*Proof.* (i), (ii) By Corollary 23.9 we find that  $cE_i^Y$  ( $0 \le i \le s-1$ ) and  $I - c \sum_{i=0}^{s-1} E_i^Y$  are mutually orthogonal idempotents. These are linearly independent and contained in  $\mathcal{M}^Y$ . They must form a basis for  $\mathcal{M}^Y$ , because  $\mathcal{M}^Y$  has dimension s+1. By these comments the subspace  $\mathcal{M}^Y$  is closed under matrix multiplication. Therefore  $\mathcal{Y}$  is a symmetric association scheme

(iii) By the construction and since  $\mathfrak{X}$  is Q-polynomial with respect to  $\{E_i\}_{i=0}^d$ .

(iv) We saw earlier that  $c \sum_{i=0}^{s} E_i^Y = I^Y$ .

## Lecture 34

## 24 Linear programming in the hypercube

We return our attention to the hypercube H(d, 2). When we first introduced linear programming, we considered an example involving the orthogonality graph  $\Omega_d$ . For d = 4 we worked out the solution by brute force. In this section we give the solution for all d.

Let X denote the vertex set of H(d,2). Recall that  $|X| = 2^d$ . Recall the bipartition  $X = X^+ \cup X^-$ . Note that each of  $X^{\pm}$  has size  $|X|/2 = 2^{d-1}$ .

We now recall the orthogonality graph.

**Definition 24.1.** For even  $d = 2t \ge 2$ , the *orthogonality graph*  $\Omega_d$  has vertex set X; vertices y, z are adjacent in  $\Omega_d$  whenever  $(y, z) \in R_t$  in H(d, 2). A set of vertices  $Y \subseteq X$  is called *independent* in  $\Omega_d$  whenever no two vertices in Y are adjacent in  $\Omega_d$ .

Problem 24.2. Find the maximal size of an independent set in  $\Omega_d$ .

The above problem is easily solved for t odd, and much harder for t even. Let us first dispense with the case of t odd.

Lemma 24.3. Assume that t is odd.

- (i)  $2^{d-1}$  is the maximum size of an independent set in  $\Omega_d$ ;
- (ii) each of  $X^{\pm}$  is an independent set of size  $2^{d-1}$ ;
- (iii) there is no other independent set in  $\Omega_d$  of size  $2^{d-1}$ .

Proof. The sets  $X^{\pm}$  are independent in  $\Omega_d$ , because t is odd and for  $x, y \in X^{\pm}$  we have  $(x,y) \in R_k$  with k even. Assume  $Y \subseteq X$  is independent in  $\Omega_d$ . We show  $|Y| \leq 2^{d-1}$ , with equality if and only if  $Y = X^{\pm}$ . Let  $\overline{Y} = X \setminus Y$ . Note that  $Y = X^{\pm}$  if and only if  $\overline{Y}$  is independent in  $\Omega_d$ . The graph  $\Omega_d$  is regular; let  $\kappa$  denote the valency. We count the edges in  $\Omega_d$  between Y and  $\overline{Y}$ . Since Y is independent, every vertex in Y is adjacent to exactly  $\kappa$  vertices in  $\overline{Y}$ . Therefore the edge count is  $|Y|\kappa$ . Each vertex in  $\overline{Y}$  is adjacent to at most  $\kappa$  vertices in Y. Therefore the edge count is at most  $|\overline{Y}|\kappa$ , with equality iff  $\overline{Y}$  is independent in  $\Omega_d$ . By these comments  $|Y|\kappa \leq |\overline{Y}|\kappa$ , with equality iff  $\overline{Y}$  is independent in  $\Omega_d$ . Therefore  $|Y| \leq |\overline{Y}|$ , with equality iff  $\overline{Y}$  is independent in  $\Omega_d$ . Therefore  $|Y| \leq 2^{d-1}$ , with equality iff  $\overline{Y}$  is independent in  $\Omega_d$ . The result follows.

For the rest of this section, we assume that t is even. In this case, the above Problem 24.2 is open, so we consider the following related problem.

**Problem 24.4.** Use linear programming to find an upper bound on the size of an independent set in  $\Omega_d$ .

We will prove the following result.

