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1 Delta-Wye parameters

Theorem 1.1. Let (X, R) be an ezxactly triply regular d-class association scheme with Bose-Mesner
algebra having an ordered basis Ao, ..., Aq of adjacency matrices and an ordered basis Ey, ..., Ey

of primitive idempotents. Then there exist unique constants {Ui’j’k net

st 2Pfj > 0,qt, > 0} and {Ti’jjk :
Pl > 0,¢t, > 0} such that
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A proof of Theorem 1.1 can be found in Williams[3]. These values are called the Delta-Wye
parameters of (X, R).

Definition 1.2. Let (X, R) and (Y,S) be exactly triply reqular d-class association schemes. We
say that they have the same Delta-Wye parameters, if there exists an ordering Agy,...,Aq and
Ap, .., Al of the respective adjacency matrices and an ordering Ey, ..., Eq and E|, ..., E/, of their
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respective primitive idempotents such that 0,0y = (0),’5;, and Tiik = (T )i,’j,’k'

Lemma 1.3. Let (X,R) and (Y,S) be exactly triply reqular d-class association schemes with the
same Delta-Wye parameters. Then, the association schemes (X, R) and (Y,S) have the same
intersection numbers, Krein parameters, eigenvalues, and dual eigenvalues. Moreover, the bijective
map A; — Al extends to a linear isomorphism k : A — A, such that kK(MN) = k(M)x(N) and
k(M oN) = k(M) ok(N).



Proof. We consider Eq. (1), for a fixed 4, j, k. We sum up all coefficients of all the tensors on both
the LHS and the RHS. We will first consider the RHS. We see that

RHS = Z O'Ziijslzlz Z (Er):pu(Es)yu(Et)zu = Z O-i:?,]; Z Z (ETA:Et)fEZ

gty>0 z,y,z2,u€EX qts>0 yeX x,zeX

where each A% in the sum is with respect to y [4].

It is known that {E,A*E; : 0 <r,s,t <d, g, > 0} is an orthogonal basis of AA*A [5]. We note
that when r =s =t =0, EgAjEy = Ey = ﬁJ, where J is the all-ones matrix. Since every other
matrix of the form E, A% F; is orthogonal to this matrix, it follows that for all (r,s,t) # (0,0,0),

> (B AiEy).. = 0.

r,ze€X
Therefore, we see that
RHS = o35 1 X]).

Now, when ¢ = j and k = 0, we see that the sum of coefficients on the LHS is

LHS = ) (A)ey(Ai)y=(A0)za = Y (Ai)ay = X[}
z,y,2€X zyeX

This proves that p%- = ‘7(1)7,26?0- For any other choice of ¢, j, k, we see that the sum of coefficients on
the LHS is | X |pf;p};.

This proves that the Delta-Wye parameters determine the intersection numbers. The remaining
association scheme parameters are then recoverable from the intersection numbers.

Since k(A;) = A} is a 0 — 1 matrix and both A; 0 A; = §;;4; and A] o A;- = 0;; A} holds for this
pair of bases, we have k(M o N) = k(M) o K(N) by linearity. Also,
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2 Main Theorem

Theorem 2.1 (Main Theorem). Let (X,R) and (Y,S) be exactly triply reqular symmetric associa-
tion schemes that have the same Delta- Wye parameters. Let G be a graph whose adjacency matriz
M lies in the Bose-Mesner algebra of (X,R). Then, k(M) is the adjacency matriz of a graph G,
and the two graphs G and G' are quantum isomorphic.

2.1 Epifanov’s theorem

Given an embedding of a planar graph, we consider the following local operations:
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Local Transformation 1: loop
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Local Transformation 2: pendent

0 v S0——CC

Local Transformation 3: parallel

Oo——O0—C¢ v Oo—&

Local Transformation 4: series
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Local Transformation 5: Delta
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Local Transformation 6: Wye

Theorem 2.2 (Epifanov’s Theorem). Let F' be a connected planar graph. There exist a sequence
of planar graphs (Fy, ..., F;) such that

1. Fy = F and Fj is a graph with a single vertexr and no edges.

2. Fpiq is obtained from Fy, using one of the local transformations above, for 0 < h <.

Proofs of Epifanov’s Theorem can be found in Feo and Provan[2] and Truemper[6].

