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Abs*t%act

An open problem is whether certain symmetric association schemes arising from the
finite projective, orthogonal, unitary, and symplectic geometries, all with the so—
called P— and Q— polynomial property, are the unique ones with their own inter-
section numbers. The following result, which applies to all P— and Q— polynomial
schemes, may shed light on this problem. If we say 4—tuples (x4, X5, X3, X4) and
(Yq, Yo. Y3 ¥4) of elements taken from the scheme Y = (X, Eﬁi] 0<i<d) have
the same type if (x;, x;} e R, implies {y;, y;) ¢ R, (I<i,j<4), then we show the fotal
number ny of 4—tupljes from Y of type ’il can be computed from the intersection
numbers of Y and the numbers ng for at most [d/2] types S.

AMS 1980 Subject Classification: Primary 05B05, 05050, 51E05.

Partially supported by NSF grant DMS 8504055,

Copyright © 1985 by Hadronic Press, Inc., Nonantum, Massachusetts 02195, U.S.A. All
rights reserved.




~ 542 —

~ For any positive integer ¢ set {d} = (0,1,..,d). A symmetric d-class
association scheme {or simply, scheme) Is a configuration Y = (X, (R} ie{d] |

consisting of a finite set X and symmetric refatlons Rq,Ry,..Rg on X
where 1) Rq = ((x,x) | xeX] Is the identity relatton, H) for every xye
X, (x,y) & Ry for exactly one i ¢[d], and i) forany h,1,} & [al and any x,y
¢ X with (x,y} € Ry, the number of z¢X where {(x,2) ¢Ry and (z\} ¢ RJ
"d_epends onlyonh,i, and J. We genote this number by the Infersection
number: B ;.

The set X of all dfdrmensional (maximal isotropic) subspaces in a

* projective (orthogonal, unitary, or symplectic) geometry forms such a

scheme, if we set (x,u) ¢ R; for any x,yeX where dim(xNy) = d-i, and in

fact these examplas are among the few known schemes with the so cailed
P- and Q- polynomial property (defined below). Here we give new
information on P- and Q- -b‘olgnom%al schemes that may help in their
classification. See Bannai and Itol1], Cohen{2], Egawa(3], Huang(4],

Leonard(3], Neumaier(6], Sprague(7], and Terwilliger{3-12]

we fix a scheme Y = (X, [R;} teldl} with n=I[X|, set k; = pon {1efa]),
and set k =k, Let EK4 be the set of all 2-element subsets of a 4-eiement
set Ky The level A7) of a funct‘ion TEK 4+ [d] (henceforth called a Lyoe
function) is the minimal integer in its range, and anuy-4-tuple (x,,xz,x:,-,xa)

of elements 1n X is said to have Tl (x;,X{) € Rryy 4y for all {i,j) ¢
) IR HeR)
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EK,4 Denote by ny the total number of 4-tuples from X of type 7. and for
any ield} set ny* =ne, where C=C(i) is the constant function of level

i. We prove the foltlowing.

THEOREM 1. Let Y be a d-class P- and Q- polynomial scheme and Tet T be
any type function. Then ny can be computed from the intersection numbers
of Yand ny ¥, no¥,., np“, whkere p is the mintmum of X{T) and the

integer part of d/2.

we review some preliminaries found in Bannai and 1to{1] before proving
the intermediate results Theorem 6 and Corollary 7, which may be of
independent interest, and then prove Theorem 1.

Let A(Y) be the Bogse-Mesner Algebra of Y (over R), acting on a Euclidean
space V, ¢,», that possesses an orthonormal basis which we identify with

X Let V=e V;(leld) be the orthogonal decomposition of V into maximal

A(Y)-invariant subspaces, let L denote the projection V 2 Vi, and let the

matrix E, represent w; relative ta X (ield]). The Krein parameters qh”

{h,1,j ¢ld]) are defined by

=nl h
EioEJ"n Zq” Eh
held

where o 15 Hadamard multiplication. Y is called P- and Q- palynomiat (with
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respect to the given ordering of the relations and projections) if the

intersection matrix. 8 and fts dual B, with 15th entries p'y; and a'y,
respectively {i,j e [a}), are tri-diagonal, with non-zero entries directiy

above and below the main diagonal. In this paper we always assume Y is

P- and Q- polynomial. For convenience set F; = {1, y,..., ;) {1 ¢[d]).