**Theorem 24.5.** For t even, the linear programming upper bound is  $2^d/d$  for the size of an independent set in  $\Omega_d$ .

We recall some facts about H(d, 2). The intersection numbers are

$$c_i = i,$$
  $b_i = d - i$   $(0 \le i \le d).$  (101)

The valencies are

$$k_i = \binom{d}{i} \qquad (0 \le i \le d). \tag{102}$$

The eigenvalues and dual eigenvalues are

$$\theta_i = d - 2i,$$
  $\theta_i^* = d - 2i$   $(0 \le i \le d).$  (103)

The eigenmatrices P and Q satisfy P = Q. Their entries are given by

$$P_i(j) = Q_i(j) = K_i(j)$$
  $(0 \le i, j \le d),$  (104)

where  $\{K_i\}_{i=0}^d$  are the Krawtchouk polynomials. For  $0 \leq j \leq d$  we have

$$K_0(j) = 1,$$
  $K_1(j) = d - 2j,$   $K_2(j) = \frac{(d - 2j)^2 - d}{2}.$  (105)

The Krawtchouk polynomial generating function is

$$\sum_{i=0}^{d} K_i(j)z^i = (1-z)^j (1+z)^{d-j} \qquad (0 \le j \le d).$$
 (106)

The Krawtchouk polynomials satisfy

$$\frac{K_i(j)}{k_i} = \frac{K_j(i)}{k_j} (0 \le i, j \le d). (107)$$

Lemma 24.6. We have

$$K_2(i) = \frac{\theta_i^2 - d}{2}$$
  $K_i(2) = \frac{\binom{d}{i}}{\binom{d}{2}} K_2(i)$   $(0 \le i \le d).$ 

*Proof.* By (105) and (107). 
$$\Box$$

Recall d = 2t with t even.

**Lemma 24.7.** The following hold for  $0 \le i \le d$ .

- (i) Assume i is odd. Then  $K_i(t) = K_t(i) = 0$ .
- (ii) Assume  $i = 2\ell$  is even. Then

$$K_i(t) = (-1)^{\ell} {t \choose \ell}, \qquad K_t(i) = (-1)^{\ell} {d \choose t} \frac{(2\ell - 1)(2\ell - 3)\cdots 3\cdot 1}{(d-1)(d-3)\cdots (d-2\ell + 1)}$$

*Proof.* To obtain  $K_i(t)$  we use the generating function. We have

$$\sum_{i=0}^{d} K_i(t)z^i = (1-z)^t(1+z)^t = (1-z^2)^t = \sum_{\ell=0}^{t} (-1)^{\ell} {t \choose \ell} z^{2\ell}.$$

To obtain  $K_t(i)$  from  $K_i(t)$  we use (107).

We are now ready to apply linear programming with

$$D = \{0, 1, \dots, d\}, \qquad M = D \setminus \{t\}, \qquad C = Q.$$

**Lemma 24.8.** The following is a program for Problem (Q, M):

$$a_i = \frac{1}{d} \binom{d}{i} + \frac{d-1}{d} K_i(2) = \binom{d}{i} \frac{\theta_i^2}{d^2}$$
  $(i \in M).$  (108)

For this program the objective function is  $g = 2^d/d$ . Moreover

$$a_2^* = \frac{(d-1)2^d}{d}, \qquad a_i^* = 0 \qquad (1 \le i \le d, i \ne 2),$$

where

$$a_j^* = \sum_{i \in M} a_i Q_j(i)$$
  $(1 \le j \le d).$  (109)

*Proof.* By construction,  $a_0 = 1$  and  $a_i \ge 0$  for  $i \in M^{\times}$ . For notational convenience, define  $a_t = 0$ . Note that (108) holds at i = t because  $\theta_t = 0$ . Define

$$(a_0^*, a_1^*, \dots, a_d^*) = (a_0, a_1, \dots, a_d)Q.$$

Note that

$$(a_0, a_1, \dots, a_d) = \frac{1}{d} (\text{row 0 of } P) + \frac{d-1}{d} (\text{row 2 of } P).$$

