For $0 \le i, j, k \le d$ and $(x, y) \in R_k$,

$$p_{i,j}^k = |\Gamma_i(x) \cap \Gamma_{j'}(y)|.$$

Define

$$k_i = p_{i,i'}^0 \qquad (0 \le i \le d).$$
 (7)

For $x \in X$,

$$k_i = |\Gamma_i(x)|$$
 $(0 \le i \le d).$

Lemma 3.1. We have

- (i) $k_0 = 1$;
 - (ii) $k_i = k_{i'}$ $(0 \le i \le d);$
- (iii) $|X| = \sum_{i=0}^{d} k_i$;
- (iv) $k_i \neq 0$ $(0 \le i \le d)$.

Proof. Routine.

Lecture 4

Proposition 3.2. We have

(i)
$$p_{i,0}^k = \delta_{i,k}$$
 $(0 \le i, k \le d);$

(ii)
$$p_{0,j}^k = \delta_{j,k}$$
 $(0 \le j, k \le d);$

(iii)
$$p_{i,j}^0 = \delta_{i,j'} k_i$$
 $(0 \le i, j \le d);$

(iv)
$$p_{i,j}^k = p_{i',j'}^{k'}$$
 $(0 \le i, j, k \le d);$

(v)
$$k_i = \sum_{j=0}^d p_{i,j}^k$$
 $(0 \le i, k \le d);$

(vi)
$$k_{\ell} p_{i,j}^{\ell} = k_{i} p_{\ell,j'}^{i} = k_{j} p_{i',\ell}^{j}$$
 $(0 \le i, j, \ell \le d);$

(vii)
$$\sum_{\alpha=0}^{d} p_{i,j}^{\alpha} p_{k,\alpha}^{\ell} = \sum_{\alpha=0}^{d} p_{k,i}^{\alpha} p_{\alpha,j}^{\ell}$$
 $(0 \le i, j, k, \ell \le d)$.

Proof. (i)-(iv) Routine.

(v) Fix $(x,y) \in R_k$. Partition $\Gamma_i(x)$ according to how its elements are related to y. This gives

$$\Gamma_i(x) = \bigcup_{j=0}^d (\Gamma_i(x) \cap \Gamma_{j'}(y))$$
 (disjoint union).

In this equation, take the cardinality of each side.

(vi) The three common values are equal to $|X|^{-1}$ times the number of 3-tuples (x, y, z) such that $(x, y) \in R_{\ell}$ and $(x, z) \in R_i$ and $(z, y) \in R_j$.

(vii) In the equation $A_k(A_iA_j) = (A_kA_i)A_j$, write each side as a linear combination of $\{A_\ell\}_{\ell=0}^d$, and compare coefficients.

As we study the Bose-Mesner algebra of X, the following results will be useful.

Lemma 3.3. Let M denote a nonzero subspace of the vector space $M_X(\mathbb{C})$. Assume that:

- (i) M is closed under matrix multiplication;
- (ii) AB = BA for all $A, B \in \mathcal{M}$;
- (iii) M is closed under the conjugate-transpose map.

Then M has a basis $\{E_i\}_{i=0}^d$ such that $E_iE_j = \delta_{i,j}E_i$ for $0 \le i, j \le d$. This basis is unique up to permutation of E_0, E_1, \ldots, E_d .

Proof. Consider the action of M on the standard module V. We claim that V has a basis consisting of common eigenvectors for \mathcal{M} . Let U denote the sum of the common eigenspaces for \mathcal{M} . It suffices to show that U = V. Suppose $U \subseteq V$. We have an orthogonal direct sum $V = U + U^{\perp}$. By construction U is M-invariant. By this and (6) the subspace U^{\perp} is \mathcal{M} -invariant. Since the elements of \mathcal{M} mutually commute, there exists $0 \neq v \in U^{\perp}$ that is a common eigenvector for \mathcal{M} . The vector v is contained in a common eigenspace for \mathcal{M} , so $v \in U$. Now $v \in U \cap U^{\perp} = 0$, for a contradiction. By these comments U = V, and the claim is proved. By the claim, there exists an invertible $S \in M_X(\mathbb{C})$ such that SAS^{-1} is diagonal for all $A \in \mathcal{M}$. By construction, SMS^{-1} is a nonzero subspace of $M_X(\mathbb{C})$ that is closed under matrix multiplication and has all elements diagonal. For diagonal matrices $A, B \in M_X(\mathbb{C})$ we have $AB = A \circ B$. Therefore SMS^{-1} is closed under Hadamard multiplication. By Lemma 2.1 the subspace SMS^{-1} has a basis $\{A_i\}_{i=0}^d$ such that $A_i \circ A_j = \delta_{i,j}A_i$ for $0 \le i,j \le d$. Note that $A_i A_j = \delta_{i,j} A_i$ for $0 \le i, j \le d$. Define $E_i = S^{-1} A_i S$ for $0 \le i \le d$. Then $\{E_i\}_{i=0}^d$ is a basis for M such that $E_i E_j = \delta_{i,j} E_i$ for $0 \le i, j \le d$. The uniqueness assertion is routinely checked.

