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1 Preliminary

Recall the definition of graph isomorphism.

Definition 1.1. The graphs G = (V,E) and H = (V ′, E′) are called isomorphic, denoted as
G ∼= H, if there exists a 1-1 mapping between V and V ′ which induces a 1-1 mapping between E
and E′.

This means that up to relabelling of the vertices, G and H are exactly the same graph. The
following lemma formalizes this statement.

Lemma 1.2. Two graphs G and H are isomorphic if and only if there exists a permutation matrix
P such that PAG = AHP , where AG and AH are the adjacency matrices of G and H respectively.

To introduce the notion of quantum isomorphism, we first define the algebraic structure called
C∗-algebra.

Definition 1.3. A C∗-algebra A is a unital Banach algebra over C together with a map x 7→ x∗

for any x ∈ A, called involution, satisfying the following properties:
1. For any x ∈ A, x∗∗ = (x∗)∗ = x.
2. For any x, y ∈ A, (x+ y)∗ = x∗ + y∗ and (xy)∗ = y∗x∗.
3. For any λ ∈ C and x ∈ A, (λx)∗ = λ̄x∗.
4. For any x ∈ A, ||xx∗|| = ||x||2.

The first three identities are the requirement for being a ∗-algebra and the last identity is called
the C∗-identity.

Example 1.4. The algebra of n-by-n complex matrices M(n,C) equipped with the operator norm
|| · || and the involution as the conjugate transpose.

Example 1.5. The algebra of bounded linear operators B(H) defined on a complex Hilbert space
H equipped with the operator norm || · || and the involution as the adjoint operator.

Let A be a C∗-algebra with unit 1 and U = (ui,j) be an n-by-n matrix with entries in A. We
are now ready to define what’s called a quantum permutation matrix.

Definition 1.6. U is a quantum permutation matrix if
1. u∗i,j = ui,j = u2i,j for any 1 ≤ i, j ≤ n.

2.
n∑

k=1

ui,k = 1 =
n∑

k=1

uk,j for any 1 ≤ i, j ≤ n.
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3. UUT = UTU =


1 0 . . . 0
0 1 . . . 0
...

...
...

...
0 0 . . . 1

.

Note that when A = C, this definition recovers the classical permutation matrices.

Example 1.7.



(
0 0
0 0

)
1
2

(
1 1
1 1

) (
0 0
0 0

)
1
2

(
1 −1
−1 1

)
(

0 0
0 1

)
1
2

(
1 −1
−1 1

) (
0 0
0 0

)
1
2

(
1 1
1 1

)
(

1 0
0 0

) (
0 0
0 0

) (
0 0
0 1

) (
0 0
0 0

)
(

0 0
0 1

) (
0 0
0 0

) (
1 0
0 0

) (
0 0
0 0

)


We are now ready to define the notion of quantum isomorphism.

Definition 1.8. Two graphs G and H are called quantum isomorphic, denoted as G ∼=q H, if there
exists a quantum permutation matrix U such that UAG = AHU .

It is not clear from the definition that there exists a pair of graphs that are quantum isomorphic
to each other but not isomorphic. The paper shows there are infinitely pairs of graphs that are
quantum isomorphic but not classically isomorphic. The authors do this by considering association
schemes that are similar to each other in a sense that we will explain.

Before going into association schemes, we introduce another way to characterize classical iso-
morphism and quantum isomorphism. This will be used later in the proof.

Definition 1.9. A map ϕ : V (F ) → V (G) is a graph homomorphism from F to G if for any
{v1, v2} ∈ E(F ), we have {ϕ(v1), ϕ(v2)} ∈ E(G).

One can consider the total number of homomorphisms from one graph to another.

Definition 1.10. Given two graphs F and G, we denote hom(F,G) := # of graph homomorphisms
from F to G.

A celebrated theorem by Lovász [6] sates that two graphs are isomorphic if and only if they
admit the same number of homomorphisms from any other graphs.

