Proof. (i), (i) By Coroliary 23.9 we find that cEY (0 <i<s—1)and I —cd ;g B are
mutually orthogonal idempotents. These are lincarly independent and contained in mY,
They must form a basis for MY, because MY has dimension s + 1. By these comments the
subspace MY is closed under matrix multiplication. Therefore Y is a symmetric association
scheme.

(iii) By the construction and since X is @-polynomial with respect to {E} .

(iv) We saw earlier that ¢y ;o B = IV, 0

Lecture 34

24 Linear programming in the hypercube

We return our attention to the hypercube H{(d, 2). When we first introduced linear program-
ming, we considered an example involving the orthogonality graph Q4. For d = 4 we worked
out the solution by brute force. In this section we give the solution for all d.

Let X denote the vertex set of H(d,2). Recall that |X| = 2% Recall the bipartition
X = X+ UX". Note that each of X* has size |X|/2 = 2471,

We now recall the orthogonality graph.

Definition 24.1. For even d = 2t > 2, the orthogonality graph Qg has vertex set X; vertices
y, z are adjacent in Qy whenever (y,2) € R, in H{d,2). A set of vertices Y C X is called
independent in {0y whenever no two vertices in ¥ are adjacent in (2.

Problem 24.2. Find the maximal size of an independent set in €.

The above problem is easily solved for ¢ odd, and much harder for ¢ even. Let us first
dispense with the case of ¢ odd.

Lemina 24.3. Assume thatt is odd.
(1) 2971 is the mazimum size of an independent set in y;
(ii) each of X* is an independent set of size 2471;
(iii) there is no other independent set in Qg of size 2471

Proof. The sets X* are independent in {1y, because ¢ is odd and for @,y € X+ we have
(z,y) € Rp with k even. Assume Y C X is independent in Qg. We show [Y] < 2971, with
equality if and only if Y = X*, Let ¥ = X\Y. Note that ¥ = X * if and only if Y is
independent in Qg The graph Qg is regular; let £ denote the valency. We count the edges
in Q, between Y and Y. Since Y is independent, every vertex in Y is adjacent to exactly &
vertices in Y. Therefore the edge count is |Y]x. Fach vertex in ¥ is adjacent to at most &
vertices in Y. Therefore the edge count is at most |[V]x, with equality iff Y is independent
in (. By these comments |Y|x < |Y ]k, with equality iff Y is independent in g. Therefore
Y] < |V], with equality iff ¥ is independent in 4. Therefore [V| < 2971, with equality iff

Y is independent in ;. The result follows. O
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For the rest of this section, we assume that ¢ is even. In this case, the above Problem 24.2

is open, so we consider the following related problem.

Problem 24.4. Use linear programming to find an upper bound on the size of an indepen-

dent set in {1;.

We will prove the following resuit.

Theorem 24.5. Fort even, the linear programming upper bound is 2/d for the size of an

independent set in 2y,

We recall some facts about H(d,2). The intersection numbers are
c; =1, by =d—1 (0<i<d).

The valencies are

d
The eigenvalues and dual eigenvalues are

0; = d — 24, 0 =d—2i (0<4<d).
The eigenmatrices P and @ satisfy P = Q. Their entries are given by

Fy(3) = Q7)) = IG(9) (0 <47 <d),

where {/(;}2, are the Krawtchouk polynomials. For 0 < j < d we have

, , X , d—25)%—d
Ko =1, K =d-2, k)= CTHEEE
The Krawtchouk polynomial generating function is
d ]

SUKi(j)d = (1 -2 1+ )T (0<j<d)

i=0
The Krawtchouk polynomials satisfy

Ki(j (4
Lemma 24.6. We have
67 — d
Ky(i) = - d Ki(2) = (l—)f(g(i) (0 <i<d).

d
2 (3)
Proof. By (105) and (107).
Recall d = 2¢ with £ even.
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Lemma 24.7. The following hold for 0 <i < d.
(i) Assume s is odd. Then K;{t) = I{i) = 0.

(ii) Assume ¢ = 2¢ is even. Then

et (A (2e—1)2e—3). 3.1
JQ“)"(l)(é>’ BQ@)_(—1f<t)01—1Xd~u$-~(d—2£+1)

Proof. To obtain K;(t) we use the generating function. We have

im() = (=2 (1 +2) = (1~ 2% zt: ()

=0 £=0
To obtain K;(¢) from K;(t) we use (107). |
We are now ready to apply linear programming with
D=10,1,...,d}, M = D\{t}, C =40
Lemma 24.8. The following is a program for Problem (@, M):
1/d d—1 d\ 07
A - 2 ; . 108
a; d(z) g Ki(2) = (z)a? (1 € M) (108)
For this program the objective function is g = 2¢/d. Moreover
—1)24
;= D2 =0 (1<i<di#2),
where
o} =Y aiQ;(3) (1<j<d), (109)
icM

Proof. By construction, ay =1 and a; > 0 for ¢ € M. For notational convenience, define
a; = 0. Note that (108) holds at ¢ = ¢ because 0, = 0. Define

(ag,af, ..., aq) = (a0, a1, o ag) Q.

Note that

(ao,al, . ..,ad) = %Eu(row 0 of P) o L (row 2 of P).
Therefore
(aé,a’{, ...,a{’;) = (ag,al,...,ad)Q

= %(row 0 of P)Q+ -

1(row 2 of P)Q
= é(row 0 of PQ) + d ; ! (row 2 of PQ)
= %—'(row 0 ofI) + LCE%)‘Xl(Iow 2 ofI)

z(?g,o,@—"f—zd,o,o,...,o).

130




Note that @} > 0 for 1 < j < d. By these comments {a;}ienr is a program: for Problem

(Q, M). Note that g = aj = 2¢/d. The result follows.

Lemma 24.9. The following is a program for Problem (Q,M)': for 0 <i < d,

1 d—1K() {w if 1 is odd;

oy = — g fd— (26—-1)(2¢—-3)--31 e :
d d (9 Vd+ (17 mnms isen 1 &= 2C1s even

For this program the objective function is v = 2¢/d. Moreover

a; =0 (7 € M™),
where
of =Y Qi) (4 € M™).
€D

Proof. Using (110), we find g = 1 and a; > 0 for 1 <4 < d. Define

(Q’S,O«’T: v aaZ) = (aﬂj (ST PRI :ad)Qt'
By (110),
. ’ 1 ) . d—11 .
(ag,al,...,ad) d(m\x OofP) 7 (d) (mvstofP)
Therefore

(af,ai,...,a}) = (ag, 0, ... ,aq)@*
= 1(row 0 of Pt> Q'+ -C—l—m—l% (row t of PL) Q"
d 4 ()

= zli_(row 0 of PtQt) + ii;l% (row t of PtQt)
t

= Dil (row 0 of I) 4 (d;dé))m(row tof I)

24 (d —1)2¢
={Z,0,...,0,——2"0,...,0).
(3 () )

[

(110)

(111)

This shows that o = Ounless j =¢ (1 £ 7 < d). Therefore af = 0 for j € M*. Consequently

af <0forj € Zlff X. By these comments {a;}i, is a program for Problem (@, M)".

that v = af = 2¢/d. The result follows.

Note
3

We displayed a program for Problem (@, M) and a program for Problem (@, M)’ such that
g = 2%/d = ~y. Therefore, every program for Problem (@), M) has objective function at most
2¢/d. Consequently, an independent set in {4 has cardinality at most 29/d. Theorem 24.5

is proved.
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