Definition 3.4. Referring to Lemma 3.3, we call $\{E_i\}_{i=0}^d$ the primitive idempotents of \mathcal{M} .

Lemma 3.5. For the subspace \mathfrak{M} in Lemma 3.3, its primitive idempotents satisfy $\overline{E}_i^t = E_i$ for $0 \leq i \leq d$.

Proof. The subspace \mathfrak{M} contains \overline{E}_i^t for $0 \leq i \leq d$. The matrices $\{\overline{E}_i^t\}_{i=0}^d$ form a basis for \mathfrak{M} such that $\overline{E}_i^t \overline{E}_j^t = \delta_{i,j} \overline{E}_i^t$ for $0 \leq i, j \leq d$. By the uniqueness statement in Lemma 3.3, the sequence $\{\overline{E}_i^t\}_{i=0}^d$ is a permutation of the sequence $\{E_i\}_{i=0}^d$. For $0 \leq i \leq d$ we have $\overline{E}_i^t E_i \neq 0$, so $\overline{E}_i^t = E_i$.

Lemma 3.6. We refer to the subspace M in Lemma 3.3.

- (i) Assume that $I \in \mathcal{M}$. Then $I = \sum_{i=0}^{d} E_i$.
- (ii) Assume that $J \in \mathcal{M}$. Then $|X|^{-1}J$ is a primitive idempotent of \mathcal{M} (denoted E_0).
- (iii) Assume that M is closed under both the transpose map and complex conjugation. Then for $0 \le i \le d$ there exists $\hat{i} \in \{0, 1, ..., d\}$ such that $E_i^t = E_{\hat{i}} = \overline{E}_i$.

Proof. (i) There exists scalars $\{\alpha_i\}_{i=0}^d$ in $\mathbb C$ such that $I = \sum_{i=0}^d \alpha_i E_i$. For $0 \le i \le d$ we have

$$E_i = E_i I = E_i \sum_{j=0}^d \alpha_j E_j = \alpha_i E_i,$$

so $\alpha_i = 1$.

(ii) There exists scalars $\{\beta_i\}_{i=0}^d$ in $\mathbb C$ such that $J=\sum_{i=0}^d\beta_iE_i$. At least one of $\{\beta_i\}_{i=0}^d$ is nonzero. Without loss, we may assume $\beta_0\neq 0$. We have $JE_0=\beta_0E_0$. Note that $J^2=|X|J$, so

$$JE_0 = |X|^{-1}J^2E_0 = |X|^{-1}JE_0J = |X|^{-1}sJ,$$

where s is the sum of all the entries of E_0 . By these comments E_0 is a scalar multiple of J. Using $E_0^2 = E_0$ we obtain $E_0 = |X|^{-1}J$.

(iii) The subspace \mathcal{M} contains E_i^t for $0 \leq i \leq d$. The matrices $\{E_i^t\}_{i=0}^d$ form a basis for \mathcal{M} such that $E_i^t E_j^t = \delta_{i,j} E_i^t$ for $0 \leq i,j \leq d$. By the uniqueness statement in Lemma 3.3, the sequence $\{E_i^t\}_{i=0}^d$ is a permutation of the sequence $\{E_i\}_{i=0}^d$. In other words, for $0 \leq i \leq d$ there exists $i \in \{0,1,\ldots,d\}$ such that $E_i^t = E_i$. By Lemma 3.5 we have $\overline{E}_i = E_i^t = E_i$. \square

We return our attention to the commutative association scheme $\mathfrak{X} = (X, \{R_i\}_{i=0}^d)$.

