(iii) We have

A7 = |X|(B)E = |X|(Bo) = | X (Bt = A7

2

(iv) Apply § to each side of

d
Eyo By = X[ qf;Bx

Next, we consider how M and M* are related.

Definition 6.13. Let T' = T'(z) denote the subalgebra of Mx(C}) generated by M and M*.
We call T' the subconstituent algebra of X with respect to x.

We have some comments. By construction, the algebra 7' is finite-dimensional. Moreover
T is noncommutative in general. The algebra T is closed under both the transpose map
and complex-conjugation, hecause M and M* are closed under both the transpose map and
complex-conjugation.

Lecture 8
We are going to show that for 0 < o, 5,7 < d,
ELAgEy, =0 iff pl 5= 0;
B, ALE, =0 iff qg’ﬁ =0.
The above equations are called the triple product relations.

To obtain the triple product relations, we endow the vector space Mx(C) with a bilinear
form (, ) such that (A, B) = tr(A'B) for all A, B € Mx(C). Abbreviate ||A||*> = (A, A). For
A, B, C € Mx(C) and o € C, we have

(B, A) = (4, B), (@A, B) = o4, B),
(A+B,C)=(4,0)+(B,C), 14]* € R,
1A% = o, [A]? =0 iff A=0,

(AB,C) = (B,A'C) = (4,CB").
Lemma 6.14. For 0 < «,f3,7v,1,7,k < d we have
(i) (E;AﬁE;) EngEf) = 6&?35@3'5’7»’0}‘"”?]31,.3;
(il) (EaAjEy, EiAEL) = 64,08 j046m00) -
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Proof. (i) Using tr{BC) = tr(C'B),
(e A, B A3 ) = b (Fa g B AT )
= tr (B Ag BB} A By
= 5a,i5»y,ktl"(E;Aﬁi E;Aj)

and

(B Ap BLAs) = D D (B (Ao el Bo)as(Aidey

yeX zeX

mzz Juw(Apr © Ay {Eg)zyz

yeX zeX

méﬁazz yy Aﬁ’Jz )

yeX 2cX

=bs; », 1
yEP“I{m)’
2€la (@) g (1)
= 6.3,.');‘:’)’1}1,;3'
(i} We have
(Eo AL By, BiATEY) = te((BLALE,) B A3 Ey)

= tr(E,?AEEaE;.A;E,;)
= (Sa)ié%ktl‘ (E&AEE@A‘?)

and

tr(E&AZEdA;) = Z Z(E'?)y,z(Afa)z,z(Ed)z.y(AE)y.y

= IXP 3 S (BB PP
= | X2 ZZ Jay( By 0 Balyz(E )

= | X2 ((:c @)-entry of B;(Ey o Ba)Fj)
= | X [tr(E;(By o Ba)Ej)

= | X [tx ((E,, o Bo)F3E;)

= 8p ;1 X |tr((Es 0 Ea)Ep)

= 8 Mt

= 0p, Myl p
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Corollary 6.15. For 0 < a, 3,y < d we have
() 1EAESI = kol
(i) 1EaAFBN? = mydy .
Proof. Set ¢ = a, § = 3, k =y in Lemma 6.14.
Corollary 6.15(ii) gives a second proof of the Krein condition.
Theorem 6.16. (Triple product relations). For 0 < a, 8,7 < d we have
(i) BRAgE: =0 iff pl =0,
(i) BadfE, =0 iff ¢! ,5=0.
Proof. By Corollary 6.15.
~ We bring in some notation. For subspaces R, S of My (C), define
RS = Span{rs|r € R, s € S}.
Theorem 6.17. With the above notation,

(i) the vector space N*MM* has an orthogonal basis
{ErAgEX0 < a, 8,7 < d, pl 5 7 0}
(ii) the vector space MM*M has an orthogonal basis
{BaAZE0 <o, 8,7 < d, q) g7 0}.

Proof. By Lemma 6.14 and Theorem 6.16.
We mention a consequence of Theorem 6.16. Recall the standard module V.

Proposition 6.18. For 0 < j,k < d we have

ABYVC Y RV, ALEVC Y EV.
0<i<d, 0<i<d,
P} 370 4;,;70

Proof. Concerning the containment on the left in (27),

d
AEY = IAEV =S BIAEYV = Y EIAEV C Y EV.
=0 0<i<d, 0<i<d,
P70 Py #0

"The containment on the right in (27) is similarly obtained.
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Next, we consider how the algebra T' acts on the standard module V., By a T-module we
mean a subspace W C V such that TW C W. A T-module W is trreducible whenever W is
nonzero, and W does not contain a T-module besides 0 and W.

Lemma 6.19. Let W denote a T-module. Then the orthogonal complement W is a T-
module.

Proof. For A € T we have A eT. Also
(Au,v) = {u, A'v) wv € V.
By these comments we obtain the result. O

Corollary 6.20. The standard module V is an orthogonal direct sum of irreducible 1'-
modules.

Proof. Use Lemma 6.19. (I

Next, we describe a particular irreducible T-module called the primary T-module. Recall

the vector 1=} §. For 0 <i < d define the vector
L= > 4
yel{a)

Observe that

Consequently
M* BV = MEGV. (28}
Lemma 6.21. The vector space N* EgV = MEZV is an irreducible T-module.

Proof. Define V = M*EV = MEGV. We have MV C V since V = MEGV. We have
M¥V C V since V = M*ERV. Therefore TV C V, so V is a T-module. We show that
the T-module V is irreducible. The standard T-module V' is a direct sum of irreducible 7-
modules. There exists an irreducible T-module that is not orthogonal to &. This T-module
is closed under Fj, so it contains & and also M = V. This T-module must equal V by
irreducibility. [

Definition 6.22. Define V= M*EyV = ME;V. The T-module V is called primary.

Lemma 6.23, For 0 < i < d we have
| X| B2 = AT (29)
Proof. Both vectors in (29) have y-coordinate | X|(L;),, for y € X. 1

Definition 6.24. For 0 <4 < d let 1} denote the common vector in (29).
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