Next, we consider how the algebra T' acts on the standard module V. By a T-module we
mean a subspace W C V such that TW C W. A T-module W is irreducible whenever W is
nonzero, and W does not contain a T-module besides 0 and W.

Lemma 6.19. Let W denote a T-module. Then the orthogonal complement W+ is a T-
module.

Proof. For A € T we have A eT. Also
(Au,v) = (u, A'v) u,v € V.
By these comments we obtain the result. (I

Corollary 6.20. The standard module V' is an orthogonal direct sum of irreducible T'-
modules. '

Proof. Use Lemma 6.19. O

Next, we describe a particular irreducible T-module called the primary T-module. Recall

the vector 1 = Zyé x J. For 0 <4 < d define the vector
L= )Y ¢
yer;(x)
Observe that
Efl=1; = Ag# (0<i<d).
Consequently
M*E)V = MEZV. (28)

Lemma 6.21. The vector space M*EyV = MEGV is an irreducible T-module.

Proof. Define V = M*E,V = MEFV. We have MV C V since V = MEGV. We have
M*V C V since V = M*EgV. Therefore TV C V, so V is a T-module. We show that
the T-module V is irreducible. The standard T-module V is a direct sum of irreducible T'-
modules. There exists an irreducible T-module that is not orthogonal to Z. This T-module
is closed under Ej, so it contains £ and also Mz = V. This T-module must equal V by
irreducibility. O

Lecture 9

Definition 6.22. Define V= M*EyV = MEGV. The T-module V is called primary.

Lemma 6.23. For 0 <i < d we have
| X|E& = Agl. (29)
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Proof. Both vectors in (29) have y-coordinate | X|(E;)y. for y € X.
Definition 6.24. For 0 < i < d let 1 denote the common vector in (29).

We clarify the definitions. Note that 1o = £ and 15 = 1. Moreover

d d
15=> 1, Lo= X" ) 11
=0 i=0

The following result is routinely verified.
Lemma 6.25. For the primary T-module 'V,
(i) 1; is a basis for EXV (0 <14 < d);
(i) {1;}%, is a basis for V;
(iii) 1¥ is a basis for E;V (0 <1 < d);
(iv) {17}, is a basis for V.
Next, we describe how the bases {1;}&, and {1;}4_, are related.
Lemma 6.26. For 0 < j < d we have
() 1= X7 2 P01y
(i) 1t =37, Q;(0)1L:.
Proof. (i) Observe

1= 1= XS B4 = XIS B

=0 i=0
d d
= X[ Y RO = XY PO
i=0 i=0
(i) Observe
d d d d
1= |X|Ed = Qi()Ad =) Qi(1)ls =) Q;(i)Li=> Q;(i)L
=0 i=0 i=0 i=0

Next we describe how the algebra 7" acts on the bases {1;}¢ , and {1;}{.
Lemma 6.27. For 0 <1i,7 < d we have

() Br1, = digly;

(i) ALy = Q)L
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(i) Bily = X7 P(0) Yoo Qi(R)1n;

(iv) Asly =3 oph ;1x.

Proof. (i) Clear.
(ii) Observe

Al = ATE;1 = Qi(5) Ei1 = Qi(5)1;
(iii) Observe

d

= | X7 P(a)1F = | X |7 P (4) Z h)1p.

(iv) Observe

d d d d
Ailj = AiAj/i = Zpﬁj/AkaAi = Zp,f‘ij/]-k/ = Zpﬁj/].k = Zpéc,’jlk.

Lemma 6.28. For 0 <i,j < d we have
(i) B} =613,
(i) Ai1; = B(4)13;
(iif) B} = | X[~ IQ_’I( )Zh o Pi(R)1};
(iv) Af1y =0 0dk 15

Proof. Similar to the proof of Lemma 6.27. (i) Clear.
(ii) Observe

Al; = | XA B = | X|Pi(7) Ese = F(5)1].

(iii) Observe

d
Bl = BiAj1 = ASEL = A21, = Q;(0)1: = Q;(D)L = |X|7'Q;(0) Y P(h)1;
h=0

(iv) Observe

AL = A*A*1~Zq A*1~.Zq“ unlf unl*.
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Next we bring in the bilinear form.
Lemma 6.29. For 0 < 14,57 < d we have
() (Li, 1) = b4 5ki;
(11) (1:, 1;> = 52,J|X]m“
(iii) <1z,1g> Pi(j )mj Qj(1)k:.

