Lecture 32

We continue to discuss a symmetric association scheme $\mathcal{X} = (X, \{R_i\}_{i=0}^d)$ that is Q-polynomial with respect to the ordering $\{E_i\}_{i=0}^d$ of the primitive idempotents.

Until further notice, Y denotes a nonempty subset of X that has degree s and strength t=2s.

Recall the inner distribution $\{a_i\}_{i=0}^d$ of Y. Recall the set $S = \{i | 1 \le i \le d, \ a_i \ne 0\}$. Recall that |S| = s. Reindexing the relations $\{R_i\}_{i=0}^d$ if necessary, we may assume without loss that

$$S = \{1, 2, \dots, s\}.$$

Definition 22.7. For $0 \le i \le d$ let R_i^Y denote the restriction of R_i to $Y \times Y$. By construction, R_i^Y is nonempty if and only if $0 \le i \le s$.

Lemma 22.8. The following hold:

- (i) $R_0^Y = \{(y,y)|y \in Y\};$
- (ii) the relations $\{R_i^Y\}_{i=0}^s$ partition $Y \times Y$;
- (iii) R_i^Y is symmetric for $0 \le i \le s$.

Proof. By the construction.

Our next general goal is to show that $\mathcal{Y} = (Y, \{R_i^Y\}_{i=0}^s)$ is a symmetric association scheme.

Definition 22.9. Let the matrix $Q^Y \in M_{s+1}(\mathbb{R})$ be the submatrix of Q associated with rows $0, 1, \ldots, s$ and columns $0, 1, \ldots, s$. So Q^Y has (i, j)-entry

$$Q_{i,j}^Y = Q_j(i) = v_j^*(\theta_i^*) \qquad \qquad (0 \le i, j \le s).$$

Lemma 22.10. The matrix Q^Y is invertible.

Proof. The polynomial $v_i^*(z)$ has degree i for $0 \le i \le s$. The scalars $\{\theta_j^*\}_{j=0}^s$ are mutually distinct. By these comments the matrix Q^Y is essentially Vandermonde, and hence invertible.

The following example should clarify what is meant by essentially Vandermonde.

Example 22.11. Assume that s = 2. Then

$$Q^{Y} = \begin{pmatrix} 1 & \theta_{0}^{*} & \frac{(\theta_{0}^{*})^{2} - q_{1,1}^{1} \theta_{0}^{*} - q_{1,1}^{0}}{q_{1,1}^{2}} \\ 1 & \theta_{1}^{*} & \frac{(\theta_{1}^{*})^{2} - q_{1,1}^{1} \theta_{1}^{*} - q_{1,1}^{0}}{q_{1,1}^{2}} \\ 1 & \theta_{2}^{*} & \frac{(\theta_{2}^{*})^{2} - q_{1,1}^{1} \theta_{2}^{*} - q_{1,1}^{0}}{q_{1,1}^{2}} \end{pmatrix}.$$

Via elementary column operations, we can reduce Q^Y to the Vandermonde matrix

$$\begin{pmatrix} 1 & \theta_0^* & (\theta_0^*)^2 \\ 1 & \theta_1^* & (\theta_1^*)^2 \\ 1 & \theta_2^* & (\theta_2^*)^2 \end{pmatrix}.$$

The above Vandermonde matrix is invertible. An elementary column operation changes the determinant by a nonzero scalar factor. Therefore Q^Y is invertible.

Definition 22.12. Define a matrix $P^Y \in M_{s+1}(\mathbb{R})$ such that

$$P^Y Q^Y = |Y|I.$$

For $0 \le i, j \le s$ the (i, j)-entry of P^Y is denoted $P_j^Y(i)$.