2.2 Main Lemma

We consider the problem of computing S(F, (); w) for planar F' and w : E(F) — A. Recall that

S(F.hw)= Y. I w©sw.ew

6 V(F)—=X \ ecE(F)
e=(u,v)



If F has connected components F', ..., F¥ then it can be seen that

k
S(F,0;w) = [[S(F, b w|r,). (3)

=1

Therefore, we can restrict our attention to connected, planar F. We know from Epifanov’s
Theorem, that there exists a sequence of planar graphs (Fp, ..., F}).
The main technical lemma used in the proof of the Main Theorem is as follows:

Lemma 2.3 (Main Lemma). Let (X,R) and (Y,S) be an exactly triply reqular symmetric associ-
ation schemes with the same Delta- Wye parameters. Let k be the isomorphism from Lemma 1.3,
and let k @ w represent the function composition. For any 0 < h <[, there exists a positive integer
my, constants {apm oy, and weight functions {wpm bt where each wp m « E(Fpp1) — A, such
that

mp, mhp
S(Fn, B;w) = Y anmS(Fugr, Gwnm);  S(Fn, Bk ow) =Y apmS(Fh1, 05 0 wpm).  (4)

m=1 m=1

Before proving Lemma 2.3, we will quickly see how it implies the Main Theorem. By repeated
application of Lemma 2.3, we see that there exists a positive integer M, constants {Bm}%zl and
weight functions {wy, }}/_; such that

M M
S(Fo, B;w) =Y BnS(F, O wim);  S(Fo, 50 w) = > BruS(F, 0; k@ wyy).
m=1 m=1

Then, we note that F; is the graph with just one vertex and no edges. Therefore, for any
weight function w : ) — Matx(C), we have that S(Fj,0;w) = |X|. This implies that S(F, );w) =
S(F,0; x e w). If we let w be the function such that w(e) = M for all e € E(F), then we see that
for any planar F,

hom(F,G) = S(F,0;w) = S(F, 0; k e w) = hom(F,G").

This implies that G and G’ are quantum isomorphic.

2.3 Proof of the Main Lemma

We will focus on the weight function w. Consider an edge e; = (u1,v1) € E(F). We can represent
w as w = agwy + - - - + agqwy, where {ai}fzo are constants, and each w; is defined as:

A; ife=e¢e;
wi(e) =
w(e) ife#e
Lemma 2.4.

S(F,0;w) = a; - S(F, B;w;).

1=0



Proof. By definition, we see that

S(E.Gw) = Y | (aowo + -+ agwa)(en)ppupw) - |1 w(€)ptu o

¢:V(F)=»X eeE(?)\{)m}
d
=> a Y wileswysw) I w@swew
i=0 ¢ V(F)—=X eeE(f)\{)a}

d
= ai - S(F,0;wy).
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By repeated application of Lemma 2.4 on each edge of E(F'), we can assume that the range of
the weight function w is {Ay,..., A4}

Now, we consider the local transformation Fj — Fp1q. We will consider each of the local
transformations possible.

1.

2.

loop: Let e be the loop that is deleted. We may assume that w(e) = A,. In this case,
mp =1, ap1 = 60, and wp1 = W|p(F)fe}-
pendent: Let e be the edge that is deleted. We may assume that w(e) = A,. In this case,
mp =1, ap = pl,, and wp,1 = W] gp) (e}

. parallel: Let e be the edge that is deleted, and let ¢’ be its parallel edge. We may assume

that w(e) = A, and w(e’) = As. In this case, mp, = 1, ap1 = s, and wp,1 = W[EF)(e}-

. series: Let e and ¢’ be the edges in series, that are replaced with the single edge ¢” in Fj 1.

We may assume that w(e) = A, and w(e’) = As. In this case, my = d + 1, apm = P}, and

Wh,m is defined as
(@ A, ife=¢€"
w e) =
o w(e) ife#e”

. Delta: Let eg, e, e3 be the edges that are replaced with the edges €}, €5, 5 in Fjy4q (with €]

being the edge that is not incident on any of the endpoints of the edge e;). We may assume
that w(e1) = A;,w(e2) = Aj, and w(ez) = Aj. Now, we note that from Eq. (1), we have that
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Consequently, we may let my, = (d + 1), and for each m = (r, s,t) € [d]3, we let

1 -
Qp (r,s,t) = W Z U;’fb’,CQszthc,



and we define wy, (, 54) as

A, ife=¢€)

A, ife=¢)

Ay if e = e}

w(e) if e ¢ {e, e e}

Wh, (r,s,t) (6) =

6. Wye: Let e, ez, e3 be the edges that are replaced with the edges ¢/, €5, €4 in Fj, 1 (with €]

being the edge that is incident on the two vertices that e; is not incident on). We may assume
that w(e1) = A;,w(e2) = A;, and w(e3) = A. Now, we note that from Eq. (2), we have that

= Z Pm'ijPck Ey Z Pazpb] ck Z ;sttc

ab,c a,b,c pt.>0

Consequently, we may let m;, = (d + 1), and for each m = (r, s,t) € [d]3, we let

a,b,c
,(r,8,t) E Trstp ij ck»
a,b,c=0

and we define wy, (, 54) as
s /
A, ife=¢€]
: /
Ay ife=é
: /
Ay if e = ef

w(e) if e ¢ {e], ey €3}

We see that Eq. (4) holds true for each of the transformations above.

Wh,(r,s,t) (6) =
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