Corollary 22.19. The algebra \mathcal{M}^Y is the Bose-Mesner algebra of the association scheme \mathcal{Y} . Moreover

$$A_i^Y A_j^Y = \sum_{k=0}^s r_{i,j}^k A_k^Y$$
 $(0 \le i, j \le s).$

Proof. By construction $\{A_i^Y\}_{i=0}^s$ are the associate matrices of \mathcal{Y} , and the $r_{i,j}^k$ are the intersection numbers of \mathcal{Y} .

Note 22.20. It is known that the association scheme \mathcal{Y} is Q-polynomial. See the paper Sho Suda. New parameters of subsets in polynomial schemes. arXiv:1008.0189.

Lecture 33

23 Relative t-designs

We continue to discuss a symmetric association scheme $\mathfrak{X} = (X, \{R_i\}_{i=0}^d)$ that is Q-polynomial with respect to the ordering $\{E_i\}_{i=0}^d$ of the primitive idempotents.

Until further notice, Y denotes a nonempty subset of X.

Recall the inner distribution $\{a_i\}_{i=0}^d$ of Y and the dual distribution $\{a_i^*\}_{i=0}^d$ of Y. Recall that for $0 \le t \le d$, the set Y is a t-design whenever the strength of Y is at least t. This occurs if and only if $a_i^* = 0$ for $1 \le i \le t$, if and only if $E_i \psi_Y = 0$ for $1 \le i \le t$.

We now introduce the notion of a relative t-design.

Until further notice, fix $x \in X$ and write T = T(x).

Definition 23.1. For $0 \le t \le d$, we call Y a relative t-design with respect to x, whenever the vectors $E_i \psi_Y$ and $E_i \hat{x}$ are linearly dependent for $1 \le i \le t$.

Note 23.2. The subset Y is always a relative 0-design with respect to x, because $E_0\psi_Y$ and $E_0\hat{x}$ are both scalar multiples of 1.

We now investigate the linear dependencies in Definition 23.1. Recall that

$$||E_i\psi_Y||^2 = \frac{|Y|}{|X|}a_i^*, \qquad ||E_i\hat{x}||^2 = |X|^{-1}m_i \qquad (0 \le i \le d).$$

Lemma 23.3. *For* $0 \le i \le d$,

$$\langle E_i \psi_Y, E_i \hat{x} \rangle = |X|^{-1} \sum_{\ell=0}^d Q_i(\ell) |\Gamma_\ell(x) \cap Y|.$$

Proof. We have

$$\langle E_i \psi_Y, E_i \hat{x} \rangle = \langle \psi_Y, E_i^2 \hat{x} \rangle = \langle \psi_Y, E_i \hat{x} \rangle$$
$$= |X|^{-1} \sum_{\ell=0}^d Q_i(\ell) \langle \psi_Y, A_\ell \hat{x} \rangle = |X|^{-1} \sum_{\ell=0}^d Q_i(\ell) |\Gamma_\ell(x) \cap Y|.$$

Lemma 23.4. For $0 \le i \le d$ we have

$$a_i^* \ge \frac{\left(\sum_{\ell=0}^d Q_i(\ell)|\Gamma_\ell(x) \cap Y|\right)^2}{|Y|m_i},\tag{98}$$

with equality if and only if $E_i\psi_Y$, $E_i\hat{x}$ are linearly dependent. In this case

$$E_i \psi_Y = \frac{\langle E_i \psi_Y, E_i \hat{x} \rangle}{\|E_i \hat{x}\|^2} E_i \hat{x}. \tag{99}$$

Proof. Compute the inner product matrix

$$\begin{pmatrix} ||E_i\psi_Y||^2 & \langle E_i\psi_Y, E_i\hat{x}\rangle \\ \langle E_i\hat{x}, E_i\psi_Y\rangle & ||E_i\hat{x}||^2 \end{pmatrix}$$

using Lemma 23.3 and the comments above it. The inner product matrix is positive semidefinite, so the determinate is nonnegative. The determinate is zero if and only if $E_i\psi_Y$, $E_i\hat{x}$ are linearly dependent. In this case, the dependency (99) is readily computed.

Corollary 23.5. For $1 \le t \le d$ the following are equivalent:

- (i) Y is a relative t-design with respect to x;
- (ii) equality holds in (98) for $1 \le i \le t$.

Proof. By Definition 23.1 and Lemma 23.4.

