}{\lambda(t-s)}\lambda = \lambda_s$, and $\lambda(S)$ is independent of the choice of S. Hence λ_s is a natural number and (V, \mathcal{B}) is an $s-(v, k, \lambda_s)$ design.

Proposition 0.2. A t- (v, k, λ) design exists only if λ_s is a natural number for any integer s with $0 \le s \le t$.

Remark 0.3. Apply this to $t = 2$, let r be the number of blocks containing a point and $b = |\mathcal{B}|$ the number of blocks. Then $r = \lambda_1 = \frac{v-1}{k-1}\lambda$, $b = \lambda_0 = \frac{v(v-1)}{k(k-1)}\lambda$, so

$$
\begin{cases} r(k-1) = (v-1)\lambda, \\ bk = vr. \end{cases} \tag{1}
$$

Definition 0.3 (Incidence matrix of a design (V, \mathcal{B})). For a design (V, \mathcal{B}) , we define a matrix M whose rows are indexed by B and whose columns are indexed by V as follows. For $B \in \mathcal{B}$, $P \in V$, define the (B, P) -entry of M as

$$
M(B, P) = \begin{cases} 1 & (\text{if } P \in B) \\ 0 & (\text{if } P \notin B) \end{cases}.
$$

The matrix M is called the **incidence matrix** of a design (V, \mathcal{B}) .

Example 0.2. The incidence matrix of the $2-(7, 3, 1)$ design in [0.1](#page-0-0) is given as follows:

$$
M = \begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}
$$

Definition 0.4 (Complementary design). For a t - (v, k, λ) design (V, \mathcal{B}) , define $\mathcal{B}' = \{V - B : B \in \mathcal{B}\}\.$ Then (V, \mathcal{B}') becomes a block design. Let t - (v, k', λ') be its parameters. Then $k' = v - k, \lambda' = \frac{\binom{v-k}{t}}{\binom{k}{t}}$ $\frac{t}{\binom{k}{t}}\lambda$ holds. The design (V, \mathcal{B}') is called the **complementary design** of (V, \mathcal{B}) .

Remark 0.4. Let M be the incidence matrix of a $t-(v, k, \lambda)$ design (V, \mathcal{B}) . In general, each row of M has exactly k 1's, and each column of M has exactly r 1's. In particular, if (V, \mathcal{B}) is a 2-design, for any two different columns of M, there are exactly λ rows in which both columns have 1's. Therefore

$$
M^{\dagger}M = \begin{pmatrix} r & & & \lambda \\ & r & & \\ & & \ddots & \\ \lambda & & & r \end{pmatrix}
$$

and that det $(M^{\dagger}M) = (r + (v-1)\lambda)(r - \lambda)^{v-1}$ by induction on v.

Theorem 0.3 (Fisher type inequality). For a 2- (v, k, λ) design, assume $v > k$, then $b \geq v$.

Proof. By the assumption $k < v$ and by [\(1\)](#page-1-0), we have $r > \lambda$. Then the determinant det $(M^{\dagger}M)$ is non-zero. Namely, $M^{\dagger}M$ is a non-singular matrix of size v, and this implies $b \geq v$. (In general, for matrices A and B, the rank of AB does not exceed the rank of A or B .) \Box

Definition 0.5 (Symmetric design). A 2- (v, k, λ) design with $b = v$ is called a **symmetric** (v, k, λ) design.

Remark 0.5. By [\(1\)](#page-1-0), $r = k$ for a symmetric (v, k, λ) design.

Remark 0.6. Let M be the incidence matrix of a symmetric (v, k, λ) design, then M is a square matrix and $MJ = JM = kJ$ holds. Besides, $M^{\dagger}M$ can be expressed as $(r - \lambda)I + \lambda J$. By the proof of Fisher type inequality, M is non-singular. Therefore we have $M^{\dagger} = \{(r - \lambda)I + \lambda J\}M^{-1}$. Now

$$
MM^{\dagger} = M\{(r-\lambda)I + \lambda J\}M^{-1} = \{(r-\lambda)I + \lambda J\}MM^{-1} = \{(r-\lambda)I + \lambda J\} = \begin{pmatrix} r & \lambda \\ & r & \\ & & \ddots & \\ \lambda & & & r \end{pmatrix}.
$$

So B_i and B_j contain exactly λ common points.

Proposition 0.4. Assume that a 2- (v, k, λ) design satisfies $v > k$. Then the following four conditions are equivalent:

- 1. $b = v$;
- 2. $r = k$;
- 3. any two blocks have exactly λ common points;
- 4. any two blocks have exactly m common points for a constant m.

