Next, we consider how the algebra T acts on the standard module V. By a T-module we mean a subspace $W \subseteq V$ such that $TW \subseteq W$. A T-module W is irreducible whenever W is nonzero, and W does not contain a T-module besides 0 and W.

Lemma 6.19. Let W denote a T-module. Then the orthogonal complement W^{\perp} is a T-module.

Proof. For $A \in T$ we have $\overline{A}^t \in T$. Also

$$\langle Au, v \rangle = \langle u, \overline{A}^t v \rangle$$
 $u, v \in V.$

By these comments we obtain the result.

Corollary 6.20. The standard module V is an orthogonal direct sum of irreducible T-modules.

Proof. Use Lemma 6.19.
$$\square$$

Next, we describe a particular irreducible T-module called the primary T-module. Recall the vector $\mathbf{1} = \sum_{y \in X} \hat{y}$. For $0 \le i \le d$ define the vector

$$\mathbf{1}_i = \sum_{y \in \Gamma_i(x)} \hat{y}.$$

Observe that

$$E_i^* \mathbf{1} = \mathbf{1}_i = A_{i'} \hat{x}$$
 $(0 \le i \le d).$

Consequently

$$\mathcal{M}^* E_0 V = \mathcal{M} E_0^* V. \tag{28}$$

Lemma 6.21. The vector space $\mathcal{M}^*E_0V = \mathcal{M}E_0^*V$ is an irreducible T-module.

Proof. Define $\mathcal{V} = \mathcal{M}^*E_0V = \mathcal{M}E_0^*V$. We have $\mathcal{M}\mathcal{V} \subseteq \mathcal{V}$ since $\mathcal{V} = \mathcal{M}E_0^*V$. We have $\mathcal{M}^*\mathcal{V} \subseteq \mathcal{V}$ since $\mathcal{V} = \mathcal{M}^*E_0V$. Therefore $T\mathcal{V} \subseteq \mathcal{V}$, so \mathcal{V} is a T-module. We show that the T-module \mathcal{V} is irreducible. The standard T-module V is a direct sum of irreducible T-modules. There exists an irreducible T-module that is not orthogonal to \hat{x} . This T-module is closed under E_0^* , so it contains \hat{x} and also $\mathcal{M}\hat{x} = \mathcal{V}$. This T-module must equal \mathcal{V} by irreducibility.

Lecture 9

Definition 6.22. Define $\mathcal{V} = \mathcal{M}^* E_0 V = \mathcal{M} E_0^* V$. The *T*-module \mathcal{V} is called *primary*.

Lemma 6.23. For $0 \le i \le d$ we have

$$|X|E_i\hat{x} = A_i^* \mathbf{1}. \tag{29}$$

Proof. Both vectors in (29) have y-coordinate $|X|(E_i)_{y,x}$ for $y \in X$.

Definition 6.24. For $0 \le i \le d$ let $\mathbf{1}_{i}^{*}$ denote the common vector in (29).

We clarify the definitions. Note that $\mathbf{1}_0 = \hat{x}$ and $\mathbf{1}_0^* = \mathbf{1}$. Moreover

$$\mathbf{1}_0^* = \sum_{i=0}^d \mathbf{1}_i, \qquad \mathbf{1}_0 = |X|^{-1} \sum_{i=0}^d \mathbf{1}_i^*.$$

The following result is routinely verified.

Lemma 6.25. For the primary T-module \mathcal{V} ,

- (i) $\mathbf{1}_i$ is a basis for $E_i^* \mathcal{V}$ $(0 \le i \le d)$;
- (ii) $\{\mathbf{1}_i\}_{i=0}^d$ is a basis for \mathcal{V} ;
- (iii) $\mathbf{1}_{i}^{*}$ is a basis for $E_{i}\mathcal{V}$ $(0 \leq i \leq d)$;
- (iv) $\{\mathbf{1}_i^*\}_{i=0}^d$ is a basis for \mathcal{V} .

Next, we describe how the bases $\{\mathbf{1}_i\}_{i=0}^d$ and $\{\mathbf{1}_i^*\}_{i=0}^d$ are related.

Lemma 6.26. For $0 \le j \le d$ we have

(i)
$$\mathbf{1}_j = |X|^{-1} \sum_{i=0}^d \overline{P_j(i)} \mathbf{1}_i^*;$$

(ii)
$$1_j^* = \sum_{i=0}^d \overline{Q_j(i)} 1_i$$
.

