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In this notes, I will introduce t-designs, a standard design in combinatorics to approximate the whole set.

0.1 Basics of designs

Definition 0.1 (t-(v, k, λ) Design). Let t, k, v, λ ∈ Z+ with t ≤ k ≤ v. Consider a finite subset V consisting
of v points and the set V (k) consisting of the k-element subsets of V . A pair (V,B) of V and a subset B of
V (k) is called a t-(v, k, λ) design (or simply a t-design) if there exists a λ ≥ 1 such that for any T ∈ V (t),
the following holds:

|{B ∈ B : T ⊆ B}| = λ.

For a t-design (V,B), an element of V is called a point, and an element of B is called a block. A design is
also called a block design.

Remark 0.1. In other words, a t-(v, k, λ) design is a set of v points and a collection of blocks, each with k
points, such that any t points occur together in exactly λ blocks.

Example 0.1. The following figure shows a 2-(7, 3, 1) design, where V is a 7-element set and there are 7
blocks consisting of 3 edges and 3 medians of the triangle, and 1 circle inscribed in the triangle.

Remark 0.2. Note that (V, V (k)) is a t-design, called the trivial t-design. By default we consider only
designs with no repeated blocks, called simple design.

Definition 0.2 (Isomorphism of block designs). Two t-designs (V,B) and (V ′,B′) are said to be isomorphic
if there exists a bijection from V to V ′, and the bijection induces a bijection from B to B′, and moreover
p ∈ B in (V,B) implies pσ ∈ Bσ in (V ′,B′), where σ denotes the bijection.

Proposition 0.1. Let (V,B) be a t-(v, k, λ) design. For any integer s with 0 ≤ s ≤ t, (V,B) is an s-design.
Namely, if we let

λs =

(
v−s
t−s

)(
k−s
t−s

)λ
then λs is a natural number and (V,B) is an s-(v, k, λs) design. (The concept of a 0-design has no special
meaning but λ0 can be regarded as the number |B| of blocks.)

Proof. For S ∈ V (s), let λ(S) = |{B ∈ B | S ⊆ B}|. We prove that λ(S) is independent of the choice of S as
follows. By counting the number of pairs (T,B) of T ∈ V (t) and B such that S ⊆ T ⊆ B ∈ B in two ways,
we obtain

λ(S)

(
k − s

t− s

)
=

(
v − s

t− s

)
λ.
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(If we choose T first, we will get the right-hand side, and if we choose B first, we will get the left-hand side.)

Therefore λ(S) =
(v−s
t−s)
(k−s
t−s)

λ = λs, and λ(S) is independent of the choice of S. Hence λs is a natural number

and (V,B) is an s-(v, k, λs) design.

Proposition 0.2. A t-(v, k, λ) design exists only if λs is a natural number for any integer s with 0 ≤ s ≤ t.

Remark 0.3. Apply this to t = 2, let r be the number of blocks containing a point and b = |B| the number

of blocks. Then r = λ1 = v−1
k−1λ, b = λ0 = v(v−1)

k(k−1)λ, so{
r(k − 1) = (v − 1)λ,

bk = vr.
(1)

Definition 0.3 (Incidence matrix of a design (V,B)). For a design (V,B), we define a matrix M whose rows
are indexed by B and whose columns are indexed by V as follows. For B ∈ B, P ∈ V , define the (B,P )-entry
of M as

M(B,P ) =

{
1 (if P ∈ B)

0 (if P /∈ B)
.

The matrix M is called the incidence matrix of a design (V,B).

Example 0.2. The incidence matrix of the 2-(7, 3, 1) design in 0.1 is given as follows:

M =



0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1
1 1 0 1 0 0 0


Definition 0.4 (Complementary design). For a t-(v, k, λ) design (V,B), define B′ = {V −B : B ∈ B}. Then
(V,B′) becomes a block design. Let t-(v, k′, λ′) be its parameters. Then k′ = v − k, λ′ =

(v−k
t )
(kt)

λ holds. The

design (V,B′) is called the complementary design of (V,B).

Remark 0.4. Let M be the incidence matrix of a t-(v, k, λ) design (V,B). In general, each row of M has
exactly k 1’s, and each column of M has exactly r 1’s. In particular, if (V,B) is a 2-design, for any two
different columns of M , there are exactly λ rows in which both columns have 1’s. Therefore

M†M =


r λ

r
. . .

λ r


and that det

(
M†M

)
= (r + (v − 1)λ)(r − λ)v−1 by induction on v.

Theorem 0.3 (Fisher type inequality). For a 2-(v, k, λ) design, assume v > k, then b ≥ v.

Proof. By the assumption k < v and by (1), we have r > λ. Then the determinant det
(
M†M

)
is non-zero.