Theorem 1.11 (Lovász, 67’). G ∼= H if and only if hom(F,G) = hom(F,H) for any graph F .

A remarkable result given by Mančinska and Roberson [7] characterizes quantum isomorphism
by homomorphism counts from planar graphs.

Theorem 1.12 (Mančinska & Roberson, 19’). G ∼=q H if and only if hom(F,G) = hom(F,H) for
any planar graph F .

The paper uses this theorem to show the quantum isomorphism between any Hadamard graphs
with the same number of vertices.
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2 Vertex Model and Scaffold

Let’s stare at this equation and see why it is true.

hom(F,G) =
∑

ϕ:V (F )→V (G)

∏
{a,b}∈E(F )

(AG)ϕ(a),ϕ(b) (2.1)

Indeed, for any mapping ϕ : V (F ) → V (G), we have

∏
{a,b}∈E(F )

(AG)ϕ(a),ϕ(b) =

{
1 if ϕ is a graph homomorphism from F to G,

0 otherwise.

In statistical physics and the classification program of the complexity of counting problems,
this formulation is called the vertex (coloring) model. The name is due to the following. Given any
graph F , imagine you place AG on every edge of F , and think of AG as a binary function which
takes its two adjacent vertices as arguments. Then imagine the vertices in F take values as vertices
in G which can be thought of as colors. Take the product of all the result of those functions and
sum over all possible “colorings” gives us exactly Equation 2.1.

Remark: There is a provably more expressive model called edge (coloring) model, where one colors
the edges instead of vertices and think of vertices as functions that take arguments from its adjacent
edges.

Let (X,R) be an association scheme with Bose-Mesner algebra A = span({A0, A1, . . . , Ad}).
They act on the standard module V = CX in the obvious way. Think about V = CX as all
complex-valued functions on X with standard basis of column vectors {x̂ | x ∈ X}. For a graph
F = (V,E), fix an ordered set R = {r1, r2, . . . , rm} of vertices in F called roots and a function
w : E → MatX(C) assigning each edge in F with a binary function. The scaffold S(F,R;w) is
defined to be the tensor

S(F,R;w) =
∑

ϕ:V (G)→X

 ∏
e∈E(G)
e=(a,b)

w(e)ϕ(a),φ(b)

 ϕ̂ (r1)⊗ ϕ̂ (r2)⊗ · · · ⊗ ϕ̂ (rm) (2.2)

Note that we can associate different binary functions to different edges in F . In fact, two
families scaffolds are particularly important in this paper.

(a) Delta shape (b) Wye shape

Figure 1: Delta shape and Wye shape

Finally, consider the vector space spanned by all scaffolds in the above form. Formally, define
WD

A (resp. WY
A ) to be the vector space spanned by all scaffolds in the Delta shape (resp. Wye

shape) where Ai, Aj , Ak ∈ A.
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3 Exactly Triply Regular & Main Theorem

We start with the definition of a triply regular association scheme.

Definition 3.1. An association scheme (X,R) with Bose-Mesner algebra A is called triply regular

if for any x, y, z ∈ X and all 0 ≤ i, j, k ≤ d, we have v(x, y, z) := |{u ∈ X : x
i∼ u, y

j∼ u, z
k∼

u}| depends only on i, j, k and the three relations joining x, y, z, but not on the choice of x, y, z
themselves.

A Theorem by Jaeger [4] characterizes when an association scheme is triply regular.

Theorem 3.2 (Jaeger, 95’). (X,R) is triply regular if and only if WY
A ⊆ WD

A .

When (X,R) is triply regular, denote v(x, y, z) = vi,j,kr,s,t where x
r∼ z, x

s∼ y, y
t∼ z, then the

scaffold equations

hold for all i, j, k. As one of the themes in this course, we continue with the definition of a dually
triply regular association scheme.

Definition 3.3. An association scheme (X,R) is called dually triply regular if WD
A ⊆ WY

A .

Definition 3.4. An association scheme (X,R) is called exactly triply regular if it is both triply
regular and dually triply regular.

