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1 Delta-Wye parameters

Theorem 1.1. Let (X,R) be an exactly triply regular d-class association scheme with Bose-Mesner
algebra having an ordered basis A0, . . . , Ad of adjacency matrices and an ordered basis E0, . . . , Ed

of primitive idempotents. Then there exist unique constants {σi,j,k
r,s,t : pkij > 0, qtrs > 0} and {τ r,s,ti,j,k :

pkij > 0, qtrs > 0} such that

(1)

(2)

A proof of Theorem 1.1 can be found in Williams[3]. These values are called the Delta-Wye
parameters of (X,R).

Definition 1.2. Let (X,R) and (Y,S) be exactly triply regular d-class association schemes. We
say that they have the same Delta-Wye parameters, if there exists an ordering A0, . . . , Ad and
A′

0, . . . , A
′
d of the respective adjacency matrices and an ordering E0, . . . , Ed and E′

0, . . . , E
′
d of their

respective primitive idempotents such that σi,j,k
r,s,t = (σ′)i,j,kr,s,t, and τ r,s,ti,j,k = (τ ′)r,s,ti,j,k.

Lemma 1.3. Let (X,R) and (Y,S) be exactly triply regular d-class association schemes with the
same Delta-Wye parameters. Then, the association schemes (X,R) and (Y,S) have the same
intersection numbers, Krein parameters, eigenvalues, and dual eigenvalues. Moreover, the bijective
map Ai 7→ A′

i extends to a linear isomorphism κ : A → A′, such that κ(MN) = κ(M)κ(N) and
κ(M ◦N) = κ(M) ◦ κ(N).
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Proof. We consider Eq. (1), for a fixed i, j, k. We sum up all coefficients of all the tensors on both
the LHS and the RHS. We will first consider the RHS. We see that

RHS =
∑
qtrs>0

σi,j,k
r,s,t

∑
x,y,z,u∈X

(Er)xu(Es)yu(Et)zu =
∑
qtrs>0

σi,j,k
r,s,t

∑
y∈X

∑
x,z∈X

(ErA
∗
sEt)xz

where each A∗
s in the sum is with respect to y [4].

It is known that {ErA
∗
rEt : 0 ≤ r, s, t ≤ d, qtrs > 0} is an orthogonal basis of AA∗A [5]. We note

that when r = s = t = 0, E0A
∗
0E0 = E0 = 1

|X|J , where J is the all-ones matrix. Since every other

matrix of the form ErA
∗
sEt is orthogonal to this matrix, it follows that for all (r, s, t) ̸= (0, 0, 0),∑

x,z∈X
(ErA

∗
sEt)xz = 0.

Therefore, we see that
RHS = σi,j,k

0,0,0(|X|).
Now, when i = j and k = 0, we see that the sum of coefficients on the LHS is

LHS =
∑

x,y,z∈X
(Ai)x,y(Ai)y,z(A0)z,x =

∑
x,y∈X

(Ai)x,y = |X|p0ii.

This proves that p0ii = σi,i,0
0,0,0. For any other choice of i, j, k, we see that the sum of coefficients on

the LHS is |X|pkijp0ii.
This proves that the Delta-Wye parameters determine the intersection numbers. The remaining

association scheme parameters are then recoverable from the intersection numbers.
Since κ(Ai) = A′

i is a 0− 1 matrix and both Ai ◦Aj = δijAi and A′
i ◦A′

j = δijA
′
i holds for this

pair of bases, we have κ(M ◦N) = κ(M) ◦ κ(N) by linearity. Also,

κ(AiAj) = κ

(
d∑

k=0

pkijAk

)
=

d∑
k=0

pkijA
′
k = A′

iA
′
j = κ(Ai)κ(Aj).

2 Main Theorem

Theorem 2.1 (Main Theorem). Let (X,R) and (Y,S) be exactly triply regular symmetric associa-
tion schemes that have the same Delta-Wye parameters. Let G be a graph whose adjacency matrix
M lies in the Bose-Mesner algebra of (X,R). Then, κ(M) is the adjacency matrix of a graph G′,
and the two graphs G and G′ are quantum isomorphic.

2.1 Epifanov’s theorem

Given an embedding of a planar graph, we consider the following local operations:

Local Transformation 1: loop
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Local Transformation 2: pendent

Local Transformation 3: parallel

Local Transformation 4: series

Local Transformation 5: Delta

Local Transformation 6: Wye

Theorem 2.2 (Epifanov’s Theorem). Let F be a connected planar graph. There exist a sequence
of planar graphs (F0, . . . , Fl) such that

1. F0 = F and Fl is a graph with a single vertex and no edges.
2. Fh+1 is obtained from Fh using one of the local transformations above, for 0 ≤ h < l.

Proofs of Epifanov’s Theorem can be found in Feo and Provan[2] and Truemper[6].

2.2 Main Lemma

We consider the problem of computing S(F, ∅;w) for planar F and w : E(F ) → A. Recall that

S(F, ∅;w) =
∑

ϕ:V (F )→X

 ∏
e∈E(F )
e=(u,v)

w(e)ϕ(u),φ(v)

 .
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If F has connected components F 1, . . . , F k, then it can be seen that

S(F, ∅;w) =
k∏

i=1

S(F i, ∅;w|Fi). (3)

Therefore, we can restrict our attention to connected, planar F . We know from Epifanov’s
Theorem, that there exists a sequence of planar graphs (F0, . . . , Fl).

