Lecture 35

25 Some open problems

In this section we give some open problems related to association schemes and graph theory in general. These problems are at the research level; an elegant solution or substantial progress is surely publishable. The problems are in a raw form; feel free to adjust any given problem into a more elegant or suitable form.

All the graphs discussed in this section are assumed to be finite, undirected, and connected, without loops or multiple edges. Fix a finite set X with $|X| \ge 2$.

We motivate the first problem with some comments about association schemes. Let $\mathcal{X} = (X, \{R_i\}_{i=0}^d)$ denote a symmetric association scheme with primitive idempotents $\{E_i\}_{i=0}^d$. Recall the standard module $V = \mathbb{R}^X$ and the function algebra product $\circ: V \times V \to V$. Recall that for $0 \le i, j \le d$,

$$\operatorname{Span}(E_i V \circ E_j V) = \sum_{\substack{0 \le k \le d \\ q_{i,j}^k \ne 0}} E_k V.$$

Assume that \mathcal{X} is Q-polynomial with respect to the ordering $\{E_i\}_{i=0}^d$. Then E_1V generates V in the function algebra. Moreover

$$E_1V \circ E_iV \subseteq E_{i-1}V + E_iV + E_{i+1}V \qquad (0 \le i \le d),$$

where $E_{-1} = 0$ and $E_{d+1} = 0$. For $0 \le i \le d$ define

$$(E_1V)^{\circ i} = \operatorname{Span}(E_1V \circ E_1V \circ \cdots \circ E_1V)$$
 (*i* copies).

We interpret $(E_1V)^{\circ 0} = E_0V = \operatorname{Span}(\mathbf{1})$, where $\mathbf{1} = \sum_{y \in X} \hat{y}$. We have

$$\sum_{\ell=0}^{i} E_{\ell} V = \sum_{\ell=0}^{i} (E_{1} V)^{\circ \ell} \qquad (0 \le i \le d).$$

We are done with the motivation. Now let $\Gamma = (X, \mathbb{R})$ denote any graph with vertex set X and adjacency relation \mathbb{R} . Let $A \in M_X(\mathbb{R})$ denote the adjacency matrix of Γ . We assume that Γ is regular with valency k; thus each vertex in X is adjacent to exactly k vertices in X. In this case k is the maximal eigenvalue of A, and the corresponding eigenspace is spanned by 1. We denote this eigenspace by V_0 and call it trivial. Let $\{V_i\}_{i=1}^D$ denote an ordering of the nontrivial eigenspaces of A.

Definition 25.1. The above ordering $\{V_i\}_{i=0}^D$ is called *Q-polynomial* whenever

$$\sum_{\ell=0}^{i} V_{\ell} = \sum_{\ell=0}^{i} (V_{1})^{\circ \ell} \qquad (0 \le i \le D).$$

Definition 25.2. A graph Γ is said to be Q-polynomial whenever Γ is regular, and there exists at least one Q-polynomial ordering of its eigenspaces.

Example 25.3. Assume that $\mathcal{X} = (X, \{R_i\}_{i=0}^d)$ is a Q-polynomial association scheme. Let S denote a subset of $\{1, 2, \ldots, d\}$ such that $A = \sum_{i \in S} A_i$ generates the Bose-Mesner algebra of \mathcal{X} . Then for the relation $\mathcal{R} = \bigcup_{i \in S} R_i$ the graph (X, \mathcal{R}) is Q-polynomial.

Conjecture 25.4. Let Γ denote a Q-polynomial graph. Let \mathcal{M} denote the subalgebra of $M_X(\mathbb{R})$ generated by the adjacency matrix A of Γ . Then \mathcal{M} is the Bose-Mesner algebra of a Q-polynomial association scheme.

We now describe the Q-polynomial property from another point of view.

Definition 25.5. Let $\Gamma = (X, \mathcal{R})$ denote a regular graph. Let U denote a nontrivial eigenspace of Γ . We say that Γ is Q-polynomial with respect to U whenever there exists a Q-polynomial ordering $\{V_i\}_{i=0}^D$ of the eigenspaces of Γ such that $V_1 = U$.

