Definition 5.3. By Lemma 5.2 the matrices { B;}4, form a basis for a commutative subal-
gebra B of My, (C). We call B the intersection algebra of X.

Theorem 5.4. There exisls an algebra isomorphism M — B that sends A; > B; for 0<
i < d. ‘

Proof. Clear from Lemma 5.2(iv). M

Lecture 7

Let us recall some linear algebra. For the moment, let W denote any finite-dimensional
vector space over C, and let {w;}?., denote a basis for W. Let 4 : W — W denote a
C-linear map. There exists a unique 7 X n matrix B such that

n
A_wj 2 Z B,;,jwi (1 S j S 71).
i=1

We say that B represents A with respect to {w;}*,. Let {wi}}, denote a second basis for
W. There exists a unique n X n matrix S such that

n
wh= Y S jw; (1<j<n).
j=1 ‘

The matrix S is invertible. We call S the transition matriz from {w;}%; to {w{}t,. By
linear algebra, the matrix S1BS represents A with respect to {w]}¥ ;.

We return our attention to X = (X, { R;}L,). The Bose-Mesner algebra M has bases {4;}4.,
and {F;}L,. Recall the first and second eigenmatrices P, ). Then P is the transition matix
from {E;}¢, to {A;}L . Moreover, | X|71Q is the transition matrix from {A;}L, to {Ei}L,.

For A € M, there exists a C-linear map L, : M — M that sends B — AB for all B € M.
Theorem 5.5. With the above notalion, the following (1)—(iv} hold for 0 <i < d:
(i) B represents Ly, with res@ect to the basis {Ag}d_y; |
(ii) the matriz diag(P;(0), P5(1),. .., Pi{(d)) represents L4, with respect to {Ee}d ,;
(iii) PBIP' = diag(F;(0), Bi(1),. .., P(d));
(iv) the scalars P;(0), Pi(1},..., Pi(d) are the roots of the characteristic polynomial of B;.
Proof. (i) By Definition 5.1 and

d
AA; =Pk A 0<j<d
k=0
(i) Since AiE; = P(f)E; for 0 < j < d. _
(iti) By (i), (ii) and the comments above the theorem statement.
" {iv) B; and B} have the sane characteristic polynomial. The result follows in view of (iii). U
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Definition 5.6. For 0 < ¢ < d, define a matrix B € My 1(C) with (7, k)-entry gﬁj for
0<4,k<d Wecall Bf the i dual intersection matriz of X.

Lemma 5.7. The following (i}—~(vi) hold.

(i) By =1.

(i) For 0 <1 <d, the top row of B} is (0,...,0,1,0,...,0), with the I in column i.
(i) {B}L, are linearly independent.

(iv) For 0 <i,7 <d,
d
BiBj =) d;;Bi
k=0 -

(v) BiB; = BB} for0<4,j <d.
(vi) For 0 <14 < d we have (Bf)' = MBI M where M = diag(mo, my, ..., ma).
Proof. Similar to the proof of Lemma 5.2. 7 . O

Definition 5.8. By Lemma 5.7 the matrices {B;}L, form a basis for a commutative sub-
algebra B* of My1(C). We call B* the dual intersection algebra of X,

Definition 5.9. Let M° denote the algebra over C consisting of the vector space M together
with the Hadamard multiplication o. The algebra M° is commutative. Note that J is the
multiplicative identity in M°.

Theorem 5.10. There exists an algebra isomorphism M° — B* that sends F; — | X| B}
_for()gig d.

Proof. For 0 <1i,j < d we have

d
Ef e} Ej = 1X|u1 qujEk
k=0

Compare this with Lemma 5.7(iv). O

For A € M°, there exists a C-linear map L5 : M° — M° that sends B — Ao B for all
D e M°.

Theorem 5.11. With the above notation, the following (1)—(iv) hold for 0 <1i < d:
i) |X|[THB})! represents Ly, with respect to the basis {Eg}{

(ii) the matriz | X |~ diag(@:{0), Q:i(1), ..., Qi(d)} represents Ly, with respect to {Ae}s_o;
(i) Q(BF)'Q™ = diag(Q:(0), Q:(1),..., Qi(d));
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(iv) the scalars Q;(0), Qi(1),. .., Qi(d) are the roots of the characteristic nolynomial of BY.
Proof. (1) By Definition 5.6 and

d
BioBy =Y d;b (0<j<d).
k=0

(i) We have

d
B = X7 Qi) A
=0

Therefore
EjoA; = |X|'Qi(5) A, (0<j<dj

"The result follows.
(iil) By (i), (i) and since | X| 1@ is the transition matrix from the basis {A¢}4, to the basis

{Ee}io:
(iv) Bf and (B?)! have the same characteristic polynomial. The result follows in view of

(iii). O
We have a comment.

Proposition 5.12. We have KQ = P'M , where

K = diag(ko, k1, . - ., ka), M = diag(mo, mi, ..., Ma).

Proof. We saw earlier that k;Q;(¢) = Fi{j)m; for 0 < 4,7 < d. J

6 The dual Bose-Mesner algebra and the subconstituent
algebra

Throughout this section, we assume that X = (X, {R;}L,) is a commutative association
scheme with Bose-Mesner algebra M, associate matrices {A}L,, and primitive idempotents
{E;}¢ ;. Recall the standard module V' = CX. For y € X define § € V that has y-entry 1
and all other entries 0. The vectors {§}yex is an orthonormal basis for V. We have

L= 4.

yeX

For z € X,

A= > 9§ (0 <i < d).