Let’s finish by stating the main theorem of this paper.

Theorem 3.5. Let (X,R) and (Y,S) be exactly triply regular symmetric association schemes that
have the same Delta-Wye parameters. Let G′ be a graph in (Y,S) corresponding to G in (X,R).
Then G and G′ are quantum isomorphic.

4 Delta-Wye parameters

Theorem 4.1. Let (X,R) be an exactly triply regular d-class association scheme with Bose-Mesner
algebra having an ordered basis A0, . . . , Ad of adjacency matrices and an ordered basis E0, . . . , Ed

of primitive idempotents. Then there exist unique constants {σi,j,k
r,s,t : pkij > 0, qtrs > 0} and {τ r,s,ti,j,k :

pkij > 0, qtrs > 0} such that

(4.3)
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(4.4)

A proof of Theorem 4.1 can be found in Williams[8]. These values are called the Delta-Wye
parameters of (X,R).

Definition 4.2. Let (X,R) and (Y,S) be exactly triply regular d-class association schemes. We
say that they have the same Delta-Wye parameters, if there exists an ordering A0, . . . , Ad and
A′

0, . . . , A
′
d of the respective adjacency matrices and an ordering E0, . . . , Ed and E′

0, . . . , E
′
d of their

respective primitive idempotents such that σi,j,k
r,s,t = (σ′)i,j,kr,s,t, and τ r,s,ti,j,k = (τ ′)r,s,ti,j,k.

Lemma 4.3. Let (X,R) and (Y,S) be exactly triply regular d-class association schemes with the
same Delta-Wye parameters. Then, the association schemes (X,R) and (Y,S) have the same
intersection numbers, Krein parameters, eigenvalues, and dual eigenvalues. Moreover, the bijective
map Ai 7→ A′

i extends to a linear isomorphism κ : A → A′, such that κ(MN) = κ(M)κ(N) and
κ(M ◦N) = κ(M) ◦ κ(N).

Proof. We consider Equation 4.3, for a fixed i, j, k. We sum up all coefficients of all the tensors on
both the LHS and the RHS. We will first consider the RHS. We see that

RHS =
∑
qtrs>0

σi,j,k
r,s,t

∑
x,y,z,u∈X

(Er)xu(Es)yu(Et)zu =
∑
qtrs>0

σi,j,k
r,s,t

∑
y∈X

∑
x,z∈X

(ErA
∗
sEt)xz

where each A∗
s in the sum is with respect to y [10].

It is known that {ErA
∗
rEt : 0 ≤ r, s, t ≤ d, qtrs > 0} is an orthogonal basis of AA∗A [11]. We note

that when r = s = t = 0, E0A
∗
0E0 = E0 = 1

|X|J , where J is the all-ones matrix. Since every other

matrix of the form ErA
∗
sEt is orthogonal to this matrix, it follows that for all (r, s, t) ̸= (0, 0, 0),∑

x,z∈X
(ErA

∗
sEt)xz = 0.

Therefore, we see that
RHS = σi,j,k

0,0,0(|X|).

Now, when i = j and k = 0, we see that the sum of coefficients on the LHS is

LHS =
∑

x,y,z∈X
(Ai)x,y(Ai)y,z(A0)z,x =

∑
x,y∈X

(Ai)x,y = |X|p0ii.

This proves that p0ii = σi,i,0
0,0,0. For any other choice of i, j, k, we see that the sum of coefficients on

the LHS is |X|pkijp0ii.
This proves that the Delta-Wye parameters determine the intersection numbers. The remaining

association scheme parameters are then recoverable from the intersection numbers.
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Since κ(Ai) = A′
i is a 0− 1 matrix and both Ai ◦Aj = δijAi and A′

i ◦A′
j = δijA

′
i holds for this

pair of bases, we have κ(M ◦N) = κ(M) ◦ κ(N) by linearity. Also,

κ(AiAj) = κ

(
d∑

k=0

pkijAk

)
=

d∑
k=0

pkijA
′
k = A′

iA
′
j = κ(Ai)κ(Aj).

