Corollary 22.19. The algebra MY is the Bose-Mesner algebra of the association schemeY.
Moreover

AVAY = " rk AY (0<i,j<s).
k=0

Proof. By construction {A} }5_, are the associate matrices of Y, and the rf)j are the inter-
section numbers of Y. O

Note 22.20. It is known that the association scheme Y is @-polynomial. See the paper

Sho Suda. New parameters of subsets in polynomial schemes.
arXiv:1008.0189.

Lecture 33

23 Relative t-designs

We continue to discuss a symmetric association scheme X = (X, { R;},) that is Q-polynomial
with respect to the ordering {F;}¢ 4 of the primitive idempotents.

Until further notice, Y denotes a nonempty subset of X,

Recall the inner distribution {a;}{, of Y and the dual distribution {a}}%, of Y. Recall that
for 0 < ¢ < d, the set Y is a t-design whenever the strength of YV is at least ¢. This occurs if
and only if af =0 for 1 <i <¢, if and only if Fipy =0 for 1 <i <t.

We now introduce the notion of a relative ¢t-design.

Until further notice, fix x € X and write T' = T'(z).

Definition 23.1. For 0 <t < d, we call Y a relative t-design with respect to z, whenever
the vectors F;1by and F;Z are linearly dependent for 1 <i < ¢,

Note 23.2. The subset Y is always a relative 0-design with respect to z, because Fgy and
Eo& are both scalar multiples of 1.

We now investigate the linear dependencies in Definition 23.1. Recall that

Y| ., R _ )
Byl = et NBGP=IXm 0<i<a)

Lemma 23.3. For 0 <i<d,

(Eapy, Big) = |X|™ ) Qu(0)[Te(z) N Y.
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Proof. We have

(Eipy, Bi&) = (v, E}Z) = (Py, Bi)

=X Z Qi) (thy, Aet) = | X7 ZQi(E)II‘g(a;) ny.

Lemma 23.4. For 0 <1 <d we have

(T Qo) n Y1)
|Y'|m; ’

*
1

a.

IV

with equality if and only if Exby, Ei& are linearly dependent. In this case

(Ei'(/}Y: Elf:>

B

Proof. Compute the inner product matrix

( | By || (Ez'w)’:Ei~%>>
(E:&, Egpy) | E:&

(98)

using Lemma 23.3 and the comments above it. The inner product matrix is positive semidef-
inite, so the determinate is nonnegative. The determinate is zero if and only if Eqby, Fid

are linearly dependent. In this case, the dependency (99) is readily computed.
Corollary 23.5. For 1 <t < d the following are equivalent:
(i) Y is a relative t-design with respect to x;
(i) equality holds in (98) for 1 <i<t.
Proof. By Definition 23.1 and Lemma 23.4.
Theorem 23.6. Define

s=|{k|l <k <d, Th@)NY # 0}

O

Assume that Y is a t-design with t +1 > s. Then each nonempty I'y(z) NY s a relative

(t + 1 — s)-design with respect to .
Proof. Define the set

S={k|l <k<d Thx)NY #0}.

Note that s = |S|. For 0 < k < d,

By = >

yelk(z)NY
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For 1 <k <d, B{yyy #0if and only if k € S.
Tt suffices to show that for k € S the vectors
EBpy, Ed

are linearly dependent for 1 <¢<t+1~—s.

We will be discussing the vector Egpy. Note that Egyy = & if ¢ € Y, and Egyy = 0 if
x €Y. Consider the following two sets of vectors:

(i) {Eivy tres U {Eguv};
(it) {Eid oy }iog U {Esyv}
We claim that the above sets (i), (ii) have the same span. To prove the claim, note that for

0<i<s—1,

d d
B oty = X7 Quk) A oy = X7 Qi(k) Efyy

k=0 k=0
- x| <miE;;wy 'y @(k)E;;wy) |
kes
Consider the s x s submatrix of @ that has rows indexed by S and columns indexed by
{0,1,2,...,s — 1}. This submatrix is essentially Vandermonde, and hence invertible. The
claim follows.
For k€ S,

Eisby € Span{E;# o 9y }iZy + Span{d}.