Proof. (i) Observe

$$\mathbf{1}_{j} = E_{j}^{*} \mathbf{1} = |X|^{-1} \sum_{i=0}^{d} P_{j}(i) A_{i}^{*} \mathbf{1} = |X|^{-1} \sum_{i=0}^{d} P_{j}(i) \mathbf{1}_{i}^{*}$$
$$= |X|^{-1} \sum_{i=0}^{d} P_{j}(\hat{i}) \mathbf{1}_{i}^{*} = |X|^{-1} \sum_{i=0}^{d} \overline{P_{j}(i)} \mathbf{1}_{i}^{*}.$$

(ii) Observe

$$\mathbf{1}_{j}^{*} = |X| E_{j} \hat{x} = \sum_{i=0}^{d} Q_{j}(i) A_{i} \hat{x} = \sum_{i=0}^{d} Q_{j}(i) \mathbf{1}_{i'} = \sum_{i=0}^{d} Q_{j}(i') \mathbf{1}_{i} = \sum_{i=0}^{d} \overline{Q_{j}(i)} \mathbf{1}_{i}.$$

Next we describe how the algebra T acts on the bases $\{\mathbf{1}_i\}_{i=0}^d$ and $\{\mathbf{1}_i^*\}_{i=0}^d$.

Lemma 6.27. For $0 \le i, j \le d$ we have

(i)
$$E_i^* \mathbf{1}_j = \delta_{i,j} \mathbf{1}_j$$
;

(ii)
$$A_i^* \mathbf{1}_i = Q_i(j) \mathbf{1}_i$$
;

(iii)
$$E_i \mathbf{1}_j = |X|^{-1} \overline{P_j(i)} \sum_{h=0}^d \overline{Q_i(h)} \mathbf{1}_h;$$

(iv)
$$A_i \mathbf{1}_j = \sum_{k=0}^d p_{i',j}^k \mathbf{1}_k$$
.

Proof. (i) Clear.

(ii) Observe

$$A_i^* \mathbf{1}_j = A_i^* E_j^* \mathbf{1} = Q_i(j) E_j^* \mathbf{1} = Q_i(j) \mathbf{1}_j.$$

(iii) Observe

$$E_{i}\mathbf{1}_{j} = E_{i}A_{j'}\hat{x} = A_{j'}E_{i}\hat{x} = P_{j'}(i)E_{i}\hat{x} = \overline{P_{j}(i)}E_{i}\hat{x}$$
$$= |X|^{-1}\overline{P_{j}(i)}\mathbf{1}_{i}^{*} = |X|^{-1}\overline{P_{j}(i)}\sum_{h=0}^{d} \overline{Q_{i}(h)}\mathbf{1}_{h}.$$

(iv) Observe

$$A_{i}\mathbf{1}_{j} = A_{i}A_{j'}\hat{x} = \sum_{k=0}^{d} p_{i,j'}^{k} A_{k}\hat{x} = \sum_{k=0}^{d} p_{i,j'}^{k} \mathbf{1}_{k'} = \sum_{k=0}^{d} p_{i,j'}^{k'} \mathbf{1}_{k} = \sum_{k=0}^{d} p_{i',j}^{k} \mathbf{1}_{k}.$$

Lemma 6.28. For $0 \le i, j \le d$ we have

(i)
$$E_i \mathbf{1}_i^* = \delta_{i,j} \mathbf{1}_i^*$$
;

(ii)
$$A_i \mathbf{1}_i^* = P_i(j) \mathbf{1}_i^*$$
;

(iii)
$$E_i^* \mathbf{1}_i^* = |X|^{-1} \overline{Q_j(i)} \sum_{h=0}^d \overline{P_i(h)} \mathbf{1}_h^*;$$

(iv)
$$A_i^* \mathbf{1}_j^* = \sum_{k=0}^D q_{i,j}^k \mathbf{1}_k^*$$
.

Proof. Similar to the proof of Lemma 6.27. (i) Clear.