REMARK 2. Set mj = dim V; (jeldD. By[8], for i,j e d) the cosine Al

of the angle between ‘n’j(x) and ﬂj(g) (Y € Ry) Is
= pm,! ;
g nmj <1r](x), ﬁ](g)> {n
and can be computed from the int_eréectio‘n numbers of Y. We also have

memge, e = 5 ths my, ;M (ir,s elal. (2)
held)

we write ¢, =c;\1) ¢t = ¢, D (ied]), and by Bannai and Ito{1,p365] have
P55 ! y <

cj#cy and c“)x.c(j) if 12 - {i,jeldD. (3

Let the matrix Q@ have 1jth entry m]cj(j), (i,j ¢ {d]). By Bannai and Ito[1]

Q is essentially Vandermonde and hence nonsingular.

DEFINITION 3. Let G be the Cartesian product {d] x {d], and write u = (ux,ug)

for ueG. Let alu,v) = lbx =Vl qu - vgi be the distance betweenuyv ¢ G,
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and for ueG, reld], let Dlur) = (vlveG, auvisr) be the diamond of
radius r centered at u. Forfe 2 let Gy={ulueb,u>uy* i}. We will use

the following constants in Theorem 6.

DEFINITICN 4 Apath P Qf_ length tin Gj is a sequence [uo, U e ug} with
U ¢ Gj (e {th and auyusy ) €1 (ielt-1]). We say P goes from ug tou;
and write [P = t. Abusing notation we write P ¢ G If iPl21 set pu =
(Ugtty,-Up- 1) and Pr# = (Uy, Up,., Ugy), with PH% = ¢ if t=1, and assign
to P a sequence (f,|ueP*] of integers as follows. For each 1 e It-1], let
weuy, u=(rs) andset fyequal to By oy By eop 0% et

Sy gopp O PUyp - pS |, depending on whether uyyy = {rel,8), (r-1,8),

(rs+1), (r,8=1), or (r,8), respectively. For all paths P InG with P2 1
and P** ¢ Gy define the positive weight

WP 1T Ty ey, ¢y,
usP™"

Define the pegative welght of any path P in G for which P* € Gy DU

- - _ -1
wiP) = TT fyley, = €y)
uep® :

and set w(P)=1 If IPI=0. Finaliyforallteldl allueGandaliveb,

let a,Au,t) =3 wi(P), the sum being over all paths P from v to u having
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length t in case (=) and length t+1 in case (+).

'DEFINITION 5. For all xyéXandallt,]eldl set Pij(x.g) =3z, thesum

(in V) belng over all z ¢ X where {x,2) € Ry and (z,4) € Ry

THEOREM 6. For te(d], ue Gy, and x,yeX, wehave

equation (u,t)™ I 3, (ut) WP} - Pylyx) =0 (weFy)
veD(u,t)

and
equation (L, T a, WD AR « P lyxN =0  (weFy)

veD(u,t+ 1)

The constants a,*(u,t) are from Definition 4.

Progf. Fix x,yeX. ByBannai and 1to[1,p126] we have
I (TpX, WplP <Wgl, WgZ> WeZ = 0

ZE€X

for 2l 5t ¢ld] with qut‘ = (. Summing over the possible inner

products first, the Q-polunomial property implies

s ci(r)cj(S)ﬁpU{x,g) =0 rseldl, weFy, telr-sl - (4)
i, jeldl
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tet N=(e;|ield]) be the standard basis for RY*! | let N = (ej" ley®
the ith column of G, e {d]) be another basis, and set W = R3*lgr0*!