(yrz)ERi
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Definition 6.1. Throughout this section, we fix a vertex 2 € X. We call @ the base vertex.

Definition 6.2. For 0 < i < d we define a diagonal matriz B} = Ef(z) in Mx{(C) that has
(y,y)-entry |

1if (z,y) € Ry

e X.
0 if (z,y) € B v

Efyy) = {

Lemma 6.3. With reference to Definition 0.2,
) BYE; =i B (0<4,5<d)
. d .
(i) £=73 0 B
(iil) the matrices {Ef ;i are linearly independent.
Proof. By Definition 6.2. | LJ

Definition 6.4. By Lemma 6.3, the matrices { £} }L, form a basis for a commutative sub-
algebra M* = M*(z) of Mx(C). We call M* the dual Bose-Mesner algebra of X with respect
to x. We call E} the i*" dual primitive idempotent of X with respect to .

Lemma 6.5. We have
d
V == Z E}V (orthogonal direct sum).
i=0

For 0 < 14 < d the subspace EfV is a common eigenspace for M*, and B} is the projection
onto this eigenspace. The subspace E}V has basis {§ly € T'i{x)}. Moreover k; = dim Ef V.
The vector Z is a basis for EgV.

Proof. Routine consequence of Definition 6.2. 1

Referring to Lemma 6.5, we call B}V the ¢ subconstituent of X with respect to .

Next we describe how the algebras M° and M* are related.

Lemma 6.6, There exists an algebra isomorphism  : M° — M* that sends A; > B} for
0<i<d.

Proof. For 0 < 4,5 < d we have 4; 0 A; = 6;;4; and Ef B} = 6;; 5] O
We emphasize the nature of §. For A4, B € M we have

(Ao B)'= A'BH, (23)
Lemma 6.7, For A€M,

(Ah)y,y = Auy (ye X) (24)

23




Proof. Without loss, we may assume that A is an associate matrix A;. In this case Ab = E¥.
Now (24) holds by the definitions of A; and EJ. O

Definition 6.8. For 0 < 4 < d let AY € M* be the image of | X1E; under the map h from
Lemma 6.6. We call A? the i dual associate matriz of X with respect to .

Lemma 6.9, For(Q <i<d,

(AD)y = 1X|(Ei)ay (y € X).
Proof. By Lemma 6.7 with A = | X{E;. O

Lemma 6.10. The matrices {AfYE o form a basis for M*. Moreover

d
A =3 Q) (0<i<d), | (25)
B = X[ Zd;aum; (0<i<d). (26)

Proof. The first assertion holds because § : M° — M* is a bijection and {£;}L is a basis
for M°. To get (25), (26) we apply 4 to each side of (10), (11).

Lemma 6.11. For 0 < i,§ < d the scalar Qi(j) is the eigenvalue of A} associated to the
common eigenspace EFV of M.

Proof. By (25). n
Proposition 6.12. Thé following (1)-(iv) hold:
(i) Ag=I;
(i) X155 = o Al
(i) Af =Ar  (0=<i<4d);
(iv) for 0 <45 <d,

d
* *_WE ; k ¥
k=0

Proof. (i) We have
P = \X|(Bo)t = S =1,
(i) We have
d
ST AT =|X|(Bo+ Bat o+ Bt = | X |1 = | X| B

i=(
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(iii} We have
A = (X = | X|(F)f = | X|(B)" = A

(iv) Apply § to each side of

d
Byo By = X[ )¢5 B
k=0

Next, we consider how M and M* are reiated.

Definition 6.13. Let T' = T'(x) denote the subalgebra of Mx (C) generated by M and M*.
We call T' the subconstituent algebra of X with respect to . '

~ We have some comments. By construction, the algebra T is finite-dimensional. Moreover
T is noncommutative in general. The algebra T' is closed under both the transpose map
and complex-conjugation, because M and M* are closed under both the transpose map and
complex-conjugation.

We are going to show that for 0 < o, 8,7 < d,
ErAgEr =0 iff pl5=0;
EoApky =0 i qs=0
The above equations are called the ériple product relations.

To obtain the triple product relations, we endow the vector space Mx(C) with a bilinear
form (, )} such that (A, B) = te(A’'B) for all 4, B € Mx{(C). Abbreviate || A||* = (A, A). For
A, B,C € Mx(C) and a € C, we have

(B,A)= (A, B), (ad, B) = a(A, B),
(A+B,O)=(A,G)—%—(B,C), “AH2ER:
Al z 0, [A]? =0 if A=0,

(AB,C) = (B,A'C) = (A,CB).
Lemma 6.14. For 0 < a,8,7,4,4, k < d we have
(i) (BzAgEs, BfA;E}) = 00,0p,1014kP 0,00
(11) (EQAEEW, EzA;‘E;‘,) = 5a,i5,3‘j(5%k?nqqg,ﬁ.
Proof. (i) Using tr(BC) = tr(CB),
(E;AgE;, E:ABEE) s )Gl((E;AﬁE:;)tE:AJEZ)
= (B Ap BB} Ay E)
== (561@(5%;;{31‘(151;}1}3: E;AJ)
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