For 0 <4,j,k < d and (z,y) € Ry,
#l; = |Ta(e) N Tp(y)l.

Define
ki = ply - (0<i<a). (7)
Forz e X,
ki = L) (0<i<d)

Lemma 3.1. We have ‘
G) ko =1;
() b=k (0<i<d)

(i) 1X] =320 ks

(iv) ki £ 0 (0 << d).

Proof. Routine. [J
Lecture 4

Proposition 3.2. We have
@) plo=06p (0Z4,k<d);
(i) po; =0 (0S4 k< d);
(i) p; = dipky (0 <4,5 < d);

@) o=,  (0<i5k<d);
V) k=000t (0S4,k<d);
(vi) keply = kb = kypl, (04,5, £<d);

. d ‘ .
(vi) Yoo Pipha = CacoPbthy  (0<45,kE<d).

Proof. (i)-(iv) Routine.

{(v) Fix (z,y) € Ry. Partition I';(z) according to how its elements are related to y. This
gives

[yz) = U?zo(l_'i(a:) NTy(y) (disjoint union).

In this equation, take the cardinality of each side.

(vi) The three common values are equal to |X|™! times the number of 3-tuples (z,y, z) such
that (z,y) € Ry and (z,2) € R; and (z,y) € R;.

(vii} In the equation Apx{A;A;) = (ApA;)A;, write each side as a linear combination of
{A}%,, and compare coefficients. U
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As we study the Bose-Mesner algebra of X, the following results will be useful.
Lemma 3.3. Let M denote a nonzero subspace of the vector space Mx(C). Assume that:
(i) M is closed under matriz multiplication;
(i) AB = BA for all A,B €M;
(i) M is closed under the conjugate-transpose map.

Then M has a basis {F;} o such that FiE; = 6, ;F; for 0 < 4,5 < d. This basis is unique
up to permutation of o, BEr, ..., By

Proof. Consider the action of M on the standard module V. We claim that V' has a basis
consisting of common eigenvectors for M. Let U denote the sum of the common eigenspaces
for M. It suffices to show that U = V. Suppose U ¢ V. We have an orthogonal direct
sum V — U + U'. By construction U is M-invariant. By this and (6) the subspace U™ is
N-invariant. Since the elements of M mutually commute, there exists 0 # v € U that is
& common eigenvector for M. The vector v is contained in a common eigenspace for M, so
v e U. Now v € UNUL =0, for a contradiction. By these comments U = V, and the claim
is proved. By the claim, there exists an invertible S € Mx(C) such that SAS™ is diagonal
for all A € M. By construction, SMS~! is a nonzero subspace of Mx(C) that is closed under
matrix multiplication and has all elements diagonal. For diagonal matrices A, B € Mx(C) we
have AB = A o B. Therefore SMS ! is closed under Hadamard multiplication. By Lemma
2.1 the subspace SMS~! has a basis {A4;}& 4 such that A;0A; = §; ;A; for 0 < 4,5 < d. Note
that A;A; = §;jA; for 0 < 4,5 < d. Define E; = 5~ 1ASf01 0<i<d Then {E}l,isa
basis for M such that E;E; = §;;F; for 0 < 4,7 < d. The uniqueness assertion is routinely
checked. O

Definition 3.4. Referring to Lemma 3.3, we call {E;}¢, the primitive idempotents of M.

Lemma 3.5. For the subspace M in Lemma 3.3, its primitive idempotents satisfy EZ- = Fj
for 0 <i<d.

Proof. The subspace M contains ft for 0 <4 < d. The matrices {Et} form a basis for M
such that E E = JE for 0 < 4,j < d. By the uniqueness statement in Lemma 3.3, the

sequence {E }z _, Is a permutation of the sequence {F;}{q. For 0 <4 < d we have E E; # 0,
80 Ei = [ O

Lemma 3.6. We refer to the subspace M in Lemma 8.3.
(i) Assume that I € M. Then I =3¢, E.
(i) Assume that J € M. Then |X|71J is o primilive idempotent of M (denoted Ey).