We abreviate e‘ij=ei®ej» e”“=ei”®ej”. For teld] define Ht,wtewbg
Hp =spanlegyt - Ji>t, 1 jeld] ) Wy = span{ej* 1 li-ji>t, i,jé [al },

and decompose Hy =H; e Ht+, setting H,™ = span{ &jj ~ €ji F(L]) € Gy,
and H," = span( 8 * ey (i, € Gy). We decempose Wy =W Tew,”

' simitarily, and note dim(Wy®) = (d-t+1Xa-t)/2 (t ¢ [dD. Setting

ey (1) = 2 3 (ub)lejy - ey teld ueG,

(1,1)eDCu,t)
and

ey’(t) = ¥ 2y (ut) tegy ey teld ueBy,
(1,15€Dlu,t+1)

by (4) it suffices to prove (e, (t}| ue Gy and {e,’(t) | ue 6;) form bases

for W, "~ and WI+f respectiveiy. Define the linear transformations

MMeR* 5 BRI by

—~
wn
St

My = ¢ (e;) mete;) = e (relad.

Let Ml :HO ¥ HQ be the restriction of M@I-I®M to its invariant subspace

Ho and let I ®Wg » W, be the restiction of M*® - E®MY to Wy By (3),
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M, and M, * are invertible, and In fact My (H%) = Hi¥, M;(Wy3) = Wi, for
all i eldl. Since by(2) and (1,p72] the matrices representing M and M*

rejative to N* and N are the tri-diagonal matrices m,"‘B“ and k~ 1,

repectively, we have M{W;5)C W and M,“(Hi*)gHi] for all i
{1gigd). Since Definition 4 and a routine induction on £ shows

ers-(t) - kt(M] -1 M§ n)t(ers - es;") and er;'(t) = kf"H “Ersm(t)

(t eld), (r,5) e G,), it suffices to show

W e My M0y (t e {ah (6)

This equation follows from Hy™ fi Wi =Wy ana Hy Nwg = My~ If we can

show

My(Wpeay T MTHGT) = W' NHSS (re(d-1], seld)) (D

My W, O Hg, ™) = Wp' A Hg (reld}, seld-11). (8
To preve (75, it suffices to prove

My (Wey ) = WA re [d-1] (9)

for we would then have M| (W, " AHgT) = MW, ) AT (Hg) =
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WS NH NHST = W5 NHG® Since My(Whyy ™) = My (W, "AHT) =

MR DR Hg D e W." NHy", to prove (9) we need only check

dimiwe" N HG'Y = (d-rid-r=1)/2 (10)

= dim(W“ ‘,).
For this, we produce a dimenston d-r subspace S, W~ that intersects
W' THy " triviaily, where

We'om W AT - S, (r e [a. ()

We take Sp = span{ ey* * eg ™ | relgigd ). Upon writing these vectors in

terms of (e” [1,j¢ldl) we find a linear compination -
d :
2 oleip” reg) € Hy'
{=r+|

Is equivalent to O[O'Ov----0=°<r+1=°‘r+2-~~°‘d]t =0, 50 S, NHy" Is trivial.

By writing the vectors
d

ey * ey - T Qlylegg ey ((xg) € 6
b= |

In terms of | &) [1,) elad}) and applying (2), we find they are all In
W." NHg", yielding (1) and proving (10). Line (8) is proved by

interchanging the roies of W, Hg, and M, My * in the proof of (7). [1
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COROLLARY 7. let t ¢ (d], set L(t) = {(1,]) 1 Osict or Ogjst ], and pick u e G.
From t, u, and the intersection numbers of ¥ we can compute

(g, | gyeR, veL() ] where

WPU(x,g} = 2 g LV EATY (12}
vel ()

for all w e Fy and all x,y € X.

proof. Setu=(r,s) (r,s ¢ [d]). The Corollary is true ff it is true under
the assumption ue L{t+1)\L{t) (tel[d-1]), so we make this assumption

and consider two cases.
Case 1. L=r¢s. Here (12) follows from equation {5,0,1)" of Theorem 6.

