Lecture 32

We continue to discuss a symmetric association scheme X = (X, { B;}%_) that is @-polynomial
with respect to the ordering {F;}{, of the primitive idempotents. '

Until further notice, Y denotes a nonempty subset of X that has degree 3 and strength
t = 2s.

Recall the inner distribution {a;}%, of Y. Recall the set § = {i|1 < i < d, a; # 0}. Recall
that | S| = s. Reindexing the relations { B;}%, if necessary, we may assume without loss that

S={1,2,...,sh

Definition 22.7. For 0 < i < d let R} denote the restriction of R; to Y XY. By construction,
RY is nonempty if and only if 0 <4 < s.

Lemma 22.8. The following hold:
(i) By ={mylve¥}
(i) the relations {RY }_ partition Y X Y;
(iil) R} 1s symmetric for 0 <i <s.
Proof. By the construction. il

Our next general goal is to show that Y = (Y, {RY }{_) is a symmetric association scheme.

Definition 22.9. Let the matrix @Y € M;;1(R) be the submatrix of Q associated with rows
0,1,...,s and columns 0,1,...,s. So @ has (%, /)-entry

¥ = Q4(6) = 3 (67) (0 <4, < s).
Lemma 22.10. The motriz QY is invertible.

Proof. 'The polynomial v} (z} has degree i for 0 <4 < s. The scalars {0} }]., are mutually
distinct. By these comments the matrix QV is essentially Vandermonde, and hence invertible.
il

The following example should clarify what is meant by essentially Vandermonde.
Fxample 22.11. Assume that s = 2. Then

1 6% (95)2—4%!193—9?,1
0 2 e
Lin}

QY _ 1 6 (9;)2“9%,19;*9?,1
o 1 11
1 6 (93)2“?},195“9?,1
2 q2
1t

Via elementary column operations, we can reduce @ to the Vandermonde matrix

165 (65)°

1oy (67)°

16 (63)°
The above Vandermonde matrix is invertible. An elementary column operation changes the
determinant by a nonzero scalar factor. Therefore % is invertible.
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Definition 22.12. Define a matrix P € M, (R) such that
PYQY = |Y|1.
For 0 <4,j < s the (4, f)-entry of P¥ is denoted P} ().
Lemma 22.13. Forz €Y and 0 <i < g,
ITi{z) NY| = a;.
Proof. By definition, a; is the average value of [I'y(z) NY{, where the average is over all

r € Y. Therefore, It suffices to show that |I";(2) N'Y| does not depend on the choice of z.
Recall the vector ¥y. Recall that Eppy = 0for 1 <7 < 2s and

Y]
Eypy = 1.
X
For 0 < 5 < 2s we have
Y . RS R
5D,jm - (Ejil’.,Ej’gby) == Z(Ejm, Ej'y> = Z Z (Ej{ﬂ, Ejy)
yeyY k=0 yeTp(z)NY
8 5
=X Y @m=1xTY ST e
k=0 yel'y (z)NY k=0 yel'y(z)nY
=X ') |Tu(z) N Y |0} (65).
k=0
For notational convenience, define
2 = |Fk(m)ﬂYl (0 <k <s).

By the above equations,
(20, 21, .-, 25) @ = (|Y],0,...,0).
Therefore
(20,21, -, 25) = (1,0,...,0) P". (97)

This shows that for 0 < ¢ < s the number z; does not depend on the choice of . Therefore
z = a; for 0 <1 < s. The result follows. O

We have some cominents about PY,

Lemma 22.14. The following hold for 0 <i¢ < s:
L) (5 =1;
(i) PY(0) = ax
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Proof. (i) In the previous lecture we saw that

(= 00— 05)- (= 03) _ wi(e) +0i(2) - i)
(65 — 01)(65 — 83) -+~ (65 — 63) Y
Taking z € {63,07,...,0%} we obtain

J—
o

Therefore

)

= pY

D .o

1
(i1) In the proof of Lemma 22.13 we obtained
(a0, a1,...,as) = (1,0,...,0)P",

The following result will help us understand the combinatorial regularity of Y.
Lemma 22.15. Let 0 < 4,5,k < s and z,y € Y with (z,y) € Ry. Then
AR, higl
<E’t$ ° Ejy} 7,[’}’) ,J 1X|2 Ui (eh)

Proof. We have

d d
(B o By, by =Y > (Ee(lid o Byf), Brthy )
£=0 h=:0
d
= (BBt o E;f), Erby).
=0
In the above sum, the f-summand is zero for 1 < ¢ < d, because
Eg(EtiOEJ?}):O (23+1 §£Sd),
By =0 (1 <2<2s).
By these comments
. Y .
(E o Biffypy) = { Eo( Bi 0 Egil), Boby) = : X|| (Eo(Ei# o Eyf),1)
a
gli," (B3 0 By, Fol) = x| (Ei:?; o E;f,1)
Y] IYI ¥l

|X|<E7' ’E3y> Ad‘JiX'gQ@( ) .J iX'g a(gh)
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Recall the Bose-Mesner algebra M.,

Definition 22.16. For M € M let MY denote the restriction of M to Y x Y. Define
MY = Span{M* |M € M}.

By construction MY is a subspace of My(R). It will turn out that MY is a subalgebra of
My (R). :

We male an observation. For 0 <i <d, A #0ifand only if 0 <i <s.
Lemma 22.17. Euch of the following is o basis for the vector space MY :
{A Yo, {B Yo
Moreover the following hold for 0 <i <s:
B oxrYama, A =Sy eem
v &

Proof. The matrices {4;}%, form a basis for M, so the matrices {4Y }¢ , span MY. We

have AY = 0 for s + 1 <4 < d, so {AY}., span MY. The matrices {A] }{, are linearly

independent, since their nonzero entries are in disjoint locations. Therefore { A} }{_, is a basis
for MY. The remaining assertions follow from the construction and Definition 22.12. [l
Theorem 22.18. Y = (Y, {RY }i_,) is a symmetric association scheme.

Proof. Recall Lemma 22.8. It remains to show that for 0 < 4,4,k < s and z,y € Y with
(z,9) € Hy, the number

T’ﬁj = lI‘t(:c) N Fj(y) M }f‘
is independent of the choice of ©,y. We have |

ITi(z) NTi(y) N Y| = (A 0 Az, by) = (A} 0 AJD,1by)

12 58
= T 2 2 P OB (B o B9, )
=0 h=0
XP ™ oy gy pY 5 o I
= |Y_|2 Z Z lDt (f)Pj (h)(EgCIJ o Eh'y, ’Qby)
£=0 h=0
8
— YYD YR (Oni67).
=0
The result follows. ]
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Corollary 22.19, The algebra MY is the Bose-Mesner algebra of the association scheme Y.
Moreover

3
Y 4Y koAY .
AVAY = A (0<4,5<s).
=0
Proof. By construction {A} }{_, are the associate matrices of ¥, and the 7§, are the inter-
section numbers of Y. ]

Note 22.20. It is known that the association scheme Y is ()-polynomial. See the paper

Sho Suda. New parameters of subsets in polynomial schemes.
arXiv:1008.0188,
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