5 Main Theorem

Theorem 5.1 (Main Theorem). Let (X,R) and (Y,S) be exactly triply regular symmetric associa-
tion schemes that have the same Delta-Wye parameters. Let G be a graph whose adjacency matrix
M lies in the Bose-Mesner algebra of (X,R). Then, κ(M) is the adjacency matrix of a graph G′,
and the two graphs G and G′ are quantum isomorphic.

5.1 Epifanov’s theorem

Given an embedding of a planar graph, we consider the following local operations:

Local Transformation 1: loop

Local Transformation 2: pendent

Local Transformation 3: parallel

Local Transformation 4: series

Local Transformation 5: Delta
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Local Transformation 6: Wye

Theorem 5.2 (Epifanov’s Theorem). Let F be a connected planar graph. There exist a sequence
of planar graphs (F0, . . . , Fl) such that

1. F0 = F and Fl is a graph with a single vertex and no edges.
2. Fh+1 is obtained from Fh using one of the local transformations above, for 0 ≤ h < l.

Proofs of Epifanov’s Theorem can be found in Feo and Provan[3] and Truemper[12].

5.2 Main Lemma

We consider the problem of computing S(F, ∅;w) for planar F and w : E(F ) → A. Recall that

S(F, ∅;w) =
∑

ϕ:V (F )→X

 ∏
e∈E(F )
e=(u,v)

w(e)ϕ(u),φ(v)

 .

If F has connected components F 1, . . . , F k, then it can be seen that

S(F, ∅;w) =
k∏

i=1

S(F i, ∅;w|Fi). (5.5)

Therefore, we can restrict our attention to connected, planar F . We know from Epifanov’s
Theorem, that there exists a sequence of planar graphs (F0, . . . , Fl).

The main technical lemma used in the proof of the Main Theorem is as follows:

Lemma 5.3 (Main Lemma). Let (X,R) and (Y,S) be an exactly triply regular symmetric associ-
ation schemes with the same Delta-Wye parameters. Let κ be the isomorphism from Theorem 4.3,
and let κ • w represent the function composition. For any 0 ≤ h < l, there exists a positive integer
mh, constants {αh,m}mh

m=1, and weight functions {wh,m}mh
m=1 where each wh,m : E(Fh+1) → A, such

that

S(Fh, ∅;w) =
mh∑
m=1

αh,mS(Fh+1, ∅;wh,m); S(Fh, ∅;κ • w) =
mh∑
m=1

αh,mS(Fh+1, ∅;κ • wh,m). (5.6)

Before proving Theorem 5.3, we will quickly see how it implies the Main Theorem. By repeated
application of Theorem 5.3, we see that there exists a positive integer M , constants {βm}Mm=1 and
weight functions {wm}Mm=1 such that

S(F0, ∅;w) =
M∑

m=1

βmS(Fl, ∅;wm); S(F0, ∅;κ • w) =
M∑

m=1

βmS(Fl, ∅;κ • wm).
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Then, we note that Fl is the graph with just one vertex and no edges. Therefore, for any
weight function w : ∅ → MatX(C), we have that S(Fl, ∅;w) = |X|. This implies that S(F, ∅;w) =
S(F, ∅;κ • w). If we let w be the function such that w(e) = M for all e ∈ E(F ), then we see that
for any planar F ,

hom(F,G) = S(F, ∅;w) = S(F, ∅;κ • w) = hom(F,G′).

This implies that G and G′ are quantum isomorphic.

5.3 Proof of the Main Lemma

We will focus on the weight function w. Consider an edge e1 = (u1, v1) ∈ E(F ). We can represent
w as w = a0w0 + · · ·+ adwd, where {ai}di=0 are constants, and each wi is defined as:

wi(e) =

{
Ai if e = e1

w(e) if e ̸= e1

Lemma 5.4.