Case 2. t+1 =5<r. Wefirst apply the equation

3, (n,0.r0,t+1)7 + 3,T(r0,t+1)r,0,0)" to obtain the vector

7P, (x,y) in (12) as 2 linear combination of those 1P {x,y} for which

erther i) U eL{t) or ii) both u eL{t+1I\L() and r¢§ (W =(r,sh,

and then apply case | to those P (x,y) of the second type. [

Proof of Theorem!. Let A =A(T). For each type function 5 let e(S) be
the number of U ¢ EK4 for which S5(u) = AlS), except that e(S)=1 {f
_there are exactly two uyv ¢ EK with S(u), S{v} = M(3), and these u,v are
disioint. Define a partial order « on the set of all type functions,
tetting R, S satisfy R« S if either 1} A(R) <A(S), 11} MR)=a(5) and
e(R) > e(S), or i} A(R) = A(S), e(R)=e(S), and R(u) < 3{u) foratiue
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EK4, with strict inequality for some u. It now suffices to assume T is
e1ther not constant or Ay [d/2], and show ny is computatle from those ny

- for which T« T. There are 3 cases, the first being

1) A [d/21

1t % < [d/2) then T is not constant, 50 we can labet K4 = [x,y,z,w} 50 that

T(x,2) > T(x,y) = X, and either
2) T(y,z) = A

Ja) T{x,2) = T(u) > A for al} u € EK4 containing x or y, or
36)  Tlyw)and Tlx,w) equal h, and T(x,z) 2 Ttw) > A for all u € EXy
containing z.

Let e, f, g, r, and s denote the integers T(z,w), To,w), Tl,w), Tz,
and Tix,z), respectively Incase | we label K4 sO T{x,y)= ». For

convenience set (6,6)= (d-{d/2]-1, {d/2)+ 1), (A-1 A1), or {mintd-r),
r), in case 1, 2, and 3, respectively, and let J = [6+¢}\ [e-1). Foreach1¢

[dl, tet 5417 be the type function with sliky z) = i that agrees with T op
all p e EK4 with p=(x,2). 3etn;= ng(f) (iefa]) and note ng =ny. By (1),

for all h ¢ [d] and in particular for ail he [6], we have

2 me M e nmy T s angPertuy), WPV, (13
ield)
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the second sum being over all u,v ¢ X with (u,v) ¢ Rg. 8y Corollary 7 we
replace each vector #,Pgr(u,v) in (13) by a known linear compination of

those pPa (V) Tor whiche' <h or r' gh In gach case 1,2, 33, 3b and

for each h ¢ [d], evaluation of the inner product in (13) shows the right
side of that equation is computable from the intersection numbers of Y ang

those np. fer which T' ¢ T. Now the constants ny {tele-11) each

represent some ny for which T« T, and the P-polynomizl property -

implies nj =0 for §{>¢+4, sousing (13_) we can compute [qh | G ¢E,
he {6)) from the intersection numbers and those hpe for which T'« T, such
that

z nici(m= A (heish.
IeJ '

By remark 2 the coeffictent matrix for the above system is essentlally

Vandermonde and hence nonsingular, atlowing us to solve for each nilie

Ji o

REMARK. Foreach !, ¢lo}iet D= DO, J) be the square matrix of degree
(@+1)2, with rows and columns indexed by G ={d]x {d], where

Du,v = 3 <‘rrqu(x,g}, TT.}-PV(X,QD ug G, ve G,

the sum being over atl x,y € X with (x,u) ¢ Ry Equations like (13) show D
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is determined by the free parametersny®,.., n;¥, and the intersection
nurﬁbers of Y. The positive semi-definiteness of each D yields bounds on

the free parameters and hence estimates for the ny's.
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