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In this notes, I will introduce ¢-designs, a standard design in combinatorics to approximate the whole set.

0.1 Basics of designs

Definition 0.1 (¢-(v, k, \) Design). Let t,k, v, \ € Z; with t < k < v. Consider a finite subset V' consisting
of v points and the set V(*) consisting of the k-element subsets of V. A pair (V,B) of V and a subset B of
V*) is called a t-(v, k,\) design (or simply a t-design) if there exists a A > 1 such that for any 7' € V®),
the following holds:

{BeB:TC B} =\

For a t-design (V, B), an element of V is called a point, and an element of B is called a block. A design is
also called a block design.

Remark 0.1. In other words, a t-(v, k, A) design is a set of v points and a collection of blocks, each with k
points, such that any ¢ points occur together in exactly A blocks.

Example 0.1. The following figure shows a 2-(7,3,1) design, where V is a 7-element set and there are 7
blocks consisting of 3 edges and 3 medians of the triangle, and 1 circle inscribed in the triangle.

Remark 0.2. Note that (V,V®) is a t-design, called the trivial t-design. By default we consider only
designs with no repeated blocks, called simple design.

Definition 0.2 (Isomorphism of block designs). Two t-designs (V, B) and (V’, B’) are said to be isomorphic
if there exists a bijection from V to V'’ and the bijection induces a bijection from B to B’, and moreover
p € B in (V, B) implies p° € B? in (V',B’), where o denotes the bijection.
Proposition 0.1. Let (V,B) be a t-(v,k,\) design. For any integer s with 0 < s <t, (V,B) is an s-design.
Namely, if we let

(:=2)

k—s

(t—s)

then As is a natural number and (V,B) is an s-(v,k, ) design. (The concept of a 0-design has no special
meaning but Ao can be regarded as the number |B| of blocks.)

As = A

Proof. For S € V) let A\(S) = |{B € B| S C B}|. We prove that A(S) is independent of the choice of S as
follows. By counting the number of pairs (T, B) of T € V® and B such that S C T C B € B in two ways,

we obtain §
t—s t—s



(If we choose T first, we will get the right-hand side, and if we choose B first, we will get the left-hand side.)
Therefore \(S) = E’t;;

c— s

and (V,B) is an s-(v;lz, As) design. O

A = A, and A(S) is independent of the choice of S. Hence A; is a natural number

Proposition 0.2. A t-(v,k,\) design exists only if A5 is a natural number for any integer s with 0 < s < t.

Remark 0.3. Apply this to t = 2, let r be the number of blocks containing a point and b = |B| the number

of blocks. Then 7 = A\; = Y=L\ b= )y = Zggjgx, S0

(1)

r(k—=1)=(v—1)A,
bk = vr.

Definition 0.3 (Incidence matrix of a design (V, B)). For a design (V, B), we define a matrix M whose rows
are indexed by B and whose columns are indexed by V as follows. For B € B, P € V, define the (B, P)-entry
of M as

1 (ifPeB)

M(B,P) = {0 (ifP¢B)

The matrix M is called the incidence matrix of a design (V, B).

Example 0.2. The incidence matrix of the 2-(7,3,1) design in is given as follows:

0110100
0011010
0001101
M=]1 000110
01 00O0T11
1010 0 01
1101 0 0O

Definition 0.4 (Complementary design). For a ¢-(v, k, \) design (V, B), define B = {V — B : B € B}. Then

v—k
(V,B') becomes a block design. Let t-(v, k', \') be its parameters. Then k' = v — k, N = ((,2)))\ holds. The

design (V, B’) is called the complementary design of (V, B).

Remark 0.4. Let M be the incidence matrix of a ¢-(v, k, A) design (V,B). In general, each row of M has
exactly k 1’s, and each column of M has exactly » 1’s. In particular, if (V,B) is a 2-design, for any two
different columns of M, there are exactly A rows in which both columns have 1’s. Therefore

r A
MM = '
A ' T
and that det (MTM) = (r + (v —1)A)(r — A)*~! by induction on v.
Theorem 0.3 (Fisher type inequality). For a 2-(v,k, \) design, assume v > k, then b > v.

