Proof. To get (17), eliminate the associate matrices in {15) using (10}, and simplify the
result. To get (18) , evaluate (17) using Theorem 4.6(iii), and use the fact that pf; is real.
To get (19), eliminate the primitive idempotents E;, F; in (16) using (11), and sunphfy the
result. To get (20) , evaluate (19) using Theorem 4. 6(111) and use the fact that gf ; is real.

X
Lecture 6

We will use the following fact from linear algebra.
Lemma 4.11. For A, B,C € Mx(C),

3 AeyBuyCoy = (Ao B)CY) = tr((Bo C)A") = x((C 0 4)B")

zeX yeX

= tr((A! o BYC) = tr((B* o C)A) = tr((C* 0 A")B).

Proof. Use matrix multiplication. 0

Proposition 4.12. We have
@) dfo=0s (0<4,k<d);
() g, =dr  (0<5k<d)y
(ii1) gf; = d;5m (0<4,5 <d);
(iv) ¢F, = q (0<4,5,k <d);

(v) mys = Ej:() qﬁfj (0<i,k<d)
(vi) mgqf’j = miq;}, = qu{e (0<i,5,£<d);
.. d d . .
(vii) D oo qﬁj‘i’f o= Qom0 qfif}g-,j (0 <d,4,k (< d).

Proof. (i)-(iii) Routine application of (16) and Lenmma 4.11.
(iv} Using (16),

f | X i e (B 0 By 05 ) = | X |my e (B o B By
= | X |, e (B 0 By) Ey) = é_f“; = qtf";j.
(v) Using (16),
Zq” | X m; ! Ztr ((B; 0 By) ) = | Ximy tr((Bs 0 Ey) = my; "tr((mad ) By) = my.

J=0

(vx ) Use (16) and Lemma 4.11.
{vit} In the equation

(Ek o Ez) o Ej = Ek o (E; Q Ej),

write each side as a linear combination of {E;}{_,, and compare coefticients. 1
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Our next goal is to show that the Xrein parameters are nonnegative. As a warmup, let us
review some facts about Hermitean matrices.

A matrix A € Mx{C) is Hermitean whenever A = A For example, the primitive idem-
potents {E;}¢_, are Hermitean. Assume that A, B € Mx(C) are Hermitean. Then Ao B
is Hermitean. Assume that A € Mx(C) is Hermitean. Then A diagonalizable, and its
eigenspaces are mutually orthogonal. Moreoever, the eigenvalues of A are real. We say that
A is positive semidefinite (or PSD) whenever the eigenvalues of A are nonnegative. One
checks that A is PSD if and only if 7*Av > G for all v € V, where V is the standard module.
Let A denote a principle submatrix of A (rows/cols of A indexed by the same subset of X).
Note that A is Hermitean. If A is PSD then A is PSD,

Lemma 4,13, Given PSD Hermitean matrices A, B ¢ Mx(C). Then Ao B is PSD.

Proof. Define a matrix A ® B € My, x(C) as follows. For vertices r = (x,y) € X x X and
5= (u,v) € X X X, the (r,s)-entry of A® B is 4,,B,,. The matrix A ® B is Hermitean.
The characteristic polynomial of A® B has roots {dt,|(z, ¥} € X x X}, where {A;|z € X}
(resp. {uyly € X}) arve the roots of the characteristic polynomial of A (resp. B). Therefore
A ® B is PSD. The matrix A o B is the principle submatrix of A ® B with rows/columns
indexed by {(z, z)|z € X}. By these comments Ao B is PSD, O

Theorem 4.14. {the Krein condition) We have qufj >0 for0 <45,k <d

Proof. Let 1,7 be given. We show that qu_‘:j >0 for 0 < k < d. The matrices I; and F; are
Hermitean. They are both PSD, because their eigenvalues are zero or one. Therefore F; o 1)
is PSD by Lemma 4.13. Recall that

d
Ei o] Ej — iX|_1 ZquEk
k=0
So for 0 < k < d, the scalar | X ]"“]q,f‘“’j is the eigenvalue of F; o B; for the common eigenspace
BV oof M. This eigenvalue is nonnegative, so qg‘:j > 0. {ll

We mention some more inequalities.