Also for 0 <i < s 1,

Y Y

YY) T
A M Y. .
= Fabo <”’” |X|1> Ty

We saw earlier that

Y
?,by—-ll;\,—lll € E V4. + B4V
Sofor 0 <i<s—1,
. Y]
Eigo |y — ml € BV A+ -+ EV

C Bypa sV + -+ BaV.

125



The Bose-Mesner algebra M has basis {E;}¢,. The primary T-module Mz has basis
{E;2}4,. Let k € S. By the above comments,

Eiyy € BypgV + -+ B3V + M2,
Sofor1 <i<t+1—s,
EiEjpy € EEME = Span{E;Z}.
Therefore, the vectors
EiEgy, E;g
are linearly dependent. The result follows. O

Lemma 23.7. Let s denote the degree of Y. Assume that Y is a t-design with t +1 > s.
Then forz € Y and 0 <k < d,

|Pk(73) ﬂY| = ayj,.

Proof. In Lemma 22.13 we proved this under the assumption that ¢ = 2s. However we did
not use the full strength of that assumption. We only used t +1 > s. O

Recall the norm ||A]|? = tr(A*A) for A € Mx(R).

Lemma 23.8. For 0 < k,£ < d we have

2 .
| X|ExAy By — 1Y|5k,eEkH = Y] Zq{waj, (100)
=1

where Ay is the diagonal matriz in Mx(R) with (y,y)-entry 1 ify € Y and 0 ify € YV
(ye X).

Proof. Routine using

by Ejpy = %a; (0<j5<4d)
and
Qe = Oreme
and

(Br)yy = 1X] (y € X).
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Write A = Ay. First assume that k £ £. We have

2
]X]EA,AEC'[ - |X12tr((EkAEg)tEkAEg)
= le2tl(EgAEzAEg)
= IXIZtI(AEkAEg)
= |X|2 Z Z Dy (Bi)y, Dz (Br)zy

yeX zeX

= X1 Y (Bi)ye(Be)sy

YEY 2€Y

= 1XP YD (Br)ya(Be)y.e

YEY z€Y

= 'X‘Q Z Z(Ek o Eﬂ)y,z

yeY z€Y

= |X "9t (By o Ep)py

d
- 1X[ Z (Ii,c@Dg’EJ’Q/}Y

J=1

d .
= Y1)l
j=1

The result is proved for k = £. The proof for k = £ is similar. 0
Corollary 23.9. For 0 <t < d the following are equivalent:

(i) Y is a t-design;

(i) for k,0 > 0 such that k + £ <t,

|X|ExAy By = |Y |8 0B

Proof. Routine using Lemma 23.8. O
Let s denote the degree of Y. For notational convenience, assume that a; # 0 for 1 <i < s.
Theorem 23.10. Assume that Y is a t-design with t > 2s — 2. Then:
(1) Y= (Y, {RY},) is a symmetric association scheme;
(i) Y has primitive idempotents cEY (0 <i < s—1) and [—c Y53 EY, wherec = | X|/|Y];
(iii) Y is Q-polynomial with respect to the above ordering of the primitive idempotents;

)
(iv) assume that t = 2s. Then I — ¢330 EY = cEY.
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Proof. (i), (ii) By Corollary 23.9 we find that cEY (0 <i < s—1)and [ — Y5 EY ave
mutually orthogonal idempotents. These are linearly independent and contained in MY.
They must form a basis for MY, because MY has dimension s + 1. By these comments the
subspace MY is closed under matrix multiplication. Therefore Y is a symmetric association
scheme.

(iii) By the construction and since X is Q-polynomial with respect to {E;}%,.

(iv) We saw earlier that ¢ 5, Ef = IY. O
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