Let $\Gamma = (X, \mathcal{R})$ denote a graph. Recall the bilinear form $\langle , \rangle : V \times V \to \mathbb{R}$ such that $\langle u, v \rangle = u^t v$ for all $u, v \in V$.

Definition 25.6. Assume that Γ is regular, and let U denote a nontrivial eigenspace of Γ that generates V in the function algebra. Define the integer

$$D = \min \left\{ i \middle| i \ge 0, \sum_{\ell=0}^{i} U^{\circ \ell} = V \right\}.$$

Next, we recursively define some subspaces $\{U^{(i)}\}_{i=0}^D$ of V. Define $U^{(0)} = V_0$ and $U^{(1)} = U$. For $2 \le i \le D$ define $U^{(i)}$ to be the orthogonal complement of $U^{(0)} + U^{(1)} + \cdots + U^{(i-1)}$ in $\sum_{\ell=0}^{i} U^{\circ \ell}$.

Referring to Definition 25.6, for $0 \le i \le D$ we have

$$\sum_{\ell=0}^{i} U^{(\ell)} = \sum_{\ell=0}^{i} U^{\circ \ell},$$

with the sum on the left being orthogonal and direct. In particular

$$V = U^{(0)} + U^{(1)} + \dots + U^{(D)}$$
 (orthogonal direct sum).

Lemma 25.7. Let U denote a nontrivial eigenspace of a regular graph $\Gamma = (X, \mathbb{R})$. Then the following are equivalent:

- (i) Γ is Q-polynomial with respect to U;
- (ii) U generates V in the function algebra, and $U^{(i)}$ is an eigenspace of Γ for $0 \le i \le D$.

Proof. By the construction above the lemma, and since the eigenspaces of Γ are mutually orthogonal.

In order to clarify things, let us consider a special case. Referring to Lemma 25.7, assume that each eigenspace of Γ has dimension one. Let the vector $u = \sum_{x \in X} u_x \hat{x}$ be a basis for U. Consider the vectors

$$\sum_{x \in X} (u_x)^i \hat{x} \qquad (0 \le i \le D). \tag{112}$$

Applying the Gram-Schmidt orthogonalization process to the vectors (112), we obtain a sequence of polynomials $f_i \in \mathbb{R}[\lambda]$ ($0 \le i \le D$) such that f_i has degree i and the vector $\sum_{x \in X} f_i(u_x)\hat{x}$ is a basis for $U^{(i)}$ ($0 \le i \le D$). The polynomials $\{f_i\}_{i=0}^D$ are orthogonal; the orthogonality is

$$\sum_{x \in X} f_i(u_x) f_j(u_x) = \begin{cases} 0 & \text{if } i \neq j; \\ \neq 0 & \text{if } i = j \end{cases}$$
 $(0 \le i, j \le D).$

By the theory of orthogonal polynomials,

$$\lambda f_i \in \operatorname{Span}\{f_{i-1}, f_i, f_{i+1}\} \qquad (0 \le i \le D),$$

where $f_{-1} = 0$ and $f_{D+1} = \prod_{x \in X} (\lambda - u_x)$. In summary we have the following result.

Lemma 25.8. Assume that Γ is regular, and every eigenspace of Γ has dimension one. Let U denote a nontrivial eigenspace of Γ , with basis $u = \sum_{x \in X} u_x \hat{x}$. Then the following are equivalent:

- (i) Γ is Q-polynomial with respect to U;
- (ii) there exists a sequence of orthogonal polynomials $\{f_i\}_{i=0}^D$ such that

$$\sum_{x \in X} f_i(u_x) \hat{x}$$

is an eigenvector of Γ for $0 \le i \le D$.

Problem 25.9. Hunt for some Q-polynomial graphs that have all eigenspaces of dimension one.

We now consider a related problem. For this problem we view $V = \mathbb{C}^X$.

