Definition 5.3. By Lemma 5.2 the matrices $\{B_i\}_{i=0}^d$ form a basis for a commutative subalgebra \mathcal{B} of $M_{d+1}(\mathbb{C})$. We call \mathcal{B} the *intersection algebra* of \mathcal{X} .

Theorem 5.4. There exists an algebra isomorphism $\mathcal{M} \to \mathcal{B}$ that sends $A_i \mapsto B_i$ for $0 \le i \le d$.

Proof. Clear from Lemma 5.2(iv).

Lecture 7

Let us recall some linear algebra. For the moment, let W denote any finite-dimensional vector space over \mathbb{C} , and let $\{w_i\}_{i=1}^n$ denote a basis for W. Let $A:W\to W$ denote a \mathbb{C} -linear map. There exists a unique $n\times n$ matrix B such that

$$Aw_j = \sum_{i=1}^n B_{i,j} w_i \qquad (1 \le j \le n).$$

We say that B represents A with respect to $\{w_i\}_{i=1}^n$. Let $\{w_i'\}_{i=1}^n$ denote a second basis for W. There exists a unique $n \times n$ matrix S such that

$$w'_j = \sum_{i=1}^n S_{i,j} w_i \qquad (1 \le j \le n).$$

The matrix S is invertible. We call S the transition matrix from $\{w_i\}_{i=1}^n$ to $\{w'_i\}_{i=1}^n$. By linear algebra, the matrix $S^{-1}BS$ represents A with respect to $\{w'_i\}_{i=1}^n$.

We return our attention to $\mathcal{X} = (X, \{R_i\}_{i=0}^d)$. The Bose-Mesner algebra \mathcal{M} has bases $\{A_i\}_{i=0}^d$ and $\{E_i\}_{i=0}^d$. Recall the first and second eigenmatrices P, Q. Then P is the transition matrix from $\{E_i\}_{i=0}^d$ to $\{A_i\}_{i=0}^d$. Moreover, $|X|^{-1}Q$ is the transition matrix from $\{A_i\}_{i=0}^d$ to $\{E_i\}_{i=0}^d$.

For $A \in \mathcal{M}$, there exists a \mathbb{C} -linear map $L_A : \mathcal{M} \to \mathcal{M}$ that sends $B \mapsto AB$ for all $B \in \mathcal{M}$.

Theorem 5.5. With the above notation, the following (i)–(iv) hold for $0 \le i \le d$:

- (i) B_i^t represents L_{A_i} with respect to the basis $\{A_\ell\}_{\ell=0}^d$;
- (ii) the matrix diag $(P_i(0), P_i(1), \ldots, P_i(d))$ represents L_{A_i} with respect to $\{E_\ell\}_{\ell=0}^d$;
- (iii) $PB_i^t P^{-1} = \text{diag}(P_i(0), P_i(1), \dots, P_i(d));$
- (iv) the scalars $P_i(0), P_i(1), \ldots, P_i(d)$ are the roots of the characteristic polynomial of B_i . Proof. (i) By Definition 5.1 and

$$A_i A_j = \sum_{k=0}^d p_{i,j}^k A_k \qquad (0 \le j \le d).$$

- (ii) Since $A_i E_j = P_i(j) E_j$ for $0 \le j \le d$.
- (iii) By (i), (ii) and the comments above the theorem statement.
- (iv) B_i and B_i^t have the same characteristic polynomial. The result follows in view of (iii). \Box

Definition 5.6. For $0 \leq i \leq d$, define a matrix $B_i^* \in M_{d+1}(\mathbb{C})$ with (j, k)-entry $q_{i,j}^k$ for $0 \leq j, k \leq d$. We call B_i^* the i^{th} dual intersection matrix of \mathfrak{X} .

Lemma 5.7. The following (i)-(vi) hold.

- (i) $B_0^* = I$.
- (ii) For $0 \le i \le d$, the top row of B_i^* is $(0, \ldots, 0, 1, 0, \ldots, 0)$, with the 1 in column i.
- (iii) $\{B_i^*\}_{i=0}^d$ are linearly independent.
- (iv) For $0 \le i, j \le d$,

$$B_i^* B_j^* = \sum_{k=0}^d q_{i,j}^k B_k^*.$$

- (v) $B_i^* B_i^* = B_i^* B_i^*$ for $0 \le i, j \le d$.
- (vi) For $0 \le i \le d$ we have $(B_i^*)^t = M^{-1}B_i^*M$ where $M = \text{diag}(m_0, m_1, \dots, m_d)$.