Therefore

$$(a_0^*, a_1^*, \dots, a_d^*) = (a_0, a_1, \dots, a_d)Q$$

$$= \frac{1}{d} \Big( \text{row 0 of } P \Big) Q + \frac{d-1}{d} \Big( \text{row 2 of } P \Big) Q$$

$$= \frac{1}{d} \Big( \text{row 0 of } PQ \Big) + \frac{d-1}{d} \Big( \text{row 2 of } PQ \Big)$$

$$= \frac{|X|}{d} \Big( \text{row 0 of } I \Big) + \frac{(d-1)|X|}{d} \Big( \text{row 2 of } I \Big)$$

$$= \Big( \frac{2^d}{d}, 0, \frac{(d-1)2^d}{d}, 0, 0, \dots, 0 \Big).$$

Note that  $a_j^* \geq 0$  for  $1 \leq j \leq d$ . By these comments  $\{a_i\}_{i \in M}$  is a program for Problem (Q, M). Note that  $g = a_0^* = 2^d/d$ . The result follows.

**Lemma 24.9.** The following is a program for Problem (Q, M)': for  $0 \le i \le d$ ,

$$\alpha_{i} = \frac{1}{d} + \frac{d-1}{d} \frac{K_{t}(i)}{\binom{d}{t}} = \begin{cases} 1/d & \text{if } i \text{ is odd;} \\ 1/d + (-1)^{\ell} \frac{d-1}{d} \frac{(2\ell-1)(2\ell-3)\cdots 3\cdot 1}{(d-1)(d-3)\cdots (d-2\ell+1)} & \text{if } i = 2\ell \text{ is even} \end{cases}$$
(110)

For this program the objective function is  $\gamma = 2^d/d$ . Moreover

$$\alpha_j^* = 0 \qquad (j \in M^\times),$$

where

$$\alpha_j^* = \sum_{i \in D} \alpha_i Q_i(j) \qquad (j \in M^{\times}). \tag{111}$$

*Proof.* Using (110), we find  $\alpha_0 = 1$  and  $\alpha_i \ge 0$  for  $1 \le i \le d$ . Define

$$(\alpha_0^*, \alpha_1^*, \dots, \alpha_d^*) = (\alpha_0, \alpha_1, \dots, \alpha_d) Q^t.$$

By (110),

$$(\alpha_0, \alpha_1, \dots, \alpha_d) = \frac{1}{d} \left( \text{row 0 of } P^t \right) + \frac{d-1}{d} \frac{1}{\binom{d}{t}} \left( \text{row } t \text{ of } P^t \right).$$

Therefore

$$(\alpha_0^*, \alpha_1^*, \dots, \alpha_d^*) = (\alpha_0, \alpha_1, \dots, \alpha_d) Q^t$$

$$= \frac{1}{d} \left( \text{row 0 of } P^t \right) Q^t + \frac{d-1}{d} \frac{1}{\binom{d}{t}} \left( \text{row } t \text{ of } P^t \right) Q^t$$

$$= \frac{1}{d} \left( \text{row 0 of } P^t Q^t \right) + \frac{d-1}{d} \frac{1}{\binom{d}{t}} \left( \text{row } t \text{ of } P^t Q^t \right)$$

$$= \frac{|X|}{d} \left( \text{row 0 of } I \right) + \frac{(d-1)|X|}{d\binom{d}{t}} \left( \text{row } t \text{ of } I \right)$$

$$= \left( \frac{2^d}{d}, 0, \dots, 0, \frac{(d-1)2^d}{d\binom{d}{t}}, 0, \dots, 0 \right).$$

This shows that  $\alpha_j^* = 0$  unless j = t  $(1 \le j \le d)$ . Therefore  $\alpha_j^* = 0$  for  $j \in M^{\times}$ . Consequently  $\alpha_j^* \le 0$  for  $j \in M^{\times}$ . By these comments  $\{\alpha_i\}_{i=0}^d$  is a program for Problem (Q, M)'. Note that  $\gamma = \alpha_0^* = 2^d/d$ . The result follows.

We displayed a program for Problem (Q, M) and a program for Problem (Q, M)' such that  $g = 2^d/d = \gamma$ . Therefore, every program for Problem (Q, M) has objective function at most  $2^d/d$ . Consequently, an independent set in  $\Omega_d$  has cardinality at most  $2^d/d$ . Theorem 24.5 is proved.