(iii) We have

$$\overline{A_i^*} = |X| \overline{(E_i)^{\natural}} = |X| (\overline{E_i})^{\natural} = |X| (E_{\hat{i}})^{\natural} = A_{\hat{i}}^*.$$

(iv) Apply b to each side of

$$E_i \circ E_j = |X|^{-1} \sum_{k=0}^d q_{i,j}^k E_k.$$

Next, we consider how \mathcal{M} and \mathcal{M}^* are related.

Definition 6.13. Let T = T(x) denote the subalgebra of $M_X(\mathbb{C})$ generated by \mathcal{M} and \mathcal{M}^* . We call T the subconstituent algebra of \mathcal{X} with respect to x.

We have some comments. By construction, the algebra T is finite-dimensional. Moreover T is noncommutative in general. The algebra T is closed under both the transpose map and complex-conjugation, because \mathcal{M} and \mathcal{M}^* are closed under both the transpose map and complex-conjugation.

Lecture 8

We are going to show that for $0 \le \alpha, \beta, \gamma \le d$,

$$E_{\alpha}^* A_{\beta} E_{\gamma}^* = 0$$
 iff $p_{\alpha,\beta}^{\gamma} = 0$;
 $E_{\alpha} A_{\beta}^* E_{\gamma} = 0$ iff $q_{\alpha,\beta}^{\gamma} = 0$.

The above equations are called the triple product relations.

To obtain the triple product relations, we endow the vector space $M_X(\mathbb{C})$ with a bilinear form (,) such that $(A,B)=\operatorname{tr}(A^t\overline{B})$ for all $A,B\in M_X(\mathbb{C})$. Abbreviate $\|A\|^2=(A,A)$. For $A,B,C\in M_X(\mathbb{C})$ and $\alpha\in\mathbb{C}$, we have

$$(B, A) = \overline{(A, B)},$$
 $(\alpha A, B) = \alpha(A, B),$
 $(A + B, C) = (A, C) + (B, C),$ $||A||^2 \in \mathbb{R},$
 $||A||^2 \ge 0,$ $||A||^2 = 0$ iff $A = 0,$
 $(AB, C) = (B, \overline{A}^t C) = (A, C\overline{B}^t).$

Lemma 6.14. For $0 \le \alpha, \beta, \gamma, i, j, k \le d$ we have

(i)
$$(E_{\alpha}^* A_{\beta} E_{\gamma}^*, E_i^* A_j E_k^*) = \delta_{\alpha,i} \delta_{\beta,j} \delta_{\gamma,k} k_{\gamma} p_{\alpha,\beta}^{\gamma};$$

(ii)
$$(E_{\alpha}A_{\beta}^*E_{\gamma}, E_iA_j^*E_k) = \delta_{\alpha,i}\delta_{\beta,j}\delta_{\gamma,k}m_{\gamma}q_{\alpha,\beta}^{\gamma}$$
.

Proof. (i) Using tr(BC) = tr(CB),

$$(E_{\alpha}^* A_{\beta} E_{\gamma}^*, E_i^* A_j E_k^*) = \operatorname{tr} \left((E_{\alpha}^* A_{\beta} E_{\gamma}^*)^t \overline{E_i^* A_j E_k^*} \right)$$
$$= \operatorname{tr} \left(E_{\gamma}^* A_{\beta'} E_{\alpha}^* E_i^* A_j E_k^* \right)$$
$$= \delta_{\alpha,i} \delta_{\gamma,k} \operatorname{tr} \left(E_{\gamma}^* A_{\beta'} E_{\alpha}^* A_j \right)$$

and

$$\operatorname{tr}(E_{\gamma}^{*}A_{\beta'}E_{\alpha}^{*}A_{j}) = \sum_{y \in X} \sum_{z \in X} (E_{\gamma}^{*})_{y,y} (A_{\beta'})_{y,z} (E_{\alpha}^{*})_{z,z} (A_{j})_{z,y}$$

$$= \sum_{y \in X} \sum_{z \in X} (E_{\gamma}^{*})_{y,y} (A_{\beta'} \circ A_{j'})_{y,z} (E_{\alpha}^{*})_{z,z}$$

$$= \delta_{\beta,j} \sum_{y \in X} \sum_{z \in X} (E_{\gamma}^{*})_{y,y} (A_{\beta'})_{y,z} (E_{\alpha}^{*})_{z,z}$$