Proof. Similar to the proof of Lemma 5.2.

Definition 5.8. By Lemma 5.7 the matrices $\{B_i^*\}_{i=0}^d$ form a basis for a commutative subalgebra \mathcal{B}^* of $M_{d+1}(\mathbb{C})$. We call \mathcal{B}^* the dual intersection algebra of \mathcal{X} .

Definition 5.9. Let \mathcal{M}° denote the algebra over \mathbb{C} consisting of the vector space \mathcal{M} together with the Hadamard multiplication \circ . The algebra \mathcal{M}° is commutative. Note that J is the multiplicative identity in \mathcal{M}° .

Theorem 5.10. There exists an algebra isomorphism $\mathcal{M}^{\circ} \to \mathcal{B}^*$ that sends $E_i \mapsto |X|^{-1}B_i^*$ for $0 \le i \le d$.

Proof. For $0 \le i, j \le d$ we have

$$E_i \circ E_j = |X|^{-1} \sum_{k=0}^d q_{i,j}^k E_k.$$

Compare this with Lemma 5.7(iv).

For $A \in \mathcal{M}^{\circ}$, there exists a \mathbb{C} -linear map $L_A^{\circ} : \mathcal{M}^{\circ} \to \mathcal{M}^{\circ}$ that sends $B \mapsto A \circ B$ for all $B \in \mathcal{M}^{\circ}$.

Theorem 5.11. With the above notation, the following (i)–(iv) hold for $0 \le i \le d$:

- (i) $|X|^{-1}(B_i^*)^t$ represents $L_{E_i}^{\circ}$ with respect to the basis $\{E_{\ell}\}_{\ell=0}^d$;
- (ii) the matrix $|X|^{-1}\operatorname{diag}(Q_i(0), Q_i(1), \dots, Q_i(d))$ represents $L_{E_i}^{\circ}$ with respect to $\{A_{\ell}\}_{\ell=0}^d$;
- (iii) $Q(B_i^*)^t Q^{-1} = \operatorname{diag}(Q_i(0), Q_i(1), \dots, Q_i(d));$

(iv) the scalars $Q_i(0), Q_i(1), \ldots, Q_i(d)$ are the roots of the characteristic polynomial of B_i^* .

Proof. (i) By Definition 5.6 and

$$E_i \circ E_j = \sum_{k=0}^d q_{i,j}^k E_k \qquad (0 \le j \le d).$$

(ii) We have

$$E_i = |X|^{-1} \sum_{j=0}^d Q_i(j) A_j.$$

Therefore

$$E_i \circ A_j = |X|^{-1} Q_i(j) A_j$$
 $(0 \le j \le d).$

The result follows.

(iii) By (i), (ii) and since $|X|^{-1}Q$ is the transition matrix from the basis $\{A_{\ell}\}_{\ell=0}^d$ to the basis $\{E_{\ell}\}_{\ell=0}^d$.

(iv) B_i^* and $(B_i^*)^t$ have the same characteristic polynomial. The result follows in view of (iii).

We have a comment.

Proposition 5.12. We have $KQ = \overline{P}^t M$, where

$$K = \operatorname{diag}(k_0, k_1, \dots, k_d), \qquad M = \operatorname{diag}(m_0, m_1, \dots, m_d).$$

Proof. We saw earlier that $k_iQ_j(i) = \overline{P_i(j)}m_j$ for $0 \le i, j \le d$.

6 The dual Bose-Mesner algebra and the subconstituent algebra

Throughout this section, we assume that $\mathfrak{X}=(X,\{R_i\}_{i=0}^d)$ is a commutative association scheme with Bose-Mesner algebra \mathfrak{M} , associate matrices $\{A_i\}_{i=0}^d$, and primitive idempotents $\{E_i\}_{i=0}^d$. Recall the standard module $V=\mathbb{C}^X$. For $y\in X$ define $\hat{y}\in V$ that has y-entry 1 and all other entries 0. The vectors $\{\hat{y}\}_{y\in X}$ is an orthonormal basis for V. We have

$$1 = \sum_{y \in X} \hat{y}.$$

For $z \in X$,

$$A_i \hat{z} = \sum_{(y,z) \in R_i} \hat{y} \qquad (0 \le i \le d).$$

Definition 6.1. Throughout this section, we fix a vertex $x \in X$. We call x the base vertex.