Proposition 3.7. The Bose-Mesner algebra \mathcal{M} of \mathcal{X} has a basis $\{E_i\}_{i=0}^d$ that satisfies

- (i) $E_0 = |X|^{-1}J$;
- (ii) $E_i E_j = \delta_{i,j} E_i$ for $0 \le i, j \le d$;
- (iii) $I = \sum_{i=0}^{d} E_i$;
- (iv) for $0 \le i \le d$ there exists $\hat{i} \in \{0, 1, ..., d\}$ such that $E_i^t = E_{\hat{i}} = \overline{E}_i$.

Proof. Note that M satisfies the conditions of Lemma 3.3 and Lemma 3.6.

The matrices $\{E_i\}_{i=0}^d$ form a basis for \mathcal{M} . Since \mathcal{M} is closed under Hadamard multiplication, for $0 \leq i, j \leq d$ there exist $q_{i,j}^k \in \mathbb{C}$ $(0 \leq k \leq d)$ such that

$$E_i \circ E_j = |X|^{-1} \sum_{k=0}^d q_{i,j}^k E_k.$$
 (8)

By construction,

$$q_{i,j}^k = q_{j,i}^k \qquad (0 \le i, j, k \le d).$$
 (9)

The scalars $q_{i,j}^k$ are called the *Krein parameters* of \mathfrak{X} . Shortly we will show that $q_{i,j}^k$ is real and nonnegative for $0 \leq i, j, k \leq d$.

Character tables for commutative association schemes

Throughout this section, we assume that $\mathfrak{X} = (X, \{R_i\}_{i=0}^d)$ is a commutative association scheme with Bose-Mesner algebra \mathcal{M} , associate matrices $\{A_i\}_{i=0}^d$, and primitive idempotents $\{E_i\}_{i=0}^d$. Recall the standard module $V=\mathbb{C}^X$. Define the vector $1\in V$ that has all entries

Lemma 4.1. We have

$$V = \sum_{i=0}^{d} E_i V$$
 (orthogonal direct sum).

For $0 \leq i \leq d$ the subspace E_iV is a common eigenspace for M, and E_i is the projection onto this eigenspace. Moreover 1 is a basis for E_0V .

Proof. Routine consequence of Proposition 3.7.

The Bose-Mesner algebra \mathcal{M} has a basis $\{A_i\}_{i=0}^d$ and a basis $\{E_i\}_{i=0}^d$. Let us consider how these bases are related. We have

$$A_i = \sum_{j=0}^{d} P_i(j) E_j$$
 $(0 \le i \le d),$ (10)

$$E_i = |X|^{-1} \sum_{j=0}^d Q_i(j) A_j \qquad (0 \le i \le d),$$

$$P_i(j) \in \mathbb{C}, \quad Q_i(j) \in \mathbb{C} \qquad (0 \le i, j \le d).$$

$$(11)$$

$$P_i(j) \in \mathbb{C}, \qquad Q_i(j) \in \mathbb{C} \qquad (0 \le i, j \le d).$$
 (12)

For $0 \le i, j \le d$ the scalar $P_i(j)$ is the eigenvalue of A_i for the common eigenspace E_jV .

Let $M_{d+1}(\mathbb{C})$ denote the algebra over \mathbb{C} consisting of the d+1 by d+1 matrices that have all entries in \mathbb{C} . We index the rows and columns by $0, 1, \ldots, d$. Define $P \in M_{d+1}(\mathbb{C})$ that has (i,j)-entry $P_j(i)$ for $0 \leq i,j \leq d$. Define $Q \in M_{d+1}(\mathbb{C})$ that has (i,j)-entry $Q_j(i)$ for $0 \le i, j \le d$. By construction,

$$PQ = |X|I = QP. (13)$$

We call P the first eigenmatrix (or first character table) of X. We call Q the second eigenmatrix (or second character table) of X.

Lemma 4.2. The following hold for $0 \le i \le d$:

- (i) $\operatorname{tr}(A_i) = \delta_{i,0}|X|$;
- (ii) $A_i J = J A_i = k_i J$.

Proof. (i) We have $A_0 = I$. For $1 \le i \le d$ the diagonal entries of A_i are zero.

(ii) The matrix A_i has constant row sum k_i by the definition of k_i . The matrix A_i has constant column sum k_i because $A_i^t = A_{i'}$ and $k_{i'} = k_i$.