(iii) Assume that M s closed undev both the transpose map and compiem conjugation. Then
for 0 <4 < d there exists i € {0,1,...,d} such that B! = E; = E;.
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Proof. (i) There exists scalars {a;}{, in € such that I = S @i, For 0 <4 < d we have

d
Ei = Ezf = ElZaJEJ == ag‘Ei,
i=0

80 ¢ = 1.

(ii) There exists scalars {8;}¢, in C such that J = S BiEi At least one of {B;}L, is
nonzero. Without loss, we may assume fy # 0. We have JEy = foFg. Note that J ? = IX \J,
80

JEy = |X| L2 Ey = | X[V T By = |X| s,

where s is the sum of all the entries of E;. By these comments Fyp is a scalar multiple of J.
Using E2 = Ey we obtain Fy = jX|™'J.

(iii) The subspace M contains F} for 0 < ¢ < d. The matrices {El}4., form a basis for M
such that FIE! = §;;5f for 0 < ¢,7 < d. By the uniqueness statement in Lemma 3.3, the
sequence {Et}GI o is a permutation of the sequence {E;}¢ g In other words, for 0 <4 < d
there exists i € {0,1,...,d} such that B! = E;. By Lemma 3.5 we have F; = Bf = E;. O

We return our attention to the commutative association scheme X = (X, {R;}E,).
Proposition 3.7. The Bose-Mesner algebra M of X has a basis {E}¢ , that satisfies
(i) Lo = {X|1J;
(i)
(iil) 1 = Zf=0 E;;
(iv)

Proof. Note that M satisfies the conditions of Lemma 3.3 and Lemma. 3.6. O

EiEj == 51',3;.545 fO?" 0 < 'i-,j < d,‘
for 0 <4 < d there ezists i € {0,1,...,d} such that Ef = F; = ;.

The matrices {F;}¢ , form a basis for M. Since M is closed under Hadamard multiplication,
for 0 < 4,7 < d there exist gifj ¢ C (0 < k < d) such that

d
Bio By =|X|™) By (8)

By construction,
at; = 0 (0 <45,k < d), ©)

The scalars qt’-”',j are called the Krein parameters of X, Shortly we will show that qéfj is real
and nonnegative for 0 < 4,7,k < d.
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4 Character tables for commutative association schemes

Throughout this section, we assume that X = (X, {R:}_) is a commutative association
scheme with Bose-Mesner algebra M, associate matrices {4;}¢ 4, and primitive idempotents
{E;}L . Recall the standard module V = C¥. Define the vector 1 € V that has all entries
1.

Lemma 4.1. We have
d
Vo= Z BV (orthogonal direct sum).
=0

For 0 < i < d the subspace BV is a common eigenspace for M, and E; is the projection
onto this eigenspace. Moreover 1 is a basis for EyV .

Proof. Routine consequence of Proposition 3.7. d

The Bose-Mesner algebra M has a basis {4;}%, and a basis {E;}¢ ;. Let us consider how
these bases are related. We have

d
A=) B(j)E; (0<i<d), (10)
d o
B = X1 Y Qi)Ay (0<i<d), (11)
B(HeC, QeC (0<i,5<d). (12)

For 0 < i,j < d the scalar P;(j) is the eigenvalue of A; for the common eigenspace f£;V.

Let Myy1(C) denote the algebra over C consisting of the d 4- 1 by d + 1 mafrices that have
all entries in €. We index the rows and columns by 0,1,...,d. Define P € My,1{C) that
has (4, )-entry P;(4) for 0 < 4,7 < d. Define Q@ € My,1(C) that has (4, j)-entry Q;(2) for
() <14,5 <d. By construction,

PQ = |X|I = QP (13)

We call P the first eigenmatriz (or first character table) of X. We call ) the second eigen-
matriz (or second character table) of X,

Lemma 4.2. The following hold for 0 <1 < d:
(i) tr(A;) = &0l X|;

Proof. (i) We have Ag = I. For 1 < i < d the diagonal entries of A; are zero.
(i) The matrix A; has constant row sum k; by the definition of k;. The matrix A4; has
constant column sum k; because Al = Ay and ky = k. [l
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