Namely, M†M is a non-singular matrix of size v, and this implies b ≥ v. (In general, for matrices A and B,
the rank of AB does not exceed the rank of A or B.)

Definition 0.5 (Symmetric design). A 2-(v, k, λ) design with b = v is called a symmetric (v, k, λ) design.

Remark 0.5. By (1), r = k for a symmetric (v, k, λ) design.
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Remark 0.6. Let M be the incidence matrix of a symmetric (v, k, λ) design, then M is a square matrix
and MJ = JM = kJ holds. Besides, M†M can be expressed as (r − λ)I + λJ . By the proof of Fisher type
inequality, M is non-singular. Therefore we have M† = {(r − λ)I + λJ}M−1. Now

MM† = M{(r − λ)I + λJ}M−1 = {(r − λ)I + λJ}MM−1 = {(r − λ)I + λJ} =


r λ

r
. . .

λ r

 .

So Bi and Bj contain exactly λ common points.

Proposition 0.4. Assume that a 2-(v, k, λ) design satisfies v > k. Then the following four conditions are
equivalent:

1. b = v;

2. r = k;

3. any two blocks have exactly λ common points;

4. any two blocks have exactly m common points for a constant m.

Proof. Since bk = vr, we have (1) =⇒ (2); (2) =⇒ (3) follows from the above discussion; and (3) =⇒ (4)
is obvious. We show (4) =⇒ (1). We exchange the roles of points for those of blocks. Namely, the matrix
M† has exactly r 1’s in each row, and M† has exactly k 1’s in each column. Besides, any two columns of
M† have exactly m 1’s in common. Therefore M† is the incidence matrix of a 2-(b, r,m) design. Each block
of this design contains r points and each point is contained in exactly k blocks. Applying (1) to the given
design, we have bk = vr. Moreover, since v > k, we have b > r. Next if we apply (1) to the 2-(b, r,m) design,
we have k(r − 1) = (b − 1)m, and thus k > m. Note det

(
MM†) = (k + (b − 1)m)(k −m)b−1 > 0. Hence

MM† is a non-singular matrix of size b, and b ≤ v holds. On the other hand, by applying the Fisher type
inequality to the given design (V,B), we have b ≥ v, and thus b = v.

Remark 0.7. If (4) holds for a 2-(v, k, λ) design (V,B), the existence of a 2-(b, r,m) design is easily shown
by exchanging the roles of points for those of blocks. The 2-(b, r,m) design is called the dual structure or
the dual design of (V,B).

Remark 0.8. To sum up, the incidence matrix M of a symmetric 2-(v, k, λ) design satisfies

MJ = JM = kJ = rJ, M†M = MM† = (r − λ)I + λJ.

Remark 0.9. A symmetric 2-(v, k, λ) design (V,B) has the same parameters as the dual design (B, V ), but
they are not necessarily isomorphic.

0.2 Important theorems for designs

We know 0.2 is a necessary condition for the existence of a t-(v, k, λ) design. How strong is it? How close
is it to a sufficient condition? It is not clear in general, but for the case of t = 2, we know it is very strong.
For a 2-(v, 3, 1) design, 0.2 is shown to also be a sufficient condition for the existence, which is equivalent to
v ≡ 1, 3 (mod 6). The following theorem provides a sufficient condition:

Theorem 0.5 (Wilson). Suppose that k, λ are given. There exists a number v0 determined by k, λ such that

there is a 2-(v, k, λ) design with r = λ(v−1)
k−1 and b = λv(v−1)

k(k−1) whenever v ≥ v0, λ(v − 1) ≡ 0 (mod k − 1),

λv(v − 1) ≡ 0 (mod k(k − 1)).

Remark 0.10. It would be desirable if we could show a similar result for t ≥ 3; however, it is an open
problem. If we allow repeated blocks, this necessary condition is known to be very close to a sufficient
condition.
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Regarding the necessary condition for the existence of a symmetric 2-(v, k, λ) design:

Theorem 0.6 (Bruck-Ryser-Chowla). For a symmetric 2-(v, k, λ) design, if we let n = k− λ, the following
hold:

1. If v is even, then n is a square

2. If v is odd, then z2 = nx2 + (−1)
v−1
2 λy2 has a solution in integers x, y, z, not all of which are 0.

Proof. (1): The left-hand side of det
(
M†M

)
= (r + (v − 1)λ)(r − λ)v−1 is a square. By symmetry of the

design, we have r = k. Moreover, by (1), we have r + (v − 1)λ = k2. Therefore (r − λ)v−1 is a square,
and if we note that v − 1 is odd, n = k − λ must be a square. (2): Use theorem of Lagrange and proper
representation for MM†, see 10.3 of M. Hall.
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