$$= \delta_{\beta,j} \sum_{z \in \Gamma_{\alpha}(x) \cap \Gamma_{\beta'}(y)} 1$$

$$= \delta_{\beta,j} k_{\gamma} p_{\alpha}^{\gamma}{}_{\beta}.$$

(ii) We have

$$(E_{\alpha}A_{\beta}^{*}E_{\gamma}, E_{i}A_{j}^{*}E_{k}) = \operatorname{tr}((E_{\alpha}A_{\beta}^{*}E_{\gamma})^{t}\overline{E_{i}A_{j}^{*}E_{k}})$$

$$= \operatorname{tr}(E_{\hat{\gamma}}A_{\beta}^{*}E_{\hat{\alpha}}E_{\hat{i}}A_{\hat{j}}^{*}E_{\hat{k}})$$

$$= \delta_{\alpha,i}\delta_{\gamma,k}\operatorname{tr}(E_{\hat{\gamma}}A_{\beta}^{*}E_{\hat{\alpha}}A_{\hat{j}}^{*})$$

and

$$\operatorname{tr}(E_{\hat{\gamma}}A_{\beta}^{*}E_{\hat{\alpha}}A_{\hat{j}}^{*}) = \sum_{y \in X} \sum_{z \in X} (E_{\hat{\gamma}})_{y,z} (A_{\beta}^{*})_{z,z} (E_{\hat{\alpha}})_{z,y} (A_{\hat{j}}^{*})_{y,y}$$

$$= |X|^{2} \sum_{y \in X} \sum_{z \in X} (E_{\hat{\gamma}})_{y,z} (E_{\beta})_{x,z} (E_{\hat{\alpha}})_{z,y} (E_{\hat{j}})_{x,y}$$

$$= |X|^{2} \sum_{y \in X} \sum_{z \in X} (E_{\hat{j}})_{x,y} (E_{\hat{\gamma}} \circ E_{\alpha})_{y,z} (E_{\hat{\beta}})_{z,x}$$

$$= |X|^{2} \Big((x, x) - \text{entry of } E_{\hat{j}} (E_{\hat{\gamma}} \circ E_{\alpha}) E_{\hat{\beta}} \Big)$$

$$= |X| \operatorname{tr}(E_{\hat{j}} (E_{\hat{\gamma}} \circ E_{\alpha}) E_{\hat{\beta}})$$

$$= |X| \operatorname{tr}((E_{\hat{\gamma}} \circ E_{\alpha}) E_{\hat{\beta}} E_{\hat{j}})$$

$$= \delta_{\beta,j} |X| \operatorname{tr}((E_{\hat{\gamma}} \circ E_{\alpha}) E_{\hat{\beta}})$$

$$= \delta_{\beta,j} m_{\hat{\beta}} q_{\hat{\gamma},\alpha}^{\hat{\beta}}$$

$$= \delta_{\beta,j} m_{\hat{\gamma}} q_{\alpha\beta}^{\hat{\beta}}.$$

Corollary 6.15. For $0 \le \alpha, \beta, \gamma \le d$ we have

(i)
$$||E_{\alpha}^*A_{\beta}E_{\gamma}^*||^2 = k_{\gamma}p_{\alpha,\beta}^{\gamma};$$

(ii)
$$||E_{\alpha}A_{\beta}^*E_{\gamma}||^2 = m_{\gamma}q_{\alpha,\beta}^{\gamma}$$
.

Proof. Set
$$i = \alpha$$
, $j = \beta$, $k = \gamma$ in Lemma 6.14.

Corollary 6.15(ii) gives a second proof of the Krein condition.

Theorem 6.16. (Triple product relations). For $0 \le \alpha, \beta, \gamma \le d$ we have

(i)
$$E_{\alpha}^* A_{\beta} E_{\gamma}^* = 0$$
 iff $p_{\alpha,\beta}^{\gamma} = 0$;

(ii)
$$E_{\alpha}A_{\beta}^*E_{\gamma}=0$$
 iff $q_{\alpha,\beta}^{\gamma}=0$.

Proof. By Corollary 6.15.