Proof. (i) Routine.
(ii) Observe

(17,17) = |X[X(Eig, Byz) = | X (&, BiBy) = 6,5 X (&, Bi) = 65| X [ms.
(ili) Observe

(15, 13) = | X[(Aw, B;2) = | X|(2, (A)LE;2) = | X|(Z, AiE; )
= |X|P,(j) (&, B;z) = B(j)m; = Q;(9)k;.

7 Duality for commutative association schemes

In this section we discuss the concept of duality for commutative association schemes. To
motivate things, we start with a small example.

Consider the group G = Z/37 with three elements. Of course G is abelian, so each conjugacy
class contains one element. Consider the conjugacy-class association scheme X for G. The
associate matrices of X are

100 010 00 1
Ag=10 1 0], A=l001], A,=[100
00 1 100 010

We have Ay = A% and A3 = I. Let w € C denote a primitive third root of unity. Note that

O=w?=w, l4+w+w?=0.
The primitive idempotents of X are
111 1 w? w 1 w w?
1 1 9 1 5
E():g 111 y El:g w 1w R EQZ'?; w 1 w
111 w? w 1 w w? 1
The first and second eigenmatrices of X are
1 1 1 1 1 1
P=11 w w?}, Q=11 w? w
1 w? w 1 w w?
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Note that

P=qQ.

We will interpret (30) using duality.

For the rest of this section, we assume that X = (X, {R;}&,) is a commutative association
scheme with Bose-Mesner algebra M, associate matrices {A;}%,, and primitive idempotents

{E:}io

(30)

Definition 7.1. A duality of X is a C-linear bijection ¥ : M — M that satisfies (i), (ii)

below:
(i) W(AB) = U(A) o ¥(B) for all A, B € M;
(i) W(P(A)) = |X|A® for all A € M.
We say that X is self-dual whenever X has a duality.
Lemma 7.2. Assume that X has a duality ¥. Then
(i) (Ao B) =|X|['W(A)V(B) for all A, B € M;
(i) W(AY) = (U(A))' for all A€ M.

Proof. (i) Each side is equal to | X|¥~(A? o BY).
(ii) Each side is equal to | X |1 W3(A).

Lemma 7.3. Assume that X has a duality V. Then
(i) (1) =J;
(i) ¥(J)=|X|I.
Proof. (i) For A € M, -
U(A) = U(AI) = U(A) o U(I).

The result follows.
(ii) For A € M,

U(A) = V(Ao J)=|X|""T(A)T(J]).

So | X|7'W(J) = I. The result follows.

Lemma 7.4. Assume that X has a duality . Then there exits an ordering {R;}L, of the

relations such that
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Proof. For 0 < 4,5 < d we have E;F; = ¢6;;E;. In this equation we apply ¥ to each side;
this yields

65U (E;) = V(B Ey) = V(E;) o U(E;),

By these comments, the sequence {¥(E;)}¢_, is a permutation of the sequence {A;}% . The
result follows. O

Lemma 7.5. Assume that X has o duality ¥ such that V(E;) = A; for 0 < i < d. Then
(1)=(iv) hold below:

(i) w(4) =1X|E;  (0<i<d)
i) ¥=1 (0<i<d);
)
)

P = qf; (0<4,5,k<d).
Proof. (i) We have
| X| B = U(U(E)) = U(A).
(if) We have
Ay =U(E) = U(E}) = (U(B))" = Al = Ay,
(ili) For 0 < i < d we have A; = }:;.izo Py(7)E;. In this equation we apply ¥ to each side;
this yields

XIB =Y PG,

We may now argue

M-

Il
=}

d
Pi(j)A; = |X|E! = |X|Ei =Y Qi() A
J =0

Therefore P;(5) = Q;(5) for 0 < 4,5 < d. Consequently P = Q.
(iv) We have

d
Eio By = |X|7 ) df;Ex (0<i,j<d).
k=0
In this equation, we apply ¥ to each side and evaluate the result; this yields

d
Ad; = g A (0<d,j<d).
k=0
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