Theorem 23.6. Define

$$s = |\{k|1 \le k \le d, \ \Gamma_k(x) \cap Y \ne \emptyset\}|.$$

Assume that Y is a t-design with $t+1 \geq s$. Then each nonempty $\Gamma_k(x) \cap Y$ is a relative (t+1-s)-design with respect to x.

Proof. Define the set

$$S = \{k | 1 \le k \le d, \ \Gamma_k(x) \cap Y \ne \emptyset\}.$$

Note that s = |S|. For $0 \le k \le d$,

$$E_k^* \psi_Y = \sum_{y \in \Gamma_k(x) \cap Y} \hat{y}.$$

For $1 \le k \le d$, $E_k^* \psi_Y \ne 0$ if and only if $k \in S$.

It suffices to show that for $k \in S$ the vectors

$$E_i E_k^* \psi_Y, \qquad E_i \hat{x}$$

are linearly dependent for $1 \le i \le t + 1 - s$.

We will be discussing the vector $E_0^*\psi_Y$. Note that $E_0^*\psi_Y = \hat{x}$ if $x \in Y$, and $E_0^*\psi_Y = 0$ if $x \notin Y$. Consider the following two sets of vectors:

- (i) $\{E_k^*\psi_Y\}_{k\in S} \cup \{E_0^*\psi_Y\};$
- (ii) $\{E_i \hat{x} \circ \psi_Y\}_{i=0}^{s-1} \cup \{E_0^* \psi_Y\}.$

We claim that the above sets (i), (ii) have the same span. To prove the claim, note that for $0 \le i \le s - 1$,

$$E_{i}\hat{x} \circ \psi_{Y} = |X|^{-1} \sum_{k=0}^{d} Q_{i}(k) A_{k} \hat{x} \circ \psi_{Y} = |X|^{-1} \sum_{k=0}^{d} Q_{i}(k) E_{k}^{*} \psi_{Y}$$
$$= |X|^{-1} \left(m_{i} E_{0}^{*} \psi_{Y} + \sum_{k \in S} Q_{i}(k) E_{k}^{*} \psi_{Y} \right).$$

Consider the $s \times s$ submatrix of Q that has rows indexed by S and columns indexed by $\{0,1,2,\ldots,s-1\}$. This submatrix is essentially Vandermonde, and hence invertible. The claim follows.

For $k \in S$,

$$E_k^* \psi_Y \in \operatorname{Span} \{ E_i \hat{x} \circ \psi_Y \}_{i=0}^{s-1} + \operatorname{Span} \{ \hat{x} \}.$$

Also for $0 \le i \le s - 1$,

$$E_{i}\hat{x} \circ \psi_{Y} = E_{i}\hat{x} \circ \left(\psi_{Y} - \frac{|Y|}{|X|}\mathbf{1}\right) + \frac{|Y|}{|X|}E_{i}\hat{x} \circ \mathbf{1}$$
$$= E_{i}\hat{x} \circ \left(\psi_{Y} - \frac{|Y|}{|X|}\mathbf{1}\right) + \frac{|Y|}{|X|}E_{i}\hat{x}.$$

We saw earlier that

$$\psi_Y - \frac{|Y|}{|X|} \mathbf{1} \in E_{t+1}V + \dots + E_dV.$$

So for $0 \le i \le s - 1$,

$$E_{i}\hat{x} \circ \left(\psi_{Y} - \frac{|Y|}{|X|}\mathbf{1}\right) \in E_{t+1-i}V + \dots + E_{d}V$$
$$\subseteq E_{t+2-s}V + \dots + E_{d}V.$$

The Bose-Mesner algebra \mathcal{M} has basis $\{E_i\}_{i=0}^d$. The primary T-module $\mathcal{M}\hat{x}$ has basis $\{E_i\hat{x}\}_{i=0}^d$. Let $k \in S$. By the above comments,

$$E_k^* \psi_Y \in E_{t+2-s} V + \dots + E_d V + \mathfrak{M} \hat{x}.$$

So for $1 \le i \le t + 1 - s$,

$$E_i E_k^* \psi_Y \in E_i \mathcal{M} \hat{x} = \operatorname{Span} \{ E_i \hat{x} \}.$$

Therefore, the vectors

$$E_i E_k^* \psi_Y, \qquad E_i \hat{x}$$

are linearly dependent. The result follows.

Lemma 23.7. Let s denote the degree of Y. Assume that Y is a t-design with $t+1 \ge s$. Then for $x \in Y$ and $0 \le k \le d$,

$$|\Gamma_k(x) \cap Y| = a_k.$$

Proof. In Lemma 22.13 we proved this under the assumption that t = 2s. However we did not use the full strength of that assumption. We only used $t + 1 \ge s$.