Lemma 22.13. For $x \in Y$ and $0 \le i \le s$,

$$|\Gamma_i(x) \cap Y| = a_i.$$

Proof. By definition, a_i is the average value of $|\Gamma_i(x) \cap Y|$, where the average is over all $x \in Y$. Therefore, It suffices to show that $|\Gamma_i(x) \cap Y|$ does not depend on the choice of x. Recall the vector ψ_Y . Recall that $E_i\psi_Y = 0$ for $1 \le j \le 2s$ and

$$E_0\psi_Y = \frac{|Y|}{|X|}1.$$

For $0 \le j \le 2s$ we have

$$\delta_{0,j} \frac{|Y|}{|X|} = \langle E_j \hat{x}, E_j \psi_Y \rangle = \sum_{y \in Y} \langle E_j \hat{x}, E_j \hat{y} \rangle = \sum_{k=0}^s \sum_{y \in \Gamma_k(x) \cap Y} \langle E_j \hat{x}, E_j \hat{y} \rangle$$

$$= |X|^{-1} \sum_{k=0}^s \sum_{y \in \Gamma_k(x) \cap Y} Q_j(k) = |X|^{-1} \sum_{k=0}^s \sum_{y \in \Gamma_k(x) \cap Y} v_j^*(\theta_k^*)$$

$$= |X|^{-1} \sum_{k=0}^s |\Gamma_k(x) \cap Y| v_j^*(\theta_k^*).$$

For notational convenience, define

$$z_k = |\Gamma_k(x) \cap Y| \qquad (0 \le k \le s).$$

By the above equations,

$$(z_0, z_1, \dots, z_s)Q^Y = (|Y|, 0, \dots, 0).$$

Therefore

$$(z_0, z_1, \dots, z_s) = (1, 0, \dots, 0)P^Y.$$
 (97)

This shows that for $0 \le i \le s$ the number z_i does not depend on the choice of x. Therefore $z_i = a_i$ for $0 \le i \le s$. The result follows.

We have some comments about P^Y .

Lemma 22.14. The following hold for $0 \le i \le s$:

- (i) $P_0^Y(i) = 1$;
- (ii) $P_i^Y(0) = a_i$.

Proof. (i) In the previous lecture we saw that

$$\frac{(z-\theta_1^*)(z-\theta_2^*)\cdots(z-\theta_s^*)}{(\theta_0^*-\theta_1^*)(\theta_0^*-\theta_2^*)\cdots(\theta_0^*-\theta_s^*)} = \frac{v_0^*(z)+v_1^*(z)+\cdots+v_s^*(z)}{|Y|}.$$

Taking $z \in \{\theta_0^*, \theta_1^*, \dots, \theta_s^*\}$ we obtain

$$Q^Y \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} |Y| \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Therefore

$$\begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} = P^Y \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

(ii) In the proof of Lemma 22.13 we obtained

$$(a_0, a_1, \ldots, a_s) = (1, 0, \ldots, 0)P^Y.$$

The following result will help us understand the combinatorial regularity of \mathcal{Y} .

Lemma 22.15. Let $0 \le i, j, k \le s$ and $x, y \in Y$ with $(x, y) \in R_k$. Then

$$\langle E_i \hat{x} \circ E_j \hat{y}, \psi_Y \rangle = \delta_{i,j} \frac{|Y|}{|X|^2} v_i^*(\theta_k^*).$$

Proof. We have

$$\langle E_i \hat{x} \circ E_j \hat{y}, \psi_Y \rangle = \sum_{\ell=0}^d \sum_{h=0}^d \langle E_\ell (E_i \hat{x} \circ E_j \hat{y}), E_h \psi_Y \rangle$$
$$= \sum_{\ell=0}^d \langle E_\ell (E_i \hat{x} \circ E_j \hat{y}), E_\ell \psi_Y \rangle.$$

In the above sum, the ℓ -summand is zero for $1 \le \ell \le d$, because

$$E_{\ell}(E_i\hat{x} \circ E_j\hat{y}) = 0 \qquad (2s+1 \le \ell \le d),$$

$$E_{\ell}\psi_Y = 0 \qquad (1 \le \ell \le 2s).$$

By these comments

$$\langle E_{i}\hat{x} \circ E_{j}\hat{y}, \psi_{Y} \rangle = \langle E_{0}(E_{i}\hat{x} \circ E_{j}\hat{y}), E_{0}\psi_{Y} \rangle = \frac{|Y|}{|X|} \langle E_{0}(E_{i}\hat{x} \circ E_{j}\hat{y}), 1 \rangle$$

$$= \frac{|Y|}{|X|} \langle E_{i}\hat{x} \circ E_{j}\hat{y}, E_{0}1 \rangle = \frac{|Y|}{|X|} \langle E_{i}\hat{x} \circ E_{j}\hat{y}, 1 \rangle$$

$$= \frac{|Y|}{|X|} \langle E_{i}\hat{x}, E_{j}\hat{y} \rangle = \delta_{i,j} \frac{|Y|}{|X|^{2}} Q_{i}(k) = \delta_{i,j} \frac{|Y|}{|X|^{2}} v_{i}^{*}(\theta_{k}^{*}).$$

Recall the Bose-Mesner algebra M.