Definition 25.10. Let $\Gamma = (X, \mathcal{R})$ denote a graph. Let $\Phi \in \mathbb{C}[\lambda, \mu]$ denote a polynomial in two variables such that $\Phi(\lambda, \mu) = \pm \Phi(\mu, \lambda)$. By a Φ -hyper-eigenvector for Γ we mean a vector $u = \sum_{x \in X} u_x \hat{x} \in V$ such that for all $x \in X$ the multiset of scalars $\{u_y\}_{y \in \Gamma(x)}$ gives all the roots of the polynomial $\Phi(\lambda, u_x)$. We call Φ the hyper-eigenvalue of u.

Referring to Definition 25.10, if $u = \sum_{x \in X} u_x \hat{x}$ is a Φ -hyper-eigenvector then $\Phi(u_x, u_y) = 0$ for all pairs of adjacent vertices $x, y \in X$.

Example 25.11. Assume that Γ is the 3-cube H(3,2). Let \uparrow, \downarrow denote a basis for a 2-dimensional vector space W. We interpret $V = W \otimes W \otimes W$. We interpret $\{\hat{x}\}_{x \in X}$ to be the set of vectors

$$r\otimes s\otimes t \hspace{1cm} r,s,t\in\{\uparrow,\downarrow\}.$$

We now give the hyper-eigenvalues and their hyper-eigenvectors.

(i) For
$$\Phi = (\lambda - \mu)^3$$
;

$$(\uparrow + \downarrow) \otimes (\uparrow + \downarrow) \otimes (\uparrow + \downarrow).$$

(ii) For
$$\Phi = (\lambda - \mu)^2(\lambda + \mu)$$
:

$$(\uparrow - \downarrow) \otimes (\uparrow + \downarrow) \otimes (\uparrow + \downarrow),$$

$$(\uparrow + \downarrow) \otimes (\uparrow - \downarrow) \otimes (\uparrow + \downarrow),$$

$$(\uparrow + \downarrow) \otimes (\uparrow + \downarrow) \otimes (\uparrow - \downarrow).$$

(iii) For
$$\Phi = (\lambda - \mu)(\lambda + \mu)^2$$
:

$$(\uparrow - \downarrow) \otimes (\uparrow - \downarrow) \otimes (\uparrow + \downarrow),$$

$$(\uparrow - \downarrow) \otimes (\uparrow + \downarrow) \otimes (\uparrow - \downarrow),$$

$$(\uparrow + \downarrow) \otimes (\uparrow - \downarrow) \otimes (\uparrow - \downarrow).$$

(iv) For
$$\Phi = (\lambda + \mu)^3$$
:

$$(\uparrow - \downarrow) \otimes (\uparrow - \downarrow) \otimes (\uparrow - \downarrow).$$

Problem 25.12. Find the hyper-eigenvalues and hyper-eigenvectors for your favorite graph.

Definition 25.13. Let A and B denote square matrices of the same size. We say that A and B are *linked* whenever there exists an invertible matrix P such that $P^{-1}AP$ is diagonal and PBP^{-1} is diagonal.

Every linked pair of matrices over \mathbb{C} appears in the following way.

Example 25.14. Let V denote a finite-dimensional vector space over \mathbb{C} . Let $S:V\to V$ and $T:V\to V$ denote diagonalizable linear transformations.

- (i) Pick an eigenbasis for S. Let A denote the matrix that represents T in this basis.
- (ii) Pick an eigenbasis for T. Let B denote the matrix that represents S in this basis.
- (iii) Let P denote the transition matrix from the basis in (i) to the basis in (ii).

The matrices $P^{-1}AP$ and PBP^{-1} are diagonal, so A and B are linked.

Problem 25.15. What pairs of matrices are linked?

Definition 25.16. Let Γ and Γ' denote graphs with the same number of vertices. We say that Γ and Γ' are *linked* whenever their adjacency matrices are linked.

Problem 25.17. What pairs of graphs are linked?

Problem 25.18. What matrix is linked to itself?

Problem 25.19. What graph is linked to itself?

Example 25.20. It is routine to check that the complete graph K_n is linked to itself, and any hypercube H(d, 2) is linked to itself.