Definition 6.2. For $0 \le i \le d$ we define a diagonal matrix $E_i^* = E_i^*(x)$ in $M_X(\mathbb{C})$ that has (y,y)-entry

$$E_i^*(y,y) = \begin{cases} 1 & \text{if } (x,y) \in R_i; \\ 0 & \text{if } (x,y) \notin R_i \end{cases} \quad y \in X.$$

Lemma 6.3. With reference to Definition 6.2,

- (i) $E_i^* E_i^* = \delta_{i,j} E_i^*$ $(0 \le i, j \le d);$
- (ii) $I = \sum_{i=0}^{d} E_i^*$;
- (iii) the matrices $\{E_i^*\}_{i=0}^d$ are linearly independent.

Proof. By Definition 6.2.

Definition 6.4. By Lemma 6.3, the matrices $\{E_i^*\}_{i=0}^d$ form a basis for a commutative subalgebra $\mathcal{M}^* = \mathcal{M}^*(x)$ of $M_X(\mathbb{C})$. We call \mathcal{M}^* the dual Bose-Mesner algebra of X with respect to x. We call E_i^* the i^{th} dual primitive idempotent of X with respect to x.

Lemma 6.5. We have

$$V = \sum_{i=0}^{d} E_i^* V \qquad \text{(orthogonal direct sum)}.$$

For $0 \le i \le d$ the subspace E_i^*V is a common eigenspace for \mathfrak{M}^* , and E_i^* is the projection onto this eigenspace. The subspace E_i^*V has basis $\{\hat{y}|y\in\Gamma_i(x)\}$. Moreover $k_i=\dim E_i^*V$. The vector \hat{x} is a basis for E_0^*V .

Proof. Routine consequence of Definition 6.2.

Referring to Lemma 6.5, we call E_i^*V the i^{th} subconstituent of X with respect to x.

Next we describe how the algebras \mathcal{M}° and \mathcal{M}^{*} are related.

Lemma 6.6. There exists an algebra isomorphism $abla : \mathcal{M}^{\circ} \to \mathcal{M}^{*}$ that sends $A_{i} \mapsto E_{i}^{*}$ for $0 \leq i \leq d$.

Proof. For
$$0 \le i, j \le d$$
 we have $A_i \circ A_j = \delta_{i,j} A_i$ and $E_i^* E_j^* = \delta_{i,j} E_i^*$.

We emphasize the nature of abla. For $A, B \in \mathcal{M}$ we have

$$(A \circ B)^{\dagger} = A^{\dagger}B^{\dagger}. \tag{23}$$

Lemma 6.7. For $A \in \mathcal{M}$,

$$(A^{\dagger})_{y,y} = A_{x,y} \qquad (y \in X). \tag{24}$$

Proof. Without loss, we may assume that A is an associate matrix A_i . In this case $A^{\dagger} = E_i^*$. Now (24) holds by the definitions of A_i and E_i^* .

Definition 6.8. For $0 \le i \le d$ let $A_i^* \in \mathcal{M}^*$ be the image of $|X|E_i$ under the map \natural from Lemma 6.6. We call A_i^* the i^{th} dual associate matrix of X with respect to x.

Lemma 6.9. For $0 \le i \le d$,

$$(A_i^*)_{y,y} = |X|(E_i)_{x,y}$$
 $(y \in X).$

Proof. By Lemma 6.7 with $A = |X|E_i$.

Lemma 6.10. The matrices $\{A_i^*\}_{i=0}^d$ form a basis for M^* . Moreover

$$A_i^* = \sum_{j=0}^d Q_i(j) E_j^* \qquad (0 \le i \le d), \tag{25}$$

$$E_i^* = |X|^{-1} \sum_{j=0}^d P_i(j) A_j^* \qquad (0 \le i \le d).$$
 (26)

Lemma 6.11. For $0 \le i, j \le d$ the scalar $Q_i(j)$ is the eigenvalue of A_i^* associated to the common eigenspace E_j^*V of \mathfrak{M}^* .

Proof. By
$$(25)$$
.