Definition 22.16. For $M \in \mathcal{M}$ let M^Y denote the restriction of M to $Y \times Y$. Define

$$\mathfrak{M}^Y = \operatorname{Span}\{M^Y | M \in \mathfrak{M}\}.$$

By construction \mathcal{M}^Y is a subspace of $M_Y(\mathbb{R})$. It will turn out that \mathcal{M}^Y is a subalgebra of $M_Y(\mathbb{R})$.

We make an observation. For $0 \le i \le d$, $A_i^Y \ne 0$ if and only if $0 \le i \le s$.

Lemma 22.17. Each of the following is a basis for the vector space M^Y :

$$\{A_i^Y\}_{i=0}^s, \qquad \{E_i^Y\}_{i=0}^s$$

Moreover the following hold for $0 \le i \le s$:

$$E_i^Y = |X|^{-1} \sum_{j=0}^s Q_i(j) A_j^Y,$$
 $A_i^Y = \frac{|X|}{|Y|} \sum_{j=0}^s P_i^Y(j) E_j^Y.$

Proof. The matrices $\{A_i\}_{i=0}^d$ form a basis for \mathcal{M} , so the matrices $\{A_i^Y\}_{i=0}^d$ span \mathcal{M}^Y . We have $A_i^Y = 0$ for $s+1 \leq i \leq d$, so $\{A_i^Y\}_{i=0}^s$ span \mathcal{M}^Y . The matrices $\{A_i^Y\}_{i=0}^s$ are linearly independent, since their nonzero entries are in disjoint locations. Therefore $\{A_i^Y\}_{i=0}^s$ is a basis for \mathcal{M}^Y . The remaining assertions follow from the construction and Definition 22.12.

Theorem 22.18. $\mathcal{Y} = (Y, \{R_i^Y\}_{i=0}^s)$ is a symmetric association scheme.

Proof. Recall Lemma 22.8. It remains to show that for $0 \le i, j, k \le s$ and $x, y \in Y$ with $(x, y) \in R_k$, the number

$$r_{i,j}^k = \left| \Gamma_i(x) \cap \Gamma_j(y) \cap Y \right|$$

is independent of the choice of x, y. We have

$$\begin{aligned} |\Gamma_i(x) \cap \Gamma_j(y) \cap Y| &= \langle A_i \hat{x} \circ A_j \hat{y}, \psi_Y \rangle = \langle A_i^Y \hat{x} \circ A_j^Y \hat{y}, \psi_Y \rangle \\ &= \frac{|X|^2}{|Y|^2} \sum_{\ell=0}^s \sum_{h=0}^s P_i^Y(\ell) P_j^Y(h) \langle E_\ell^Y \hat{x} \circ E_h^Y \hat{y}, \psi_Y \rangle \\ &= \frac{|X|^2}{|Y|^2} \sum_{\ell=0}^s \sum_{h=0}^s P_i^Y(\ell) P_j^Y(h) \langle E_\ell \hat{x} \circ E_h \hat{y}, \psi_Y \rangle \\ &= |Y|^{-1} \sum_{k=0}^s P_i^Y(\ell) P_j^Y(\ell) v_\ell^*(\theta_k^*). \end{aligned}$$

The result follows.

Corollary 22.19. The algebra \mathfrak{M}^Y is the Bose-Mesner algebra of the association scheme \mathfrak{Y} .

Moreover

$$A_{i}^{Y}A_{j}^{Y} = \sum_{k=0}^{s} r_{i,j}^{k} A_{k}^{Y}$$
 $(0 \le i, j \le s).$

Proof. By construction $\{A_i^Y\}_{i=0}^s$ are the associate matrices of \mathcal{Y} , and the $r_{i,j}^k$ are the intersection numbers of \mathcal{Y} .

Note 22.20. It is known that the association scheme \mathcal{Y} is Q-polynomial. See the paper Sho Suda. New parameters of subsets in polynomial schemes. arXiv:1008.0189.