S(F, ∅;w) =
d∑

i=0

ai · S(F, ∅;wi).

Proof. By definition, we see that

S(F, ∅;w) =
∑

ϕ:V (F )→X

(a0w0 + · · ·+ adwd)(e1)ϕ(u1),ϕ(v1) ·
∏

e∈E(F )\{e1}
e=(u,v)

w(e)ϕ(u),φ(v)



=

d∑
i=0

ai
∑

ϕ:V (F )→X

wi(e1)ϕ(u1),ϕ(v1) ·
∏

e∈E(F )\{e1}
e=(u,v)

w(e)ϕ(u),φ(v)


=

d∑
i=0

ai · S(F, ∅;wi).

By repeated application of Theorem 5.4 on each edge of E(F ), we can assume that the range
of the weight function w is {A0, . . . , Ad}.

Now, we consider the local transformation Fh 7→ Fh+1. We will consider each of the local
transformations possible.

1. loop: Let e be the loop that is deleted. We may assume that w(e) = Ar. In this case,
mh = 1, αh,1 = δr,0, and wh,1 = w|E(F )\{e}.

2. pendent: Let e be the edge that is deleted. We may assume that w(e) = Ar. In this case,
mh = 1, αh,1 = p0r,r, and wh,1 = w|E(F )\{e}.

3. parallel: Let e be the edge that is deleted, and let e′ be its parallel edge. We may assume
that w(e) = Ar and w(e′) = As. In this case, mh = 1, αh,1 = δs,r, and wh,1 = w|E(F )\{e}.
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4. series: Let e and e′ be the edges in series, that are replaced with the single edge e′′ in Fh+1.
We may assume that w(e) = Ar and w(e′) = As. In this case, mh = d+ 1, αh,m = pmr,s, and
wh,m is defined as

wh,m(e) =

{
Am if e = e′′

w(e) if e ̸= e′′

5. Delta: Let e1, e2, e3 be the edges that are replaced with the edges e′1, e
′
2, e

′
3 in Fh+1 (with e′i

being the edge that is not incident on any of the endpoints of the edge ei). We may assume
that w(e1) = Ai, w(e2) = Aj , and w(e3) = Ak. Now, we note that from Equation 4.3, we
have that

(5.7)
Consequently, we may let mh = (d+ 1)3, and for each m = (r, s, t) ∈ [d]3, we let

αh,(r,s,t) =
1

|X|3
∑

a,b,c: qcab>0

σi,j,k
a,b,cQraQsbQtc,

and we define wh,(r,s,t) as

wh,(r,s,t)(e) =


Ar if e = e′1
As if e = e′2
At if e = e′3
w(e) if e /∈ {e′1, e′2, e′3}

6. Wye: Let e1, e2, e3 be the edges that are replaced with the edges e′1, e
′
2, e

′
3 in Fh+1 (with e′i

being the edge that is incident on the two vertices that ei is not incident on). We may assume
that w(e1) = Ai, w(e2) = Aj , and w(e3) = Ak. Now, we note that from Equation 4.4, we
have that

(5.8)

Consequently, we may let mh = (d+ 1)3, and for each m = (r, s, t) ∈ [d]3, we let

αh,(r,s,t) =

d∑
a,b,c=0

τa,b,cr,s,t PaiPbjPck,

and we define wh,(r,s,t) as

wh,(r,s,t)(e) =


Ar if e = e′1
As if e = e′2
At if e = e′3
w(e) if e /∈ {e′1, e′2, e′3}

We see that Equation 5.6 holds true for each of the transformations above.
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6 Extending to #CSP

6.1 #CSP preliminaries

Recall the vertex coloring model definition of (2.1), which we repeat below.

hom(F,G) =
∑

ϕ:V (F )→V (G)

∏
{a,b}∈E(F )

(AG)ϕ(a),ϕ(b)

Consider the following slightly different formulation (closer to the edge coloring model mentioned
earlier): subdivide each of F ’s edges with a new degree-2 vertex, assigned function AG. Call the
resulting graph, or signature grid, ΩF . See Figure 7.