Theorem 4.15, For 0 <4, 7 < d we have

1P| < Ky Qs ()] < my. (21)

Proof. We first prove the inequality on the left. Recall that A,E; = F,(5)F;. Pick a nonzero
v € E;V, where V is the standard module. Then A;v = Pi(7)v. In this equation, we compare
the entries on either side. For z € X, let v, denote the z-entry of v. From the z-enfry in
A = B(§yv, we obtain

Z vy = Pi{j)ve. (22)

yeli(z)
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Pick & € X such that |v,| > |vy| for all y € X. Observe that

Soow < Dl < Y ol = kiluel.

y€T () yel(z) y€Ti (e}

|Pi()va] = |Pild)vel =

We have |v,} > 0 since v £ 0, so {P(f)| < k;. We also have

_ 1R2G)my

(3

Fi{g)m;
k

Q50 =

< my.

5 The intersection matrices

Throughout this section, we assume that X = (X, {R;}{,) is a commutative association
scheme with Bose-Mesner algebra M, associate matrices {A;}¢,, and primitive idempotents

d
{E i }i:D'
Earlier we computed the intersection numbers and Krein parameters in texms of the character

tables. Our goal in this section is to compute the character tables in terms of the intersection
numbers and also the Krein parameters.

Definition 5.1, For 0 < ¢ < d, define a matrix B; € Myy1(C) with (j, k)-entry p; for
0< 7,k <d Wecall B; the i*" intersection matriz of X.

Lemma b5.2. The following (1)~(vi) hold.
(i) Bp=1.
(i) For0 <4 <d, the top row of B; is (0,...,0,1,0,...,0), with the I in column i.
(i) {B;}{., are linearly independent.
{iv) For 0 <4, <d,

d
BBy = pf;By.
k=0

(V) BiBj == BjBi fO’I' 0 < ’l,,j 5 d.
(vi) For 0 <i < d we have B! = K7 Bj K where K = diag(ko, k1, . . ., ka)-
Proof. (i) For 0 < 7,k < d the (4, k)-entry of Bp is pﬁlj = ik
(ii) For 0 < k < d the (0, k)-entry of B; is pfy = 8iz.
(iii) By (ii) above.
(iv) Compare the entries on either side using Proposition 3.2(vii).

(v) By (iv) and since pf; = pf, for 0 <k < d.
(vi) To get K Bt = By K, compare the entries of each side using Proposition 3.2(vi). 0
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Definition 5.3. By Lemma 5.2 the matrices {B;}L 4 form a hasis for a commutative subal-
gebra B of My (C). We call B the intersection algebra of X.

Theorem 5.4. There ewists an algebra isomorphism M — B that sends A; — By for 0 <
i< d.

Proof. Clear from Lemma 5.2(iv). |

Let us recall some linear algebra. For the moment, let W dencte any finite-dimensional
vector space over C, and let {w;}%., denote a basis for W. Let A : W — W denote a
C-linear map. There exists a unique n X n matrix B such that

n
A'U.)j = Z Bi,jwi (1 < 7 < n)
i=1

We say that B represents A with respect to {w;}t. Let {w;}}.; denote a second basis for
W. There exists a unique n X n matrix 5 such that

w; — Z Si,j’il}i (1 S j g ‘TE.)
i=1

The matrix S is invertible. We call .S the transition matriz from {w;}7, to {wi}i_,. By
linear algebra, the matrix S~ BS represents A with respect to {w,}2,.

We return our attention to X = (X, {R;}%.,). The Bose-Mesner algebra M has bases {4;}{
and {F;}e . Recall the first and second eigenmatrices P, €. Then P is the transition matix
from {E;}% ¢ to {A;}L,. Moreover, |X|'Q is the transition matrix from {4}, to {F;}i,.
For A &€ M, there exists a C-linear map L, : M -» M that sends N — AN for all N € M.
Theorem 5.5. With the above notation, the following (i)—(iv) hold for 0 <i < d:
(i) B! represents L, with respect to the basis {Ag}i—q;

(i) the matriz diag(P{0), Bi(1), ..., Pi(d)) represents La; with respect to {E¢} o

(i) PBLP- = diag(P(0), Pi(L, ., P(d);

(iv) the scalars P;(0), Pi(1),..., P{d) are the roots of the characteristic polynomial of B;.
Proof. (i) By Definition 5.1 and

d
Ay =" oAy (0<j<d).
Fe=0

(i) Since A;E; = Pi(j)F; for 0 £ 5 < d.
(iii) By (i), (ii) and the comments above the theorem statement.
(iv) B; and B! have the same characteristic polynomial. The result follows in view of (ili). O
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