We bring in some notation. For subspaces R, S of $M_X(\mathbb{C})$, define

$$RS = \operatorname{Span}\{rs | r \in R, \ s \in S\}.$$

Theorem 6.17. With the above notation,

(i) the vector space M*MM* has an orthogonal basis

$$\{E_{\alpha}^*A_{\beta}E_{\gamma}^*|0\leq\alpha,\beta,\gamma\leq d,\ p_{\alpha,\beta}^{\gamma}\neq0\};$$

(ii) the vector space MM*M has an orthogonal basis

$$\{E_{\alpha}A_{\beta}^*E_{\gamma}|0\leq\alpha,\beta,\gamma\leq d,\ q_{\alpha,\beta}^{\gamma}\neq0\}.$$

Proof. By Lemma 6.14 and Theorem 6.16.

We mention a consequence of Theorem 6.16. Recall the standard module V.

Proposition 6.18. For $0 \le j, k \le d$ we have

$$A_j E_k^* V \subseteq \sum_{\substack{0 \le i \le d, \\ p_{i,j}^k \ne 0}} E_i^* V, \qquad A_j^* E_k V \subseteq \sum_{\substack{0 \le i \le d, \\ q_{i,j}^k \ne 0}} E_i V. \tag{27}$$

Proof. Concerning the containment on the left in (27),

$$A_j E_k^* V = I A_j E_k^* V = \sum_{i=0}^d E_i^* A_j E_k^* V = \sum_{\substack{0 \le i \le d, \\ p_{i,j}^k \ne 0}} E_i^* A_j E_k^* V \subseteq \sum_{\substack{0 \le i \le d, \\ p_{i,j}^k \ne 0}} E_i^* V.$$

The containment on the right in (27) is similarly obtained.

Next, we consider how the algebra T acts on the standard module V. By a T-module we mean a subspace $W \subseteq V$ such that $TW \subseteq W$. A T-module W is *irreducible* whenever W is nonzero, and W does not contain a T-module besides 0 and W.

Lemma 6.19. Let W denote a T-module. Then the orthogonal complement W^{\perp} is a T-module.

Proof. For $A \in T$ we have $\overline{A}^t \in T$. Also

$$\langle Au, v \rangle = \langle u, \overline{A}^t v \rangle \qquad u, v \in V.$$

By these comments we obtain the result.

Corollary 6.20. The standard module V is an orthogonal direct sum of irreducible Tmodules.

Proof. Use Lemma 6.19.
$$\Box$$

Next, we describe a particular irreducible T-module called the primary T-module. Recall the vector $1 = \sum_{y \in X} \hat{y}$. For $0 \le i \le d$ define the vector

$$\mathbf{1}_i = \sum_{y \in \Gamma_i(x)} \hat{y}.$$

Observe that

$$E_i^* \mathbf{1} = \mathbf{1}_i = A_{i'} \hat{x}$$
 $(0 \le i \le d).$

Consequently

$$\mathcal{M}^* E_0 V = \mathcal{M} E_0^* V. \tag{28}$$

Lemma 6.21. The vector space $\mathcal{M}^*E_0V = \mathcal{M}E_0^*V$ is an irreducible T-module.

Proof. Define $\mathcal{V} = \mathcal{M}^*E_0V = \mathcal{M}E_0^*V$. We have $\mathcal{M}\mathcal{V} \subseteq \mathcal{V}$ since $\mathcal{V} = \mathcal{M}E_0^*V$. We have $\mathcal{M}^*\mathcal{V} \subseteq \mathcal{V}$ since $\mathcal{V} = \mathcal{M}^*E_0V$. Therefore $T\mathcal{V} \subseteq \mathcal{V}$, so \mathcal{V} is a T-module. We show that the T-module \mathcal{V} is irreducible. The standard T-module V is a direct sum of irreducible T-modules. There exists an irreducible T-module that is not orthogonal to \hat{x} . This T-module is closed under E_0^* , so it contains \hat{x} and also $\mathcal{M}\hat{x} = \mathcal{V}$. This T-module must equal \mathcal{V} by irreducibility.

Definition 6.22. Define $\mathcal{V} = \mathcal{M}^* E_0 V = \mathcal{M} E_0^* V$. The *T*-module \mathcal{V} is called *primary*.

Lemma 6.23. For $0 \le i \le d$ we have

$$|X|E_i\hat{x} = A_i^*1. \tag{29}$$

Proof. Both vectors in (29) have y-coordinate $|X|(E_i)_{y,x}$ for $y \in X$.

Definition 6.24. For $0 \le i \le d$ let $\mathbf{1}_i^*$ denote the common vector in (29).