(ii) Observe

$$A_i \mathbf{1}_j^* = |X| A_i E_j \hat{x} = |X| P_i(j) E_j \hat{x} = P_i(j) \mathbf{1}_j^*.$$

(iii) Observe

$$E_i^* \mathbf{1}_j^* = E_i^* A_{\hat{j}}^* \mathbf{1} = A_{\hat{j}}^* E_i^* \mathbf{1} = A_{\hat{j}}^* \mathbf{1}_i = Q_{\hat{j}}(i) \mathbf{1}_i = \overline{Q_j(i)} \mathbf{1}_i = |X|^{-1} \overline{Q_j(i)} \sum_{h=0}^d \overline{P_i(h)} \mathbf{1}_h^*.$$

(iv) Observe

$$A_i^* \mathbf{1}_j^* = A_i^* A_{\hat{j}}^* \mathbf{1} = \sum_{k=0}^d q_{i,\hat{j}}^k A_k^* \mathbf{1} = \sum_{k=0}^d q_{i,\hat{j}}^k \mathbf{1}_{\hat{k}}^* = \sum_{k=0}^d q_{i,\hat{j}}^k \mathbf{1}_k^* = \sum_{k=0}^d q_{i,j}^k \mathbf{1}_k^*.$$

Next we bring in the bilinear form.

Lemma 6.29. For $0 \le i, j \le d$ we have

(i)
$$\langle \mathbf{1}_i, \mathbf{1}_j \rangle = \delta_{i,j} k_i;$$

(ii)
$$\langle \mathbf{1}_i^*, \mathbf{1}_i^* \rangle = \delta_{i,j} |X| m_i;$$

(iii)
$$\langle \mathbf{1}_i, \mathbf{1}_i^* \rangle = \overline{P_i(j)} m_j = Q_j(i) k_i$$
.

Proof. (i) Routine.

(ii) Observe

$$\langle \mathbf{1}_i^*, \mathbf{1}_i^* \rangle = |X|^2 \langle E_i \hat{x}, E_j \hat{x} \rangle = |X|^2 \langle \hat{x}, E_i E_j \hat{x} \rangle = \delta_{i,j} |X|^2 \langle \hat{x}, E_i \hat{x} \rangle = \delta_{i,j} |X| m_i.$$

(iii) Observe

$$\langle \mathbf{1}_{i}, \mathbf{1}_{j}^{*} \rangle = |X| \langle A_{i'} \hat{x}, E_{j} \hat{x} \rangle = |X| \langle \hat{x}, \overline{(A_{i'})^{t}} E_{j} \hat{x} \rangle = |X| \langle \hat{x}, A_{i} E_{j} \hat{x} \rangle$$
$$= |X| \overline{P_{i}(j)} \langle \hat{x}, E_{j} \hat{x} \rangle = \overline{P_{i}(j)} m_{j} = Q_{j}(i) k_{i}.$$

7 Duality for commutative association schemes

In this section we discuss the concept of duality for commutative association schemes. To motivate things, we start with a small example.

Consider the group $G = \mathbb{Z}/3\mathbb{Z}$ with three elements. Of course G is abelian, so each conjugacy class contains one element. Consider the conjugacy-class association scheme \mathfrak{X} for G. The associate matrices of \mathfrak{X} are

$$A_0 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad A_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \qquad A_2 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

We have $A_2 = A_1^2$ and $A_1^3 = I$. Let $\omega \in \mathbb{C}$ denote a primitive third root of unity. Note that

$$\overline{\omega} = \omega^2 = \omega^{-1}, \qquad 1 + \omega + \omega^2 = 0.$$

The primitive idempotents of X are

$$E_0 = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \qquad E_1 = \frac{1}{3} \begin{pmatrix} 1 & w^2 & w \\ w & 1 & w^2 \\ w^2 & w & 1 \end{pmatrix}, \qquad E_2 = \frac{1}{3} \begin{pmatrix} 1 & w & w^2 \\ w^2 & 1 & w \\ w & w^2 & 1 \end{pmatrix}.$$

The first and second eigenmatrices of X are

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix}, \qquad Q = \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega \\ 1 & \omega & \omega^2 \end{pmatrix}.$$

Note that

$$P = \overline{Q}. (30)$$

We will interpret (30) using duality.

For the rest of this section, we assume that $\mathfrak{X} = (X, \{R_i\}_{i=0}^d)$ is a commutative association scheme with Bose-Mesner algebra \mathcal{M} , associate matrices $\{A_i\}_{i=0}^d$, and primitive idempotents $\{E_i\}_{i=0}^d$.