=3

=2

=4

=2

=1
AG

AG

AG
A
G

AG AG

= AG

⇝

F ΩF

Figure 7: Converting an vertex-coloring model input graph F to an equivalent edge-
coloring model input signature grid ΩF .

Let VEQ(ΩF ) ⊂ V (ΩF ) denote the original vertices of F (drawn as circles), and VC(ΩF ) ⊂ V (ΩF )
denote the new degree-2 vertices (drawn as squares) Then ΩF is bipartite, with V (ΩF ) = VEQ(ΩF )⊔
VC(ΩF ). Now

hom(F,G) =
∑

ϕ:VEQ(ΩF )→V (G)

∏
v∈VC(ΩF )

(AG)ϕ(ΩF (v)), (6.9)

where ΩF (v) ⊆ VEQ(ΩF ) denotes the set of vertices adjacent to v.
Observe that nothing in the formulation (6.9) limits any vertices to have degree 2, as the AG

vertices have in the case of graph homomorphism. Instead of a binary function AG, we may consider
a constraint function G on n inputs from a domain X or equivalently a tensor G ∈ CXn

. For a
set G of functions on common domain X (but possibly of different arities) , define the counting
constraint satisfiability problem (#CSP) for G as follows: given a bipartite signature grid Ω with
vertices partitioned into equality and constraint vertices as V (Ω) = VEQ(Ω) ⊔ VC(Ω) and each
constraint vertex v ∈ VC(Ω) assigned a constraint function gv ∈ G, the problem is to compute the
partition function

#CSP(Ω,G) =
∑

ϕ:VEQ(Ω)→X

∏
v∈VC(Ω)

gv(ϕ(Ω(v))).

We similarly extend Theorem 1.2 and Theorem 1.8 to definitions of classical and quantum
isomorphism of constraint functions:

Definition 6.1. Constraint functions F,G ∈ CXn
are isomorphic (F ∼= G) if there is a permutation

matrix P , indexed by X, satisfying P⊗nf = g, where f, g ∈ Cdn are the natural vectorizations of F
and G, respectively (F (x1, . . . , xn) = fx1...xn, where x1 . . . xn is a base-d integer).
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Constraint function sets F = {Fi}ti=1 and G = {Gi}ti=1 are isomorphic if there is a single
permutation matrix P satisfying Pfi = gi for all i ∈ [t].

Definition 6.2. Constraint functions F,G ∈ CXn
are quantum isomorphic (F ∼=q G) if there is a

d× d quantum permutation matrix U satisfying U⊗n f = g.
Constraint function sets F = {Fi}ti=1 and G = {Gi}ti=1 are quantum isomorphic if there is a

single quantum permutation matrix U satisfying U fi = gi for all i ∈ [t].

The study of #CSP in this context is motivated by the following two results, which by the
above discussion are generalizations of Theorem 1.11 and Theorem 1.12, respectively.

Theorem 6.3 ([13]). Constraint function sets F ∼= G if and only if #CSP(Ω,F) = #CSP(Ω,G)
for every signature grid Ω.

Theorem 6.4 ([1]). Constraint function sets F ∼=q G if and only if #CSP(Ω,F) = #CSP(Ω,G)
for every planar signature grid Ω.

However, there are currently no known examples of constraint function sets F and G containing
a signature of arity greater than 2 such that F ∼=q G but F ≁= G. To work towards constructing
such an example, we turn to superschemes.

6.2 Superschemes

Just as #CSP is a generalization of binary graph homomorphism to higher-arity tensors, a super-
scheme is a generalization of association schemes from binary to higher-arity relations. For n ∈ N
and finite set X with |X| = d, call R ⊂ Xn an “n-ary relation”. For j ∈ [n], define πn

j : Xn → Xn−1

by πn
j (x1, . . . , xn) = (x1, . . . , xj−1, xj+1, xn).