The main technical lemma used in the proof of the Main Theorem is as follows:

Lemma 2.3 (Main Lemma). Let (X,R) and (Y,S) be an exactly triply regular symmetric associ-
ation schemes with the same Delta-Wye parameters. Let κ be the isomorphism from Lemma 1.3,
and let κ • w represent the function composition. For any 0 ≤ h < l, there exists a positive integer
mh, constants {αh,m}mh

m=1, and weight functions {wh,m}mh
m=1 where each wh,m : E(Fh+1) → A, such

that

S(Fh, ∅;w) =
mh∑
m=1

αh,mS(Fh+1, ∅;wh,m); S(Fh, ∅;κ • w) =
mh∑
m=1

αh,mS(Fh+1, ∅;κ • wh,m). (4)

Before proving Lemma 2.3, we will quickly see how it implies the Main Theorem. By repeated
application of Lemma 2.3, we see that there exists a positive integer M , constants {βm}Mm=1 and
weight functions {wm}Mm=1 such that

S(F0, ∅;w) =
M∑

m=1

βmS(Fl, ∅;wm); S(F0, ∅;κ • w) =
M∑

m=1

βmS(Fl, ∅;κ • wm).

Then, we note that Fl is the graph with just one vertex and no edges. Therefore, for any
weight function w : ∅ → MatX(C), we have that S(Fl, ∅;w) = |X|. This implies that S(F, ∅;w) =
S(F, ∅;κ • w). If we let w be the function such that w(e) = M for all e ∈ E(F ), then we see that
for any planar F ,

hom(F,G) = S(F, ∅;w) = S(F, ∅;κ • w) = hom(F,G′).

This implies that G and G′ are quantum isomorphic.

2.3 Proof of the Main Lemma

We will focus on the weight function w. Consider an edge e1 = (u1, v1) ∈ E(F ). We can represent
w as w = a0w0 + · · ·+ adwd, where {ai}di=0 are constants, and each wi is defined as:

wi(e) =

{
Ai if e = e1

w(e) if e ̸= e1

Lemma 2.4.

S(F, ∅;w) =
d∑

i=0

ai · S(F, ∅;wi).
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Proof. By definition, we see that

S(F, ∅;w) =
∑

ϕ:V (F )→X

(a0w0 + · · ·+ adwd)(e1)ϕ(u1),ϕ(v1) ·
∏

e∈E(F )\{e1}
e=(u,v)

w(e)ϕ(u),φ(v)



=

d∑
i=0

ai
∑

ϕ:V (F )→X

wi(e1)ϕ(u1),ϕ(v1) ·
∏

e∈E(F )\{e1}
e=(u,v)

w(e)ϕ(u),φ(v)


=

d∑
i=0

ai · S(F, ∅;wi).

By repeated application of Lemma 2.4 on each edge of E(F ), we can assume that the range of
the weight function w is {A0, . . . , Ad}.

Now, we consider the local transformation Fh 7→ Fh+1. We will consider each of the local
transformations possible.

1. loop: Let e be the loop that is deleted. We may assume that w(e) = Ar. In this case,
mh = 1, αh,1 = δr,0, and wh,1 = w|E(F )\{e}.

2. pendent: Let e be the edge that is deleted. We may assume that w(e) = Ar. In this case,
mh = 1, αh,1 = p0r,r, and wh,1 = w|E(F )\{e}.

3. parallel: Let e be the edge that is deleted, and let e′ be its parallel edge. We may assume
that w(e) = Ar and w(e′) = As. In this case, mh = 1, αh,1 = δs,r, and wh,1 = w|E(F )\{e}.

4. series: Let e and e′ be the edges in series, that are replaced with the single edge e′′ in Fh+1.
We may assume that w(e) = Ar and w(e′) = As. In this case, mh = d+ 1, αh,m = pmr,s, and
wh,m is defined as

wh,m(e) =

{
Am if e = e′′

w(e) if e ̸= e′′

5. Delta: Let e1, e2, e3 be the edges that are replaced with the edges e′1, e
′
2, e

′
3 in Fh+1 (with e′i

being the edge that is not incident on any of the endpoints of the edge ei). We may assume
that w(e1) = Ai, w(e2) = Aj , and w(e3) = Ak. Now, we note that from Eq. (1), we have that

(5)

Consequently, we may let mh = (d+ 1)3, and for each m = (r, s, t) ∈ [d]3, we let

αh,(r,s,t) =
1

|X|3
∑

a,b,c: qcab>0

σi,j,k
a,b,cQraQsbQtc,
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and we define wh,(r,s,t) as

wh,(r,s,t)(e) =


Ar if e = e′1
As if e = e′2
At if e = e′3
w(e) if e /∈ {e′1, e′2, e′3}

6. Wye: Let e1, e2, e3 be the edges that are replaced with the edges e′1, e
′
2, e

′
3 in Fh+1 (with e′i

being the edge that is incident on the two vertices that ei is not incident on). We may assume
that w(e1) = Ai, w(e2) = Aj , and w(e3) = Ak. Now, we note that from Eq. (2), we have that

(6)

Consequently, we may let mh = (d+ 1)3, and for each m = (r, s, t) ∈ [d]3, we let

αh,(r,s,t) =
d∑

a,b,c=0

τa,b,cr,s,t PaiPbjPck,

and we define wh,(r,s,t) as

wh,(r,s,t)(e) =


Ar if e = e′1
As if e = e′2
At if e = e′3
w(e) if e /∈ {e′1, e′2, e′3}

We see that Eq. (4) holds true for each of the transformations above.
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