Proof. By the assumption & < v and by , we have r > A. Then the determinant det (MTM) is non-zero.
Namely, MT M is a non-singular matrix of size v, and this implies b > v. (In general, for matrices A and B,
the rank of AB does not exceed the rank of A or B.) O

Definition 0.5 (Symmetric design). A 2-(v, k, \) design with b = v is called a symmetric (v, k, \) design.
Remark 0.5. By , r = k for a symmetric (v, k, A) design.



Remark 0.6. Let M be the incidence matrix of a symmetric (v, k&, A) design, then M is a square matrix
and MJ = JM = kJ holds. Besides, MTM can be expressed as (7 — A\)I + \J. By the proof of Fisher type
inequality, M is non-singular. Therefore we have MT = {(r — \)I + AJ}M 1. Now

MM" = M{(r = NI+ MM ={(r = NI+ A\ JMM ™t ={(r = NI+ \J} =

So B; and B; contain exactly A common points.

Proposition 0.4. Assume that a 2-(v,k, \) design satisfies v > k. Then the following four conditions are
equivalent:

1. b=wv;

2. r=k;

3. any two blocks have exactly X common points;

4. any two blocks have exactly m common points for a constant m.

Proof. Since bk = vr, we have = ; = follows from the above discussion; and ==
is obvious. We show = (|1)). We exchange the roles of points for those of blocks. Namely, the matrix
MT has exactly r 1’s in each row, and MT has exactly k 1’s in each column. Besides, any two columns of
M have exactly m 1’s in common. Therefore MT is the incidence matrix of a 2-(b,7,m) design. Each block
of this design contains r points and each point is contained in exactly k& blocks. Applying to the given
design, we have bk = vr. Moreover, since v > k, we have b > r. Next if we apply to the 2-(b, 7, m) design,
we have k(r — 1) = (b — 1)m, and thus k& > m. Note det (MMT') = (k+ (b — 1)m)(k —m)*~* > 0. Hence
MMT is a non-singular matrix of size b, and b < v holds. On the other hand, by applying the Fisher type
inequality to the given design (V,B), we have b > v, and thus b = v. O

Remark 0.7. If (4]) holds for a 2-(v, k, \) design (V, B), the existence of a 2-(b,r, m) design is easily shown
by exchanging the roles of points for those of blocks. The 2-(b,r,m) design is called the dual structure or
the dual design of (V, B).

Remark 0.8. To sum up, the incidence matrix M of a symmetric 2-(v, k, \) design satisfies
MJ=JM=kJ=rJ, MM=MM" = —\I+\J.

Remark 0.9. A symmetric 2-(v, k, \) design (V, B) has the same parameters as the dual design (B,V), but
they are not necessarily isomorphic.

0.2 Important theorems for designs

We know is a necessary condition for the existence of a t-(v,k, A) design. How strong is it? How close
is it to a sufficient condition? It is not clear in general, but for the case of ¢ = 2, we know it is very strong.
For a 2-(v,3,1) design, is shown to also be a sufficient condition for the existence, which is equivalent to
v =1,3 (mod 6). The following theorem provides a sufficient condition:

Theorem 0.5 (Wilson). Suppose that k, \ are given. There exists a number vy determined by k, A such that
there is a 2-(v, k, \) design with r = % and b = );:((]:}:11)) whenever v > vg, AMv — 1) = 0 (mod k — 1),
Av(v—1)=0 (mod k(k —1)).

Remark 0.10. It would be desirable if we could show a similar result for ¢ > 3; however, it is an open
problem. If we allow repeated blocks, this necessary condition is known to be very close to a sufficient
condition.



Regarding the necessary condition for the existence of a symmetric 2-(v, k, \) design:

Theorem 0.6 (Bruck-Ryser-Chowla). For a symmetric 2-(v,k, \) design, if we let n = k — A, the following
hold:

1. Ifv is even, then n is a square
2. If v is odd, then 2% = nz? + (—l)val)\gﬂ has a solution in integers x,y, z, not all of which are 0.

Proof. (I): The left-hand side of det (MTM) = (r + (v — 1)A)(r — A)""! is a square. By symmetry of the
design, we have r = k. Moreover, by (), we have r + (v — 1)A = k2. Therefore (r — X\)*~! is a square,
and if we note that v — 1 is odd, n = k — X must be a square. : Use theorem of Lagrange and proper
representation for MM, see 10.3 of M. Hall. O
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