Definition 6.5 ([5],[9]). Let Π = {Π1, . . . ,Πt}, with each Πn ⊂ P(Xn). Then (X,Π) is a t-
superscheme if

1. For each n ∈ [t], Πn is a partition of Xn.
2. For each n ∈ [t], every Ri ∈ Πn, and every permutation σ ∈ Sn, σ(Ri) ∈ Πn (where

σ(x1, . . . , xn) = (xσ(1), . . . , xσ(n))).
3. For each 2 ≤ n ≤ t, j ∈ [n], and Ri ∈ Πn, πn

j (Ri) ∈ Πn−1.

4. For each 2 ≤ n ≤ t, j ∈ [n], Ri ∈ Πn, and x = (x1, . . . , xj−1, xj+1, xn) ∈ πn
j (Ri), |(πn

j )
−1(x)∩

Ri| = pi,j, where pi,j is a constant that does not depend on the choice of x ∈ Ri.

For example, let Π2 = {R0, . . . , Rd} with R0 = {(x, x) | x ∈ X}, Ri = Rt
i for each i, and Π3

consist of the nonempty

Rijk = {(x, y, z) | (x, y) ∈ Ri, (x, z) ∈ Rj , (y, z) ∈ Rk} (6.10)

for i, j, k ∈ [d]. Then property 1 for n = 2 and property 4 for n = 3 imply that Π2 is a symmetric
association scheme. Indeed, for (x, y) ∈ Ri and j, k ∈ [d], apply property 4 to Rijk ∈ Π3 and j = 3
to get

pijk,3 = |(π3
3)

−1((x, y)) ∩Rijk| = |{z | (x, z) ∈ Rj , (z, y) ∈ Rk}| = pijk,

a constant that does not depend on the choice of (x, y) ∈ Ri.
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Now suppose we start with a symmetric association scheme Π2 = {R0, . . . , Rd}, and let Π3

consist of the ternary relations defined in (6.10). Extend this idea as follows: let Π4 consist of the
nonempty 4-ary relations

Rijkrst = {(w, x, y, z) | (w, x) ∈ Ri

(w, y) ∈ Rj

(w, z) ∈ Rk

(x, y) ∈ Rr

(x, z) ∈ Rs

(y, z) ∈ Rt}.

Observe that, for (x, y, z) ∈ Rrst,

|(π4
1)

−1((x, y, z)) ∩Rijkrst| = |{w | (w, x) ∈ Ri, (w, y) ∈ Rj , (w, z) ∈ Rk}|.

Similar identities hold for (π4
j ) for j > 1. Thus Π2 and Π3 define a superscheme if and only if the

base association scheme is triply regular, with pijkrst,j = vijkrst .
For a tuple x = (x1, . . . , xn), for i ∈ [n], let

x2|i = {(xi, x1), (xi, x2), . . . , (xi, xn)} \ (xi, xi)

denote the set of all pairs of distinct elements from x containing xi. Then define

x2 \ i = x2 \ (x2|i)

to be the set of all pairs of distinct elements from x not containing xi. For appropriately sized
multisets α, β ⊂ [d], write x2|i ∈ Rα and x2 \ i ∈ Rβ to mean that the pairs in x2|i and x2 \ i are
contained in the binary relations specified by α and β, respectively (e.g. above (w, x, y, z)2|1 ∈ Ri,j,k

and (w, x, y, z)2 \ 1 ∈ Rr,s,t). Then, for x
2 \ i ∈ Rβ, define

vαβ = |{xi | x2|i ∈ Rα}|.

Definition 6.6. An association scheme (X,R) is t-super-regular if all constants vαβ exist for Xℓ,
for each ℓ ∈ [t]. Call these constaints vαβ the regularity parameters of the scheme.

Equivalently, (X,R) is t-super-regular if (X,Π1, . . . ,Πt), with Πn consisting of n-ary relations
partitioningXn, and each such relation defined by a size-

(
n
2

)
multiset of [d] dictating the relationship

between each pair of elements in a tuple of Xn, is a superscheme.