Proof. Since $bk = vr$, we have $(1) \implies (2); (2) \implies (3)$ follows from the above discussion; and $(3) \implies (4)$ $(3) \implies (4)$ is obvious. We show $(4) \implies (1)$ $(4) \implies (1)$ $(4) \implies (1)$. We exchange the roles of points for those of blocks. Namely, the matrix M^{\dagger} has exactly r 1's in each row, and M^{\dagger} has exactly k 1's in each column. Besides, any two columns of M^{\dagger} have exactly m 1's in common. Therefore M^{\dagger} is the incidence matrix of a 2- (b, r, m) design. Each block of this design contains r points and each point is contained in exactly k blocks. Applying [\(1\)](#page-1-0) to the given design, we have $bk = vr$. Moreover, since $v > k$, we have $b > r$. Next if we apply [\(1\)](#page-1-0) to the 2- (b, r, m) design, we have $k(r-1) = (b-1)m$, and thus $k > m$. Note det $(MM^{\dagger}) = (k + (b-1)m)(k-m)^{b-1} > 0$. Hence MM^{\dagger} is a non-singular matrix of size b, and $b \leq v$ holds. On the other hand, by applying the Fisher type inequality to the given design (V, \mathcal{B}) , we have $b \geq v$, and thus $b = v$. \Box

Remark 0.7. If [\(4\)](#page-2-3) holds for a 2- (v, k, λ) design (V, \mathcal{B}) , the existence of a 2- (b, r, m) design is easily shown by exchanging the roles of points for those of blocks. The $2-(b, r, m)$ design is called the **dual structure** or the dual design of (V, \mathcal{B}) .

Remark 0.8. To sum up, the incidence matrix M of a symmetric $2-(v, k, \lambda)$ design satisfies

$$
MJ = JM = kJ = rJ, \quad M^{\dagger}M = MM^{\dagger} = (r - \lambda)I + \lambda J.
$$

Remark 0.9. A symmetric $2-(v, k, \lambda)$ design (V, \mathcal{B}) has the same parameters as the dual design (\mathcal{B}, V) , but they are not necessarily isomorphic.

0.2 Important theorems for designs

We know [0.2](#page-1-1) is a necessary condition for the existence of a $t-(v, k, \lambda)$ design. How strong is it? How close is it to a sufficient condition? It is not clear in general, but for the case of $t = 2$, we know it is very strong. For a $2-(v, 3, 1)$ design, [0.2](#page-1-1) is shown to also be a sufficient condition for the existence, which is equivalent to $v \equiv 1, 3 \pmod{6}$. The following theorem provides a sufficient condition:

Theorem 0.5 (Wilson). Suppose that k, λ are given. There exists a number v_0 determined by k, λ such that there is a 2- (v, k, λ) design with $r = \frac{\lambda(v-1)}{k-1}$ $\frac{(v-1)}{k-1}$ and $b = \frac{\lambda v(v-1)}{k(k-1)}$ whenever $v \ge v_0$, $\lambda(v-1) \equiv 0 \pmod{k-1}$, $\lambda v(v-1) \equiv 0 \pmod{k(k-1)}$.

Remark 0.10. It would be desirable if we could show a similar result for $t \geq 3$; however, it is an open problem. If we allow repeated blocks, this necessary condition is known to be very close to a sufficient condition.

Regarding the necessary condition for the existence of a symmetric $2-(v, k, \lambda)$ design:

Theorem 0.6 (Bruck-Ryser-Chowla). For a symmetric 2- (v, k, λ) design, if we let $n = k - \lambda$, the following hold:

- 1. If v is even, then n is a square
- 2. If v is odd, then $z^2 = nx^2 + (-1)^{\frac{v-1}{2}}\lambda y^2$ has a solution in integers x, y, z , not all of which are 0.

Proof. [\(1\)](#page-3-0): The left-hand side of det $(M^{\dagger}M) = (r + (v-1)\lambda)(r - \lambda)^{v-1}$ is a square. By symmetry of the design, we have $r = k$. Moreover, by [\(1\)](#page-1-0), we have $r + (v - 1)\lambda = k^2$. Therefore $(r - \lambda)^{v-1}$ is a square, and if we note that $v - 1$ is odd, $n = k - \lambda$ must be a square. [\(2\)](#page-3-1): Use theorem of Lagrange and proper representation for MM^{\dagger} , see 10.3 of M. Hall. \Box