Definition 7.1. A duality of X is a \mathbb{C} -linear bijection $\Psi: \mathcal{M} \to \mathcal{M}$ that satisfies (i), (ii) below:

- (i) $\Psi(AB) = \Psi(A) \circ \Psi(B)$ for all $A, B \in \mathcal{M}$;
- (ii) $\Psi(\Psi(A)) = |X|A^t$ for all $A \in \mathcal{M}$.

We say that \mathfrak{X} is *self-dual* whenever \mathfrak{X} has a duality.

Lemma 7.2. Assume that X has a duality Ψ . Then

(i)
$$\Psi(A \circ B) = |X|^{-1}\Psi(A)\Psi(B)$$
 for all $A, B \in \mathcal{M}$;

(ii)
$$\Psi(A^t) = (\Psi(A))^t$$
 for all $A \in \mathcal{M}$.

Proof. (i) Each side is equal to $|X|\Psi^{-1}(A^t \circ B^t)$. (ii) Each side is equal to $|X|^{-1}\Psi^3(A)$.

Lemma 7.3. Assume that X has a duality Ψ . Then

- (i) $\Psi(I) = J$;
- (ii) $\Psi(J) = |X|I$.

Proof. (i) For $A \in \mathcal{M}$,

$$\Psi(A) = \Psi(AI) = \Psi(A) \circ \Psi(I).$$

The result follows.

(ii) For $A \in \mathcal{M}$,

$$\Psi(A) = \Psi(A \circ J) = |X|^{-1} \Psi(A) \Psi(J).$$

So $|X|^{-1}\Psi(J) = I$. The result follows.

Lemma 7.4. Assume that X has a duality Ψ . Then there exits an ordering $\{R_i\}_{i=0}^d$ of the relations such that

$$\Psi(E_i) = A_i \qquad (0 \le i \le d).$$

Proof. For $0 \le i, j \le d$ we have $E_i E_j = \delta_{i,j} E_i$. In this equation we apply Ψ to each side; this yields

$$\delta_{i,j}\Psi(E_i) = \Psi(E_iE_j) = \Psi(E_i) \circ \Psi(E_j).$$

By these comments, the sequence $\{\Psi(E_i)\}_{i=0}^d$ is a permutation of the sequence $\{A_i\}_{i=0}^d$. The result follows.

Lemma 7.5. Assume that X has a duality Ψ such that $\Psi(E_i) = A_i$ for $0 \le i \le d$. Then (i)-(iv) hold below:

- (i) $\Psi(A_i) = |X|E_i^t$ $(0 \le i \le d);$
- (ii) $i' = \hat{i}$ $(0 \le i \le d);$
- (iii) $P = \overline{Q}$;
- (iv) $p_{i,j}^k = q_{i,j}^k$ $(0 \le i, j, k \le d)$.

Proof. (i) We have

$$|X|E_i^t = \Psi(\Psi(E_i)) = \Psi(A_i).$$

(ii) We have

$$A_{\hat{i}} = \Psi(E_{\hat{i}}) = \Psi(E_{\hat{i}}) = (\Psi(E_{\hat{i}}))^t = A_{\hat{i}}^t = A_{\hat{i}'}.$$

(iii) For $0 \le i \le d$ we have $A_i = \sum_{j=0}^d P_i(j)E_j$. In this equation we apply Ψ to each side; this yields

$$|X|E_i^t = \sum_{j=0}^d P_i(j)A_j.$$

We may now argue

$$\sum_{i=0}^{d} P_i(j)A_j = |X|E_i^t = |X|\overline{E_i} = \sum_{i=0}^{d} \overline{Q_i(j)}A_j$$

Therefore $P_i(j) = \overline{Q_i(j)}$ for $0 \le i, j \le d$. Consequently $P = \overline{Q}$. (iv) We have

$$E_i \circ E_j = |X|^{-1} \sum_{k=0}^d q_{i,j}^k E_k$$
 $(0 \le i, j \le d).$

In this equation, we apply Ψ to each side and evaluate the result; this yields

$$A_i A_j = \sum_{k=0}^{d} q_{i,j}^k A_k$$
 $(0 \le i, j \le d).$