6.3 Constraint functions from superschemes

Given a t-super-regular association scheme with corresponding superscheme (X,Π1, . . . ,Πt), for
Rα ∈ Πn, let Aα ∈ {0, 1}Xn

be the characteristic tensor of Rα. View F =
⋃t

n=1{Aα | Rα ∈ Πn} as
a set of constraint functions. We would like to show that any two constraint function sets F and
G constructed in this way from t-super-regular association schemes with the same delta-wye and
regularity parameters are quantum isomorphic. The first step in this direction is a generalization
of the series transformation in the proof of Lemma 5.4.
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Aijr Akℓs

Figure 8: A scaffold in the context of #CSP, with two incident constraint vertices.

The scaffold in Figure 8 has value∑
w,x,y,z∈X

∑
a∈X

Aijr(a,w, x)Ak,ℓ,s(a, y, z)ŵ ⊗ x̂⊗ ŷ ⊗ ẑ

=
∑

w,x,y,z∈X

∑
a∈X

Ai(a,w)Aj(a, x)Ar(w, x)Ak(a, y)Aℓ(a, z)As(y, z)ŵ ⊗ x̂⊗ ŷ ⊗ ẑ

=
∑

q,t,u,v∈[d]

∑
(w,x,y,z)∈Rrqtuvs

vijkℓrqtuvsŵ ⊗ x̂⊗ ŷ ⊗ ẑ

=
∑

q,t,u,v∈[d]

vijkℓrqtuvsArqtuvs.

Arqtuvs is the characteristic tensor of a 4-ary relation, so is a 4-ary constraint function, which we
can view as the result of contracting the edge between the constraint vertices in Figure 8. Hence,
similar to the series reduction in the proof of Lemma 5.4, if two t-super-regular association schemes
have the same regularity parameters, we can reduce the above scaffold to a linear combination of
two scaffolds with an edge contracted, with the linear combinations for the two schemes having the
same coefficients. Analogous, but somewhat more complicated, reasoning yields a similar reduction
for two adjacent constraint vertices of arity higher than 3, or for multiple parallel edges between
the two constraint vertices.

Next, we consider delta-wye transformations. We have two types of delta-wye transformations,
as the center of the wye can be either a constraint or equality vertex. The first transformation
is shown in Figure 9. Note that this is not a ‘true’ delta-wye transformation, since the delta

Aijk
= Ai

Aj

Ak

Figure 9: Equivalence between a delta and wye scaffold, with a constraint vertex at the
center of the wye.

has extra degree-2 constraint vertices on each edge. However, recall that, in the #CSP view of
graph homomorphism, these degree-2 constraint vertices were implicitly present when we applied
Epifanov’s theorem. Hence we may ignore them in this context as well.
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Let Aα, Aβ, and Aγ be binary, ternary, and 4-ary constraint functions, respectively. Define

Rα′ = {(a, x, y) : (a, x), (a, y) ∈ Rα, (x, y) ∈ R0}
Rβ′ = {(b, c, x, z) : (b, c, x), (b, c, z) ∈ Rβ, (x, z) ∈ R0}
Rγ′ = {(d, e, f, y, z) : (d, e, f, y), (d, e, f, z) ∈ Rγ , (y, z) ∈ R0}.

Since R′
α, R

′
β, R

′
γ define all binary relationships between the entries of their tuples, they are indeed

members of Π3,Π4, and Π5, respectively. Observe that the scaffold equation in Figure 10 holds:
The transformation in Figure 10 is a ‘true’ delta-wye transformation, but the delta violates the

Aβ

Aα

Aγ

=

Aβ′

Aα′

Aγ′

Figure 10: Equivalence between a delta and wye scaffold, with an equality vertex at
the center of the wye.

signature grid bipartiteness. Thankfully, this is not an issue, as we can apply the edge contraction
procedure in Figure 8.
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