Recall the norm $||A||^2 = \operatorname{tr}(A^t A)$ for $A \in M_X(\mathbb{R})$.

Lemma 23.8. For $0 \le k, \ell \le d$ we have

$$\||X|E_k\Delta_Y E_\ell - |Y|\delta_{k,\ell} E_k\|^2 = |Y| \sum_{i=1}^d q_{k,\ell}^i a_j^*, \tag{100}$$

where Δ_Y is the diagonal matrix in $M_X(\mathbb{R})$ with (y,y)-entry 1 if $y \in Y$ and 0 if $y \notin Y$ $(y \in X)$.

Proof. Routine using

$$\psi_Y^t E_j \psi_Y = \frac{|Y|}{|X|} a_j^* \qquad (0 \le j \le d)$$

and

$$q_{k,\ell}^0 = \delta_{k,\ell} m_\ell$$

and

$$(E_k)_{y,y} = |X|^{-1} m_k$$
 $(y \in X).$

Write $\Delta = \Delta_Y$. First assume that $k \neq \ell$. We have

$$\begin{aligned} \left\| |X|E_k \Delta E_\ell \right\|^2 &= |X|^2 \operatorname{tr} \left(\left(E_k \Delta E_\ell \right)^t E_k \Delta E_\ell \right) \\ &= |X|^2 \operatorname{tr} \left(E_\ell \Delta E_k^2 \Delta E_\ell \right) \\ &= |X|^2 \operatorname{tr} \left(\Delta E_k \Delta E_\ell \right) \\ &= |X|^2 \sum_{y \in X} \sum_{z \in X} \Delta_{y,y} (E_k)_{y,z} \Delta_{z,z} (E_\ell)_{z,y} \\ &= |X|^2 \sum_{y \in Y} \sum_{z \in Y} (E_k)_{y,z} (E_\ell)_{z,y} \\ &= |X|^2 \sum_{y \in Y} \sum_{z \in Y} (E_k)_{y,z} (E_\ell)_{y,z} \\ &= |X|^2 \sum_{y \in Y} \sum_{z \in Y} (E_k \circ E_\ell)_{y,z} \\ &= |X|^2 \psi_Y^t (E_k \circ E_\ell) \psi_Y \\ &= |X| \sum_{j=1}^d q_{k,\ell}^j \psi_Y^t E_j \psi_Y \\ &= |Y| \sum_{j=1}^d q_{k,\ell}^j a_j^*. \end{aligned}$$

The result is proved for $k \neq \ell$. The proof for $k = \ell$ is similar.

Corollary 23.9. For $0 \le t \le d$ the following are equivalent:

- (i) Y is a t-design;
- (ii) for $k, \ell \geq 0$ such that $k + \ell \leq t$,

$$|X|E_k\Delta_Y E_\ell = |Y|\delta_{k,\ell}E_k.$$

Proof. Routine using Lemma 23.8.

Let s denote the degree of Y. For notational convenience, assume that $a_i \neq 0$ for $1 \leq i \leq s$.

Theorem 23.10. Assume that Y is a t-design with $t \geq 2s - 2$. Then:

- (i) $\mathcal{Y} = (Y, \{R_i^Y\}_{i=0}^s)$ is a symmetric association scheme;
- (ii) If has primitive idempotents cE_i^Y ($0 \le i \le s-1$) and $I-c\sum_{i=0}^{s-1} E_i^Y$, where c=|X|/|Y|;
- (iii) Y is Q-polynomial with respect to the above ordering of the primitive idempotents;
- (iv) assume that t = 2s. Then $I c \sum_{i=0}^{s-1} E_i^Y = c E_s^Y$.

Proof. (i), (ii) By Corollary 23.9 we find that cE_i^Y ($0 \le i \le s-1$) and $I - c\sum_{i=0}^{s-1} E_i^Y$ are mutually orthogonal idempotents. These are linearly independent and contained in \mathcal{M}^Y . They must form a basis for \mathcal{M}^Y , because \mathcal{M}^Y has dimension s+1. By these comments the subspace \mathcal{M}^Y is closed under matrix multiplication. Therefore \mathcal{Y} is a symmetric association

(iii) By the construction and since \mathcal{X} is Q-polynomial with respect to $\{E_i\}_{i=0}^d$. (iv) We saw earlier that $c\sum_{i=0}^s E_i^Y = I^Y$.