Proposition 6.12. The following (i)-(iv) hold:

- (i) $A_0^* = I$;
- (ii) $|X|E_0^* = \sum_{i=0}^d A_i^*$;
- (iii) $\overline{A_i^*} = A_{\hat{i}}^*$ $(0 \le i \le d);$
- (iv) for $0 \le i, j \le d$,

$$A_i^* A_j^* = \sum_{k=0}^d q_{i,j}^k A_k^*.$$

Proof. (i) We have

$$A_0^* = |X|(E_0)^{\natural} = J^{\natural} = I.$$

(ii) We have

$$\sum_{i=0}^{d} A_i^* = |X|(E_0 + E_1 + \dots + E_d)^{\natural} = |X|I^{\natural} = |X|E_0^*.$$

(iii) We have

$$\overline{A_i^*} = |X| \overline{(E_i)^{\natural}} = |X| (\overline{E_i})^{\natural} = |X| (E_{\hat{i}})^{\natural} = A_{\hat{i}}^*.$$

(iv) Apply \u03c4 to each side of

$$E_i \circ E_j = |X|^{-1} \sum_{k=0}^d q_{i,j}^k E_k.$$

Next, we consider how $\mathcal M$ and $\mathcal M^*$ are related.

Definition 6.13. Let T = T(x) denote the subalgebra of $M_X(\mathbb{C})$ generated by \mathcal{M} and \mathcal{M}^* . We call T the subconstituent algebra of \mathcal{X} with respect to x.

We have some comments. By construction, the algebra T is finite-dimensional. Moreover T is noncommutative in general. The algebra T is closed under both the transpose map and complex-conjugation, because M and M^* are closed under both the transpose map and complex-conjugation.

We are going to show that for $0 \le \alpha, \beta, \gamma \le d$,

$$E_{\alpha}^* A_{\beta} E_{\gamma}^* = 0 \text{ iff } p_{\alpha,\beta}^{\gamma} = 0;$$

 $E_{\alpha} A_{\beta}^* E_{\gamma} = 0 \text{ iff } q_{\alpha,\beta}^{\gamma} = 0.$

The above equations are called the triple product relations.

To obtain the triple product relations, we endow the vector space $M_X(\mathbb{C})$ with a bilinear form (,) such that $(A, B) = \operatorname{tr}(A^t\overline{B})$ for all $A, B \in M_X(\mathbb{C})$. Abbreviate $||A||^2 = (A, A)$. For $A, B, C \in M_X(\mathbb{C})$ and $\alpha \in \mathbb{C}$, we have

$$(B, A) = \overline{(A, B)},$$
 $(\alpha A, B) = \alpha(A, B),$
 $(A + B, C) = (A, C) + (B, C),$ $||A||^2 \in \mathbb{R},$
 $||A||^2 \ge 0,$ $||A||^2 = 0$ iff $A = 0,$
 $(AB, C) = (B, \overline{A}^t C) = (A, C\overline{B}^t).$

Lemma 6.14. For $0 \le \alpha, \beta, \gamma, i, j, k \le d$ we have

(i)
$$(E_{\alpha}^* A_{\beta} E_{\gamma}^*, E_i^* A_j E_k^*) = \delta_{\alpha,i} \delta_{\beta,j} \delta_{\gamma,k} k_{\gamma} p_{\alpha,\beta}^{\gamma};$$

(ii)
$$(E_{\alpha}A_{\beta}^*E_{\gamma}, E_iA_j^*E_k) = \delta_{\alpha,i}\delta_{\beta,j}\delta_{\gamma,k}m_{\gamma}q_{\alpha,\beta}^{\gamma}$$

Proof. (i) Using tr(BC) = tr(CB),

$$(E_{\alpha}^* A_{\beta} E_{\gamma}^*, E_i^* A_j E_k^*) = \operatorname{tr}((E_{\alpha}^* A_{\beta} E_{\gamma}^*)^t \overline{E_i^* A_j E_k^*})$$
$$= \operatorname{tr}(E_{\gamma}^* A_{\beta'} E_{\alpha}^* E_i^* A_j E_k^*)$$
$$= \delta_{\alpha,i} \delta_{\gamma,k} \operatorname{tr}(E_{\gamma}^* A_{\beta'} E_{\alpha}^* A_j)$$